1
|
Li A, Guo S, Wang X, Lu T, Wang Y, Zhang L, Fei Q. Unraveling the substrate-binding pocket: Endowing carbonyl reductase BaSDRX with intriguing inconsistent stereoselectivity towards similar structured β-Ketoesters. Int J Biol Macromol 2025; 306:141591. [PMID: 40049466 DOI: 10.1016/j.ijbiomac.2025.141591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/09/2025]
Abstract
Tailoring of carbonyl reductase with desired stereoselectivity for the asymmetric reduction of given β-ketoesters continues to pose a significant challenge. The reconstruction of substrate-binding pocket endowed carbonyl reductase BaSDRX with inconsistent stereoselectivity towards similar structured β-ketoesters. The variant F86C/E142A showed reversed stereoselectivity towards β-ketoesters with a larger substituent on the carbonyl side, giving antiPrelog alcohols with ee values varied from 52.8 % to 95.8 %. However, it displayed only a decreased stereoselectivity for β-ketoesters that contain a smaller methyl group at the same position. Analysis of enzyme-substrate complexes showed that a newly formed groove provided more spaces and chances for β-ketoester with a larger substituent on the carbonyl side to approach the catalytic triad of F86C/E142A in antiPrelog-preferred binding modes. For the β-ketoesters with a smaller methyl group on the carbonyl side, the introduction of mutations exerted less effect on the proximity of the substrate with antiPrelog-preferred binding modes to the catalytic residues. Meanwhile, both β-ketoesters with smaller group and larger group on carbonyl side underwent minor alterations in Prelog-preferred conformation. All of these made the variant F86C/E142A exhibited inconsistent stereoselectivity towards β-ketoesters possessing analogous structure. These results offered detailed mechanisms that govern the stereoselectivity in the enzyme-mediated asymmetric reduction of β-ketoesters.
Collapse
Affiliation(s)
- Aipeng Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China; School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinying Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tianyi Lu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yifan Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China.
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Gemmecker Y, Winiarska A, Hege D, Kahnt J, Seubert A, Szaleniec M, Heider J. A pH-dependent shift of redox cofactor specificity in a benzyl alcohol dehydrogenase of aromatoleum aromaticum EbN1. Appl Microbiol Biotechnol 2024; 108:410. [PMID: 38976076 PMCID: PMC11231019 DOI: 10.1007/s00253-024-13225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
We characterise a reversible bacterial zinc-containing benzyl alcohol dehydrogenase (BaDH) accepting either NAD+ or NADP+ as a redox cofactor. Remarkably, its redox cofactor specificity is pH-dependent with the phosphorylated cofactors favored at lower and the dephospho-forms at higher pH. BaDH also shows different steady-state kinetic behavior with the two cofactor forms. From a structural model, the pH-dependent shift may affect the charge of a histidine in the 2'-phosphate-binding pocket of the redox cofactor binding site. The enzyme is phylogenetically affiliated to a new subbranch of the Zn-containing alcohol dehydrogenases, which share this conserved residue. BaDH appears to have some specificity for its substrate, but also turns over many substituted benzyl alcohol and benzaldehyde variants, as well as compounds containing a conjugated C=C double bond with the aldehyde carbonyl group. However, compounds with an sp3-hybridised C next to the alcohol/aldehyde group are not or only weakly turned over. The enzyme appears to contain a Zn in its catalytic site and a mixture of Zn and Fe in its structural metal-binding site. Moreover, we demonstrate the use of BaDH in an enzyme cascade reaction with an acid-reducing tungsten enzyme to reduce benzoate to benzyl alcohol. KEY POINTS: •Zn-containing BaDH has activity with either NAD + or NADP+ at different pH optima. •BaDH converts a broad range of substrates. •BaDH is used in a cascade reaction for the reduction of benzoate to benzyl alcohol.
Collapse
Affiliation(s)
- Yvonne Gemmecker
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| | - Agnieszka Winiarska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| | - Dominik Hege
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| | - Jörg Kahnt
- Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Seubert
- Faculty of Chemistry, Analytical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland.
| | - Johann Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany.
- Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
3
|
Tang S, Zhao Z, Wang Y, El Akkawi MM, Tan Z, Liu D, Chen G, Liu H. DHRS7 is an immune-related prognostic biomarker of KIRC and pan-cancer. Front Genet 2022; 13:1015844. [PMID: 36276963 PMCID: PMC9584615 DOI: 10.3389/fgene.2022.1015844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Renal clear cell carcinoma (KIRC) is one malignancy whose development and prognosis have been associated with aberrant DHRS7 expression. However, the catalytic activity and pathophysiology of KIRC are poorly understood, and no sensitive tumor biomarkers have yet been discovered. In our study, we examined the significant influence of DHRS7 on the tumor microenvironment (TME) and tumor progression using an overall predictable and prognostic evaluation approach. We found novel cancer staging, particularly in KIRC, as well as potential therapeutic drugs out of 27 drug sensitivity tests. Using Perl scripts, it was possible to determine the number of somatic mutations present in 33 tumors, as well as the relative scores of 22 immune cells using CIBERSORT, the relationship between immune infiltration and differential expression using TCGA data, and the immune microenvironment score using the estimate technique. Our results show that DHRS7 is abnormally expressed in pan-cancer patients, which influences their survival. Low DHRS7 expression was associated with late clinical stages and a low survival rate in KIRC patients, suggesting a poor prognosis and course of treatment, in HNSG, MESO, and KIRC patients. We also found that DHRS7 was associated with TMB and MSI in certain tumors. Using KIRC as an example, we discovered a negative correlation between DHRS7 expression and immunological assessments, suggesting that this substance might be used as a tumor biomarker.
Collapse
Affiliation(s)
- Sheng Tang
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Zhenyu Zhao
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yuhang Wang
- Department of Urology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Mariya M. El Akkawi
- Department of Plastic and Reconstructive Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhennan Tan
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Dongbin Liu
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Guoxiong Chen
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Hu Liu
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
- *Correspondence: Hu Liu,
| |
Collapse
|
4
|
von Horsten S, Lippert ML, Geisselbrecht Y, Schühle K, Schall I, Essen LO, Heider J. Inactive pseudoenzyme subunits in heterotetrameric BbsCD, a novel short-chain alcohol dehydrogenase involved in anaerobic toluene degradation. FEBS J 2021; 289:1023-1042. [PMID: 34601806 DOI: 10.1111/febs.16216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Anaerobic toluene degradation proceeds by fumarate addition to produce (R)-benzylsuccinate as first intermediate, which is further degraded via β-oxidation by five enzymes encoded in the conserved bbs operon. This study characterizes two enzymes of this pathway, (E)-benzylidenesuccinyl-CoA hydratase (BbsH), and (S,R)-2-(α-hydroxybenzyl)succinyl-CoA dehydrogenase (BbsCD) from Thauera aromatica. BbsH, a member of the enoyl-CoA hydratase family, converts (E)-benzylidenesuccinyl-CoA to 2-(α-hydroxybenzyl)succinyl-CoA and was subsequently used in a coupled enzyme assay with BbsCD, which belongs to the short-chain dehydrogenases/reductase (SDR) family. The BbsCD crystal structure shows a C2-symmetric heterotetramer consisting of BbsC2 and BbsD2 dimers. BbsD subunits are catalytically active and capable of binding NAD+ and substrate, whereas BbsC subunits represent built-in pseudoenzyme moieties lacking all motifs of the SDR family required for substrate binding or catalysis. Molecular modeling studies predict that the active site of BbsD is specific for conversion of the (S,R)-diastereomer of 2-(α-hydroxybenzyl)succinyl-CoA to (S)-2-benzoylsuccinyl-CoA by hydride transfer to the re-face of nicotinamide adenine dinucleotide (NAD)+ . Furthermore, BbsC subunits are not engaged in substrate binding and merely serve as scaffold for the BbsD dimer. BbsCD represents a novel clade of related enzymes within the SDR family, which adopt a heterotetrameric architecture and catalyze the β-oxidation of aromatic succinate adducts.
Collapse
Affiliation(s)
| | | | | | - Karola Schühle
- Department of Biology, Philipps-Universität, Marburg, Germany
| | - Iris Schall
- Department of Biology, Philipps-Universität, Marburg, Germany
| | | | - Johann Heider
- Department of Biology, Philipps-Universität, Marburg, Germany
| |
Collapse
|
5
|
Sarmiento-Pavía PD, Sosa-Torres ME. Bioinorganic insights of the PQQ-dependent alcohol dehydrogenases. J Biol Inorg Chem 2021; 26:177-203. [PMID: 33606117 DOI: 10.1007/s00775-021-01852-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Among the several alcohol dehydrogenases, PQQ-dependent enzymes are mainly found in the α, β, and γ-proteobacteria. These proteins are classified into three main groups. Type I ADHs are localized in the periplasm and contain one Ca2+-PQQ moiety, being the methanol dehydrogenase (MDH) the most representative. In recent years, several lanthanide-dependent MDHs have been discovered exploding the understanding of the natural role of lanthanide ions. Type II ADHs are localized in the periplasm and possess one Ca2+-PQQ moiety and one heme c group. Finally, type III ADHs are complexes of two or three subunits localized in the cytoplasmic membrane and possess one Ca2+-PQQ moiety and four heme c groups, and in one of these proteins, an additional [2Fe-2S] cluster has been discovered recently. From the bioinorganic point of view, PQQ-dependent alcohol dehydrogenases have been revived recently mainly due to the discovery of the lanthanide-dependent enzymes. Here, we review the three types of PQQ-dependent ADHs with special focus on their structural features and electron transfer processes. The PQQ-Alcohol dehydrogenases are classified into three main groups. Type I and type II ADHs are located in the periplasm, while type III ADHs are in the cytoplasmic membrane. ADH-I have a Ca-PQQ or a Ln-PQQ, ADH-II a Ca-PQQ and one heme-c and ADH-III a Ca-PQQ and four hemes-c. This review focuses on their structural features and electron transfer processes.
Collapse
Affiliation(s)
- Pedro D Sarmiento-Pavía
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Martha E Sosa-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Haseba T, Okuda T, Maruyama M, Akimoto T, Duester G, Ohno Y. Roles of Two Major Alcohol Dehydrogenases, ADH1 (Class I) and ADH3 (Class III), in the Adaptive Enhancement of Alcohol Metabolism Induced by Chronic Alcohol Consumption in Mice. Alcohol Alcohol 2020; 55:11-19. [PMID: 31825074 DOI: 10.1093/alcalc/agz091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS It is still unclear which enzymes contribute to the adaptive enhancement of alcohol metabolism by chronic alcohol consumption (CAC). ADH1 (Class I) has the lowest Km for ethanol and the highest sensitivity for 4-methylpyrazole (4MP) among ADH isozymes, while ADH3 (Class III) has the highest Km and the lowest sensitivity. We investigated how these two major ADHs relate to the adaptive enhancement of alcohol metabolism. METHODS Male mice with different ADH genotypes (WT, Adh1-/- and Adh3-/-) were subjected to CAC experiment using a 10% ethanol solution for 1 month. Alcohol elimination rate (AER) was measured after ethanol injection at a 4.0 g/kg dose. 4MP-sensitive and -insensitive AERs were measured by the simultaneous administration of 4MP at a dose of 0.5 mmol/kg in order to estimate ADH1 and non-ADH1 pathways. RESULTS AER was enhanced by CAC in all ADH genotypes, especially more than twofold in Adh1-/- mice, with increasing ADH1 and/or ADH3 liver contents, but not CYP2E1 content. 4MP-sensitive AER was also increased by CAC in WT and Adh3-/- strains, which was greater in Adh3-/- than in WT mice. The sensitive AER was increased even in Adh1-/- mice probably due to the increase in ADH3, which is semi-sensitive for 4MP. 4MP-insensitive AER was also increased in WT and Adh1-/- by CAC, but not in Adh3-/- mice. CONCLUSION ADH1 contributes to the enhancement of alcohol metabolism by CAC, particularly in the absence of ADH3. ADH3 also contributes to the enhancement as a non-ADH1 pathway, especially in the absence of ADH1.
Collapse
Affiliation(s)
- Takeshi Haseba
- Department of Legal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.,Department of Forensic Medicine, Kanagawa Dental University, 8 Inaokacho, Yokosuka 238-8580, Japan
| | - Takahisa Okuda
- Department of Legal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Motoyo Maruyama
- Division of Laboratory Animal Science, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.,Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Toshio Akimoto
- Division of Laboratory Animal Science, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Gregg Duester
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Youkichi Ohno
- Department of Legal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
7
|
Wang H, Li Q, Zhang Z, Zhou C, Ayepa E, Abrha GT, Han X, Hu X, Yu X, Xiang Q, Li X, Gu Y, Zhao K, Xie C, Chen Q, Ma M. YKL107W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of acetaldehyde, glycolaldehyde, and furfural. Appl Microbiol Biotechnol 2019; 103:5699-5713. [DOI: 10.1007/s00253-019-09885-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023]
|
8
|
Seliger JM, Martin HJ, Maser E, Hintzpeter J. Potent inhibition of human carbonyl reductase 1 (CBR1) by the prenylated chalconoid xanthohumol and its related prenylflavonoids isoxanthohumol and 8-prenylnaringenin. Chem Biol Interact 2019; 305:156-162. [DOI: 10.1016/j.cbi.2019.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/20/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
|
9
|
Kim K, Plapp BV. Substitution of cysteine-153 ligated to the catalytic zinc in yeast alcohol dehydrogenase with aspartic acid and analysis of mechanisms of related medium chain dehydrogenases. Chem Biol Interact 2019; 302:172-182. [PMID: 30721696 DOI: 10.1016/j.cbi.2019.01.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 11/28/2022]
Abstract
The catalytic zincs in complexes of horse liver and yeast alcohol dehydrogenases (ADH) with NAD+ and the substrate analogue, 2,2,2-trifluoroethanol, are ligated to two cysteine residues and one histidine residue from the protein and the oxygen from the alcohol. The zinc facilitates deprotonation of the alcohol and is essential for catalysis. In the yeast apoenzyme, the zinc is coordinated to a nearby glutamic acid, which is displaced by the alcohol in the complex with NAD+. Some homologous medium chain dehydrogenases have a cysteine replaced by aspartic or glutamic acid residues. How an aspartic acid would affect catalysis was studied by replacing Cys-153 in Saccharomyces cerevisiae ADH1 by using site-directed mutagenesis. The C153D enzyme was about as stable as the wild-type enzyme, if EDTA was not included in the buffers. The substitution increased affinity for NAD+ by 3-fold, but did not affect NADH binding. At pH 7.3, the turnover number for ethanol oxidation (V1/Et) decreased by 7-fold and catalytic efficiency decreased 18-fold (V1/EtKb), but turnover for acetaldehyde reduction (V2/Et) was the same as for wild-type enzyme and catalytic efficiency decreased 8-fold (V2/EtKp). Deuterium isotope effects of 3.0 on V1/Et and 3.8 on V1/EtKb for ethanol oxidation suggest that hydride transfer is more rate-limiting for turnover for the C153D enzyme than by wild-type enzyme. The patterns of pH dependence for V1/EtKb for ethanol oxidation were similar for both enzymes in the pH range from 7 to 9. The C153D substitution decreased binding of trifluoroethanol by 5-fold and of pyrazole by 65-fold. Substrate specificities for C153D and wild-type ADHs for primary alcohols have similar patterns. Efficiency for secondary alcohols decreased only about 4-fold, and efficiencies for 1,2-propanediol and acetone were about the same as for wild-type enzyme. The C153D substitution modestly affects catalysis by altering ligand exchange on the zinc or local structure. Structures and mechanisms for acid-base catalysis in related medium chain dehydrogenases with substitutions of the homologous cysteine are reviewed and analyzed.
Collapse
Affiliation(s)
- Keehyuk Kim
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Bryce V Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
10
|
Zemanová L, Navrátilová H, Andrýs R, Šperková K, Andrejs J, Kozáková K, Meier M, Möller G, Novotná E, Šafr M, Adamski J, Wsól V. Initial characterization of human DHRS1 (SDR19C1), a member of the short-chain dehydrogenase/reductase superfamily. J Steroid Biochem Mol Biol 2019; 185:80-89. [PMID: 30031147 DOI: 10.1016/j.jsbmb.2018.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 11/28/2022]
Abstract
Many enzymes from the short-chain dehydrogenase/reductase superfamily (SDR) have already been well characterized, particularly those that participate in crucial biochemical reactions in the human body (e.g. 11β-hydroxysteroid dehydrogenase 1, 17β-hydroxysteroid dehydrogenase 1 or carbonyl reductase 1). Several other SDR enzymes are completely or almost completely uncharacterized, such as DHRS1 (also known as SDR19C1). Based on our in silico and experimental approaches, DHRS1 is described as a likely monotopic protein that interacts with the membrane of the endoplasmic reticulum. The highest expression level of DHRS1 protein was observed in human liver and adrenals. The recombinant form of DHRS1 was purified using the detergent n-dodecyl-β-D-maltoside, and DHRS1 was proven to be an NADPH-dependent reductase that is able to catalyse the in vitro reductive conversion of some steroids (estrone, androstene-3,17-dione and cortisone), as well as other endogenous substances and xenobiotics. The expression pattern and enzyme activities fit to a role in steroid and/or xenobiotic metabolism; however, more research is needed to fully clarify the exact biological function of DHRS1.
Collapse
Affiliation(s)
- Lucie Zemanová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Hana Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Rudolf Andrýs
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kristýna Šperková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Andrejs
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Klára Kozáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Marc Meier
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gabriele Möller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Eva Novotná
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Miroslav Šafr
- Institute of Legal Medicine, Faculty of Medicine in Hradec Králové, Charles University and University Hospital in Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic
| | - Jerzy Adamski
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Vladimír Wsól
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Qin F, Qin B, Zhang W, Liu Y, Su X, Zhu T, Ouyang J, Guo J, Li Y, Zhang F, Tang J, Jia X, You S. Discovery of a Switch Between Prelog and Anti-Prelog Reduction toward Halogen-Substituted Acetophenones in Short-Chain Dehydrogenase/Reductases. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00807] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Fengyu Qin
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Wenhe Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Yalin Liu
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Xin Su
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Tianhui Zhu
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Jingping Ouyang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Jiyang Guo
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Yuxin Li
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Feiting Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Jun Tang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Xian Jia
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| |
Collapse
|
12
|
YKL071W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of glycolaldehyde and furfural derived from lignocellulose. Appl Microbiol Biotechnol 2017; 101:8405-8418. [DOI: 10.1007/s00253-017-8567-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 01/24/2023]
|
13
|
Zemanová L, Kirubakaran P, Pato IH, Štambergová H, Vondrášek J. The identification of new substrates of human DHRS7 by molecular modeling and in vitro testing. Int J Biol Macromol 2017; 105:171-182. [PMID: 28687384 DOI: 10.1016/j.ijbiomac.2017.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 11/29/2022]
Abstract
Human DHRS7 (SDR34C1) is one of insufficiently described enzymes of the short-chain dehydrogenase/reductase superfamily. The members of this superfamily often play an important pato/physiological role in the human body, participating in the metabolism of diverse substrates (e.g. retinoids, steroids, xenobiotics). A systematic approach to the identification of novel, physiological substrates of DHRS7 based on a combination of homology modeling, structure-based virtual screening and experimental evaluation has been used. Three novel substrates of DHRS7 (dihydrotestosterone, benzil and 4,4'-dimetylbenzil) have been described.
Collapse
Affiliation(s)
- Lucie Zemanová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Czech Republic
| | - Palani Kirubakaran
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo nám. 2, Prague, Czech Republic
| | - Ignacio Hernando Pato
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Czech Republic
| | - Hana Štambergová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo nám. 2, Prague, Czech Republic.
| |
Collapse
|
14
|
An NADPH-dependent Lactobacillus composti short-chain dehydrogenase/reductase: characterization and application to (R)-1-phenylethanol synthesis. World J Microbiol Biotechnol 2017. [DOI: 10.1007/s11274-017-2311-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Wang HY, Xiao DF, Zhou C, Wang LL, Wu L, Lu YT, Xiang QJ, Zhao K, Li X, Ma MG. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity. Appl Microbiol Biotechnol 2017; 101:4507-4520. [PMID: 28265724 DOI: 10.1007/s00253-017-8209-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
The short-chain dehydrogenase/reductase (SDR) family, the largest family in dehydrogenase/reductase superfamily, is divided into "classical," "extended," "intermediate," "divergent," "complex," and "atypical" groups. Recently, several open reading frames (ORFs) were characterized as intermediate SDR aldehyde reductase genes in Saccharomyces cerevisiae. However, no functional protein in the atypical group has been characterized in S. cerevisiae till now. Herein, we report that an uncharacterized ORF YLL056C from S. cerevisiae was significantly upregulated under high furfural (2-furaldehyde) or 5-(hydroxymethyl)-2-furaldehyde concentrations, and transcription factors Yap1p, Hsf1p, Pdr1/3p, Yrr1p, and Stb5p likely controlled its upregulated transcription. This ORF indeed encoded a protein (Yll056cp), which was grouped into the atypical subgroup 7 in the SDR family and localized to the cytoplasm. Enzyme activity assays showed that Yll056cp is not a quinone or ketone reductase but an NADH-dependent aldehyde reductase, which can reduce at least seven aldehyde compounds. This enzyme showed the best Vmax, Kcat, and Kcat/Km to glycolaldehyde, but the highest affinity (Km) to formaldehyde. The optimum pH and temperature of this enzyme was pH 6.5 for reduction of glycolaldehyde, furfural, formaldehyde, butyraldehyde, and propylaldehyde, and 30 °C for reduction of formaldehyde or 35 °C for reduction of glycolaldehyde, furfural, butyraldehyde, and propylaldehyde. Temperature and pH affected stability of this enzyme and this influence varied with aldehyde substrate. Metal ions, salts, and chemical protective additives, especially at high concentrations, had different influence on enzyme activities for reduction of different aldehydes. This research provided guidelines for study of more uncharacterized atypical SDR enzymes from S. cerevisiae and other organisms.
Collapse
Affiliation(s)
- Han-Yu Wang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Di-Fan Xiao
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Chang Zhou
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Lin-Lu Wang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Lan Wu
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Ya-Ting Lu
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Quan-Ju Xiang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Ke Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Meng -Gen Ma
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Sichuan, 611130, People's Republic of China. .,Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, People's Republic of China.
| |
Collapse
|
16
|
Gaona-López C, Julián-Sánchez A, Riveros-Rosas H. Diversity and Evolutionary Analysis of Iron-Containing (Type-III) Alcohol Dehydrogenases in Eukaryotes. PLoS One 2016; 11:e0166851. [PMID: 27893862 PMCID: PMC5125639 DOI: 10.1371/journal.pone.0166851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/05/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Alcohol dehydrogenase (ADH) activity is widely distributed in the three domains of life. Currently, there are three non-homologous NAD(P)+-dependent ADH families reported: Type I ADH comprises Zn-dependent ADHs; type II ADH comprises short-chain ADHs described first in Drosophila; and, type III ADH comprises iron-containing ADHs (FeADHs). These three families arose independently throughout evolution and possess different structures and mechanisms of reaction. While types I and II ADHs have been extensively studied, analyses about the evolution and diversity of (type III) FeADHs have not been published yet. Therefore in this work, a phylogenetic analysis of FeADHs was performed to get insights into the evolution of this protein family, as well as explore the diversity of FeADHs in eukaryotes. PRINCIPAL FINDINGS Results showed that FeADHs from eukaryotes are distributed in thirteen protein subfamilies, eight of them possessing protein sequences distributed in the three domains of life. Interestingly, none of these protein subfamilies possess protein sequences found simultaneously in animals, plants and fungi. Many FeADHs are activated by or contain Fe2+, but many others bind to a variety of metals, or even lack of metal cofactor. Animal FeADHs are found in just one protein subfamily, the hydroxyacid-oxoacid transhydrogenase (HOT) subfamily, which includes protein sequences widely distributed in fungi, but not in plants), and in several taxa from lower eukaryotes, bacteria and archaea. Fungi FeADHs are found mainly in two subfamilies: HOT and maleylacetate reductase (MAR), but some can be found also in other three different protein subfamilies. Plant FeADHs are found only in chlorophyta but not in higher plants, and are distributed in three different protein subfamilies. CONCLUSIONS/SIGNIFICANCE FeADHs are a diverse and ancient protein family that shares a common 3D scaffold with a patchy distribution in eukaryotes. The majority of sequenced FeADHs from eukaryotes are distributed in just two subfamilies, HOT and MAR (found mainly in animals and fungi). These two subfamilies comprise almost 85% of all sequenced FeADHs in eukaryotes.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
| | - Adriana Julián-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
- * E-mail:
| |
Collapse
|
17
|
Östberg LJ, Persson B, Höög JO. Computational studies of human class V alcohol dehydrogenase - the odd sibling. BMC BIOCHEMISTRY 2016; 17:16. [PMID: 27455956 PMCID: PMC4960878 DOI: 10.1186/s12858-016-0072-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/12/2016] [Indexed: 02/25/2023]
Abstract
Background All known attempts to isolate and characterize mammalian class V alcohol dehydrogenase (class V ADH), a member of the large ADH protein family, at the protein level have failed. This indicates that the class V ADH protein is not stable in a non-cellular environment, which is in contrast to all other human ADH enzymes. In this report we present evidence, supported with results from computational analyses performed in combination with earlier in vitro studies, why this ADH behaves in an atypical way. Results Using a combination of structural calculations and sequence analyses, we were able to identify local structural differences between human class V ADH and other human ADHs, including an elongated β-strands and a labile α-helix at the subunit interface region of each chain that probably disturb it. Several amino acid residues are strictly conserved in class I–IV, but altered in class V ADH. This includes a for class V ADH unique and conserved Lys51, a position directly involved in the catalytic mechanism in other ADHs, and nine other class V ADH-specific residues. Conclusions In this study we show that there are pronounced structural changes in class V ADH as compared to other ADH enzymes. Furthermore, there is an evolutionary pressure among the mammalian class V ADHs, which for most proteins indicate that they fulfill a physiological function. We assume that class V ADH is expressed, but unable to form active dimers in a non-cellular environment, and is an atypical mammalian ADH. This is compatible with previous experimental characterization and present structural modelling. It can be considered the odd sibling of the ADH protein family and so far seems to be a pseudoenzyme with another hitherto unknown physiological function. Electronic supplementary material The online version of this article (doi:10.1186/s12858-016-0072-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linus J Östberg
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Persson
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jan-Olov Höög
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Magomedova Z, Grecu A, Sensen CW, Schwab H, Heidinger P. Characterization of two novel alcohol short-chain dehydrogenases/reductases from Ralstonia eutropha H16 capable of stereoselective conversion of bulky substrates. J Biotechnol 2016; 221:78-90. [DOI: 10.1016/j.jbiotec.2016.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/19/2022]
|
19
|
Štambergová H, Zemanová L, Lundová T, Malčeková B, Skarka A, Šafr M, Wsól V. Human DHRS7, promising enzyme in metabolism of steroids and retinoids? J Steroid Biochem Mol Biol 2016; 155:112-9. [PMID: 26466768 DOI: 10.1016/j.jsbmb.2015.09.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 01/25/2023]
Abstract
The metabolism of steroids and retinoids has been studied in detail for a long time, as these compounds are involved in a broad spectrum of physiological processes. Many enzymes participating in the conversion of such compounds are members of the short-chain dehydrogenase/reductase (SDR) superfamily. Despite great effort, there still remain a number of poorly characterized SDR proteins. According to various bioinformatics predictions, many of these proteins may play a role in the metabolism of steroids and retinoids. Dehydrogenase/reductase (SDR family) member 7 (DHRS7) is one such protein. In a previous study, we determined DHRS7 to be an integral membrane protein of the endoplasmic reticulum facing the lumen which has shown at least in vitro NADPH-dependent reducing activity toward several eobiotics and xenobiotics bearing a carbonyl moiety. In the present paper pure DHRS7 was used for a more detailed study of both substrate screening and an analysis of kinetics parameters of the physiologically important substrates androstene-3,17-dione, cortisone and all-trans-retinal. Expression patterns of DHRS7 at the mRNA as well as protein level were determined in a panel of various human tissue samples, a procedure that has enabled the first estimation of the possible biological function of this enzyme. DHRS7 is expressed in tissues such as prostate, adrenal glands, liver or intestine, where its activity could be well exploited. Preliminary indications show that DHRS7 exhibits dual substrate specificity recognizing not only steroids but also retinoids as potential substrates and could be important in the metabolism of these signalling molecules.
Collapse
Affiliation(s)
- Hana Štambergová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic.
| | - Lucie Zemanová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic.
| | - Tereza Lundová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic.
| | - Beata Malčeková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic.
| | - Adam Skarka
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic.
| | - Miroslav Šafr
- Institute of Legal Medicine, Faculty of Medicine in Hradec Králové, Charles University in Prague and University Hospital in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| | - Vladimír Wsól
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic.
| |
Collapse
|