1
|
Alkafaas SS, Khedr SA, ElKafas SS, Hafez W, Loutfy SA, Sakran M, Janković N. Targeting JNK kinase inhibitors via molecular docking: A promising strategy to address tumorigenesis and drug resistance. Bioorg Chem 2024; 153:107776. [PMID: 39276490 DOI: 10.1016/j.bioorg.2024.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/13/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Among members of the mitogen-activated protein kinase (MAPK) family, c-Jun N-terminal kinases (JNKs) are vital for cellular responses to stress, inflammation, and apoptosis. Recent advances have highlighted their important implications in cancer biology, where dysregulated JNK signalling plays a role in the growth, progression, and metastasis of tumors. The present understanding of JNK kinase and its function in the etiology of cancer is summarized in this review. By modifying a number of downstream targets, such as transcription factors, apoptotic regulators, and cell cycle proteins, JNKs exert diverse effects on cancer cells. Apoptosis avoidance, cell survival, and proliferation are all promoted by abnormal JNK activation in many types of cancer, which leads to tumor growth and resistance to treatment. JNKs also affect the tumour microenvironment by controlling the generation of inflammatory cytokines, angiogenesis, and immune cell activity. However, challenges remain in deciphering the context-specific roles of JNK isoforms and their intricate crosstalk with other signalling pathways within the complex tumor environment. Further research is warranted to delineate the precise mechanisms underlying JNK-mediated tumorigenesis and to develop tailored therapeutic strategies targeting JNK signalling to improve cancer management. The review emphasizes the role of JNK kinases in cancer biology, as well as their potential as pharmaceutical targets for precision oncology therapy and cancer resistance. Also, this review summarizes all the available promising JNK inhibitors that are suggested to promote the responsiveness of cancer cells to cancer treatment.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt.
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Sara Samy ElKafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt; Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, Russia
| | - Wael Hafez
- NMC Royal Hospital, 16th St - Khalifa City - SE-4 - Abu Dhabi, United Arab Emirates; Department of Internal Medicine, Medical Research and Clinical Studies Institute, The National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate 12622, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Nenad Janković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.
| |
Collapse
|
2
|
Hassanein EHM, Althagafy HS, Baraka MA, Abd-Alhameed EK, Ibrahim IM, Abd El-Maksoud MS, Mohamed NM, Ross SA. The promising antioxidant effects of lignans: Nrf2 activation comes into view. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6439-6458. [PMID: 38695909 PMCID: PMC11422461 DOI: 10.1007/s00210-024-03102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
Lignans are biologically active compounds widely distributed, recognized, and identified in seeds, fruits, and vegetables. Lignans have several intriguing bioactivities, including anti-inflammatory, antioxidant, and anticancer activities. Nrf2 controls the expression of many cytoprotective genes. Activation of Nrf2 is a promising therapeutic approach for treating and preventing diseases resulting from oxidative injury and inflammation. Lignans have been demonstrated to stimulate Nrf2 signaling in a variety of in vitro and experimental animal models. The review summarizes the findings of fourteen lignans (Schisandrin A, Schisandrin B, Schisandrian C, Magnolol, Honokiol, Sesamin, Sesamol, Sauchinone, Pinoresinol, Phyllanthin, Nectandrin B, Isoeucommin A, Arctigenin, Lariciresinol) as antioxidative and anti-inflammatory agents, affirming how Nrf2 activation affects their pharmacological effects. Therefore, lignans may offer therapeutic candidates for the treatment and prevention of various diseases and may contribute to the development of effective Nrf2 modulators.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa S Abd El-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Assiut, Assiut, 77771, Egypt.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
3
|
Silva VBD, Almeida-Bezerra JW, Novais MHG, Farias NS, Coelho JJ, Ribeiro PRV, Canuto KM, Coutinho HDM, Morais-Braga MFB, Oliveira AFMD. Chemical composition, antifungal, and anti-virulence action of the stem bark of Hancornia speciosa Gomes (Apocynaceae) against Candida spp. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117506. [PMID: 38012976 DOI: 10.1016/j.jep.2023.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hancornia speciosa Gomes is a fruit and medicinal species used for treating infectious diseases of the genitourinary system. However, its mechanism of action against microbes is still not fully understood. Infections in the genitourinary system caused by Candida spp. are associated with its fungal resistance and pathogenicity. New plant-derived compounds are an alternative to fight these Candida infections. AIM OF THE STUDY The objective of this study was to evaluate the anti-Candida effects of extracts of the stem bark of H. speciosa. This research investigated the chemical composition of sulfuric ether (EEHS) and methanolic (MEHS) extracts, their drug-modifying action on fluconazole, and their anti-virulence action on the morphological transition of Candida species. MATERIALS AND METHODS The extracts (EEHS and MEHS) of the stem bark of H. speciosa were chemically characterized via qualitative phytochemical screening and by liquid chromatography coupled with mass spectrometry (UPLC-MS-ESI-QTOF). The extracts were evaluated regarding their antifungal effects and fluconazole-modifying activity against Candida albicans, Candida krusei, and Candida tropicalis using the broth microdilution method. Additionally, the study evaluated the inhibition of fungal virulence in Candida species through morphological transition assays. RESULTS The phytochemical screening revealed the presence of anthocyanidins, anthocyanins, aurones, catechins, chalcones, flavones, flavonols, flavanones, leucoanthocyanidins, tannins (condensed and pyrogallic), and xanthones in both extracts of the stem bark of H. speciosa. The UPLC-MS-ESI-QTOF analysis identified the same compounds in both extracts, predominating phenolic compounds. Some compounds were first time recorded in this species: gluconic acid, cinchonain IIb, cinchonain Ib isomer, and lariciresinol hexoside isomers. Most of the intrinsic antifungal activity was observed for the MEHS against C. krusei (IC50: 58.41 μg/mL). At subinhibitory concentrations (MC/8), the EEHS enhanced the action of fluconazole against all Candida strains. The MEHS exhibited greater efficacy than fluconazole inhibiting C. krusei growth. The EEHS completely inhibited hyphae appearance and reduced pseudohyphae formation in C. albicans. CONCLUSION The stem bark of H. speciosa is a rich source of bioactive compounds, especially phenolic. Phenolic compounds can have important roles in fighting infectious diseases of the genitourinary system, such as candidiasis. The extracts of H. speciosa improved the action of the drug fluconazole against Candida species, inhibited hyphae appearance, and reduced pseudohyphae formation. The results of this study can support the development of new therapeutics against resistant strains of Candida.
Collapse
Affiliation(s)
- Viviane Bezerra da Silva
- Department of Botany, Universidade Federal de Pernambuco - UFPE, Rua Professor Moraes Rego, s/n, Recife, Pernambuco, 50.670-901, Brazil.
| | - José Weverton Almeida-Bezerra
- Department of Botany, Universidade Federal de Pernambuco - UFPE, Rua Professor Moraes Rego, s/n, Recife, Pernambuco, 50.670-901, Brazil
| | - Maria Hellena Garcia Novais
- Department of Biological Sciences, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Naiza Saraiva Farias
- Department of Biological Sciences, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Janerson José Coelho
- Animal Science Department, Universidade Estadual do Maranhão - UEMA, São Luís, Maranhão, Brazil
| | - Paulo Riceli Vasconcelos Ribeiro
- Multi-User Natural Products Chemistry Laboratory - LMQPN, Embrapa Agroindustria Tropical, Rua Dra. Sara Mesquita, 2270, Fortaleza, Ceará, 60511-110, Brazil
| | - Kirley Marques Canuto
- Multi-User Natural Products Chemistry Laboratory - LMQPN, Embrapa Agroindustria Tropical, Rua Dra. Sara Mesquita, 2270, Fortaleza, Ceará, 60511-110, Brazil
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | | | | |
Collapse
|
4
|
Wang YC, Xiao ZX, Wang M, Yang SQ, Liu JB, He ZT. Umpolung Asymmetric 1,5-Conjugate Addition via Palladium Hydride Catalysis. Angew Chem Int Ed Engl 2023; 62:e202215568. [PMID: 36374273 DOI: 10.1002/anie.202215568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Electronically matched nucleophilic 1,6-conjugate addition has been well studied and widely applied in synthetic areas. In contrast, nucleophilic 1,5-conjugate addition represents an electronically forbidden process and is considered unfeasible. Here, we describe modular protocols for 1,5-conjugate addition reactions via palladium hydride catalysis. Both palladium and synergistic Pd/organocatalyst systems are developed to catalyze 1,5-conjugate reaction, followed by inter- or intramolecular [3+2] cyclization. A migratory 1,5-addition protocol is established to corroborate the feasibility of this umpolung concept. The 1,5-addition products are conveniently transformed into a series of privileged enantioenriched motifs, including polysubstituted tetrahydrofuran, dihydrofuran, cyclopropane, cyclobutane, azetidine, oxetane, thietane, spirocycle and bridged rings. Preliminary mechanistic studies corroborate the involvement of palladium hydride catalysis.
Collapse
Affiliation(s)
- Yu-Chao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhao-Xin Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Miao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shao-Qian Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jin-Biao Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
5
|
Wang Y, Wu J, Wang D, Yang R, Liu Q. Traditional Chinese Medicine Targeting Heat Shock Proteins as Therapeutic Strategy for Heart Failure. Front Pharmacol 2022; 12:814243. [PMID: 35115946 PMCID: PMC8804377 DOI: 10.3389/fphar.2021.814243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) is the terminal stage of multifarious heart diseases and is responsible for high hospitalization rates and mortality. Pathophysiological mechanisms of HF include cardiac hypertrophy, remodeling and fibrosis resulting from cell death, inflammation and oxidative stress. Heat shock proteins (HSPs) can ameliorate folding of proteins, maintain protein structure and stability upon stress, protect the heart from cardiac dysfunction and ameliorate apoptosis. Traditional Chinese medicine (TCM) regulates expression of HSPs and has beneficial therapeutic effect in HF. In this review, we summarized the function of HSPs in HF and the role of TCM in regulating expression of HSPs. Studying the regulation of HSPs by TCM will provide novel ideas for the study of the mechanism and treatment of HF.
Collapse
Affiliation(s)
- Yanchun Wang
- Shenyang the Tenth People’s Hospital, Shenyang, China
| | - Junxuan Wu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- *Correspondence: Qing Liu, ; Dawei Wang, ; Rongyuan Yang,
| | - Rongyuan Yang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, China
- *Correspondence: Qing Liu, ; Dawei Wang, ; Rongyuan Yang,
| | - Qing Liu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, China
- *Correspondence: Qing Liu, ; Dawei Wang, ; Rongyuan Yang,
| |
Collapse
|
6
|
An P, Zhang LJ, Peng W, Chen YY, Liu QP, Luan X, Zhang H. Natural products are an important source for proteasome regulating agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153799. [PMID: 34715511 DOI: 10.1016/j.phymed.2021.153799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural medicines have a long history in the prevention and treatment of various diseases in East Asian region, especially in China. Modern research has proved that the pharmacological effects of numerous natural medicines involve the participation of ubiquitin proteasome system (UPS). UPS can degrade the unwanted and damaged proteins widely distributed in the nucleus and cytoplasm of various eukaryotes. PURPOSE The objective of the present study was to review and discuss the regulatory effects of natural products and extracts on proteasome components, which may help to find new proteasome regulators for drug development and clinical applications. METHODS The related information was compiled using the major scientific databases, such as CNKI, Elsevier, ScienceDirect, PubMed, SpringerLink, Wiley Online, and GeenMedical. The keywords "natural product" and "proteasome" were applied to extract the literature. Nature derived extracts, compounds and their derivatives involved in proteasome regulation were included, and the publications related to synthetic proteasome agents were excluded. RESULTS The pharmacological effects of more than 80 natural products and extracts derived from phytomedicines related to the proteasome regulation were reviewed. These natural products were classified according to their chemical properties. We also summarized some laws of action of natural products as proteasome regulators in the treatment of diseases, and listed the action characteristics of the typical natural products. CONCLUSION Natural products derived from nature can induce the degradation of damaged proteins through UPS or act as regulators to directly regulate the activity of proteasome. But few proteasome modulators are applied clinically. Summary of known rules for proteasome modulators will contribute to discover, modify and synthesize more proteasome modulators for clinical applications.
Collapse
Affiliation(s)
- Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Wei Peng
- School of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
7
|
A novel melanin complex displayed the affinity to HepG2 cell membrane and nucleus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111923. [PMID: 33641916 DOI: 10.1016/j.msec.2021.111923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 01/07/2023]
Abstract
Chitosan-melanin complex from Catharsius molossus L. has proven to possess superior pharmaceutical excipient performance and may be the new source of water-soluble protein-free natural melanin. Herein, it was enzymatically hydrolyzed into the chitooligosaccharide-melanin complex (CMC) whose main chemical units were composed of eumelanin and chitooligosaccharides and showed three-layer structures. Additionally, this biomacromolecule could self-assemble into 40 nm nanoparticles (CMC Nps) in a weakly acidic aqueous solution. Interestingly, CMC displayed strong affinity for cell membrane by binding the phosphatidylserine, glycoprotein, glycolipids and glycosaminoglycans accumulated on the surface of tumor cells, notably, CMC Nps could enter cells and mainly target the nucleus by interacting with DNA and/or RNA substrates located around the nucleus to disrupt the proliferation and apoptosis processes. The findings suggest CMC may be the novel material for subcellular organelle targeting of cancer cells.
Collapse
|
8
|
Han S, Li LZ, Song SJ. Daphne giraldii Nitsche (Thymelaeaceae): Phytochemistry, pharmacology and medicinal uses. PHYTOCHEMISTRY 2020; 171:112231. [PMID: 31901473 DOI: 10.1016/j.phytochem.2019.112231] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Daphne giraldii Nitsche., a member of the genus Daphne (Thymelaeaceae), is a deciduous shrub with mild toxicity. Its rhizome bark, generally called 'Zushima' in Chinese, has many medicinal folkloric uses and good therapeutic effects. Previous studies investigating the chemical constituents and pharmacological activities of D. giraldii have focused on several major classes of compounds, such as coumarins, lignans and flavonoids, especially the interesting enantiomeric flavans. Extracts and pure compounds of D. giraldii were found to possess anti-inflammatory, anti-nociceptive, cytotoxicity, antimalarial, immunomodulating, sedative and hypnotic effects. They have also been reported to influence the cardiovascular functions and blood activities. This comprehensive review will describe the advances in the phytochemistry, pharmacology, medicinal uses and clinical applications of D. giraldii and its formulations covering the literature published from 1970 to 2018. Almost half of the reviewed studies were originally published in non-English languages (mainly in Chinese). Collectively, the aim of this article is to open new avenues for further in-depth pharmacological studies on D. giraldii.
Collapse
Affiliation(s)
- Shuang Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ling-Zhi Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
9
|
Nirmala JG, Lopus M. Tryptone-stabilized gold nanoparticles induce unipolar clustering of supernumerary centrosomes and G1 arrest in triple-negative breast cancer cells. Sci Rep 2019; 9:19126. [PMID: 31836782 PMCID: PMC6911093 DOI: 10.1038/s41598-019-55555-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/30/2019] [Indexed: 12/22/2022] Open
Abstract
Gold nanoparticles of different sizes, shapes, and decorations exert a variety of effects on biological systems. We report a novel mechanism of action of chemically modified, tryptone-stabilized gold nanoparticles (T-GNPs) in the triple-negative breast cancer (TNBC) cell line, MDA-MB-231. The T-GNPs, synthesized using HAuCl4.3H2O and tryptone and characterized by an assortment of spectroscopy techniques combined with high-resolution electron microscopy, demonstrated strong antiproliferative and anti-clonogenic potential against MDA-MB-231 cells, arresting them at the G1 phase of the cell cycle and promoting apoptosis. The molecular mechanism of action of these particles involved induction of unipolar clustering and hyper amplification of the supernumerary centrosomes (a distinctive feature of many tumour cells, including TNBC cells). The clustering was facilitated by microtubules with suppressed dynamicity. Mass spectrometry-assisted proteomic analysis revealed that the T-GNP-induced G1 arrest was facilitated, at least in part, by downregulation of ribosome biogenesis pathways. Due to the presence of supernumerary centrosomes in many types of tumour cells, we propose chemical induction of their unipolar clustering as a potential therapeutic strategy.
Collapse
Affiliation(s)
- J Grace Nirmala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India.
| |
Collapse
|
10
|
Lu L, Chen G, Yang J, Ma Z, Yang Y, Hu Y, Lu Y, Cao Z, Wang Y, Wang X. Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomed Pharmacother 2019; 112:108625. [PMID: 30784920 DOI: 10.1016/j.biopha.2019.108625] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), with the capacity for self-renewal and differentiation into multiple cell types, exhibit the property of homing towards tumor sites and immunosuppression and have been used as tumor-tropic vectors for tumor therapy. However, few studies have investigated the underlying molecular mechanisms that link MSCs to targeted tumor cells. In this study, we elucidated the inhibitory effects and mechanisms of human bone marrow mesenchymal stem cells (hBMSCs) on human glioma U251 cells using a co-culture system in vitro. The anti-tumor activity of co-cultured hBMSCs was assessed by morphological changes, the MTT assay, and Hoechst 33258 staining. Cell apoptosis and cell cycle distribution were evaluated by flow cytometry. Cell migration and invasion were evaluated using a 24-well Transwell chamber. A proteomics approach was used to identify differentially expressed proteins after hBMSCs treatment in U251 cells, and quantitative polymerase chain reaction was used to validate the results. Bioinformatics analyses were also implemented to better understand the identified proteins, and Western blotting analyses were used to analyze the associated proteins. The results showed that hBMSCs could inhibit cell proliferation and induce cell cycle arrest in the G1 phase, resulting in apoptosis of U251 cells. Transwell and Matrigel invasion assays showed that hBMSCs reduced the migration and invasion of U251 cells. Using proteomics, 11 differentially expressed proteins were identified and observed. Bioinformatics analyses indicated that the identified proteins participated in several biological processes and exhibited various molecular functions, mainly related to the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. Moreover, hBMSCs regulated changes in proteins linked to cell apoptosis and cell cycle progression and inhibited the epithelial-mesenchymal transition (EMT)-like and PI3K/AKT pathway. Taken together, the findings in our study suggest that hBMSCs inhibit U251 cells proliferation and the EMT-like by downregulating the PI3K/AKT signaling pathway, which indicates that hBMSCs have a potential antitumor characteristics and should be further explored in future glioma therapy.
Collapse
Affiliation(s)
- Li Lu
- Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Guohu Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Yang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yan Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhangqi Cao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yan Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xuexi Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu, 730000, China; School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
11
|
Ma Z, Cui X, Lu L, Chen G, Yang Y, Hu Y, Lu Y, Cao Z, Wang Y, Wang X. Exosomes from glioma cells induce a tumor-like phenotype in mesenchymal stem cells by activating glycolysis. Stem Cell Res Ther 2019; 10:60. [PMID: 30770778 PMCID: PMC6377719 DOI: 10.1186/s13287-019-1149-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/23/2018] [Accepted: 01/21/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Exosomes are nanoscale membrane vesicles secreted by both normal and cancer cells, and cancer cell-derived exosomes play an important role in the cross-talk between cancer cells and other cellular components in the tumor microenvironment. Mesenchymal stem cells (MSCs) have tropism for tumors and have been used as tumor-tropic vectors for tumor therapy; however, the safety of such therapeutic use of MSCs is unknown. In this study, we investigated the role of glioma cell-derived exosomes in the tumor-like phenotype transformation of human bone marrow mesenchymal stem cells (hBMSCs) and explored the underlying molecular mechanisms. METHODS The effect of exosomes from U251 glioma cells on the growth of hBMSCs was evaluated with the CCK-8 assay, KI67 staining, and a cell cycle distribution assessment. The migration and invasion of hBMSCs were evaluated with a Transwell assay. A proteomics and bioinformatics approach, together with Western blotting and reverse transcriptase-polymerase chain reaction, was used to investigate the effect of U251 cell-derived exosomes on the proteome of hBMSCs. RESULTS U251 cell-derived exosomes induced a tumor-like phenotype in hBMSCs by enhancing their proliferation, migration, and invasion and altering the production of proteins involved in the regulation of the cell cycle. Moreover, U251 cell-derived exosomes promoted the production of the metastasis-related proteins MMP-2 and MMP-9, glioma marker GFAP, and CSC markers (CD133 and Nestin). The ten differentially expressed proteins identified participated in several biological processes and exhibited various molecular functions, mainly related to the inactivation of glycolysis. Western blotting showed that U251 cell-derived exosomes upregulated the levels of Glut-1, HK-2, and PKM-2, leading to the induction of glucose consumption and generation of lactate and ATP. Treatment with 2-deoxy-D-glucose significantly reversed these effects of U251 cell-derived exosomes on hBMSCs. CONCLUSIONS Our data demonstrate that glioma cell-derived exosomes activate glycolysis in hBMSCs, resulting in their tumor-like phenotype transformation. This suggests that interfering with the interaction between exosomes and hBMSCs in the tumor microenvironment has potential as a therapeutic approach for glioma. ᅟ.
Collapse
Affiliation(s)
- Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Xue Cui
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Li Lu
- Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000 Gansu China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, 730000 Gansu China
- School of Basic Medical Sciences of Lanzhou University, School of Medicine, 205 Tianshui Rd South, Lanzhou, 730000 Gansu China
| | - Guohu Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Yang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Yan Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Zhangqi Cao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Yan Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Xuexi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 Gansu China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, 730000 Gansu China
- School of Basic Medical Sciences of Lanzhou University, School of Medicine, 205 Tianshui Rd South, Lanzhou, 730000 Gansu China
| |
Collapse
|
12
|
Ma ZJ, Yan H, Wang YJ, Yang Y, Li XB, Shi AC, Jing-Wen X, Yu-Bao L, Li L, Wang XX. Proteomics analysis demonstrating rosmarinic acid suppresses cell growth by blocking the glycolytic pathway in human HepG2 cells. Biomed Pharmacother 2018; 105:334-349. [PMID: 29864622 DOI: 10.1016/j.biopha.2018.05.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/12/2018] [Accepted: 05/24/2018] [Indexed: 12/24/2022] Open
Abstract
Rosmarinic acid (RA), isolated from herbal balm mint plants, has demonstrated potent anti-tumor properties against liver cancer. However, the precise underlying mechanisms remain unclear. This study aimed to investigate the molecular mechanisms of RA in HepG2 cells. RA anti-tumor activity was assessed using 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and Hoechst 33258 staining. Apoptosis and the cell cycle distribution were evaluated by flow cytometry. A proteomics approach was used to identify differentially expressed proteins following RA treatment in HepG2 cells, and quantitative reverse transcription-quantitative polymerase chain reaction was used to validate the results. Bioinformatics analysis was also implemented to further understand the identified proteins, and western blotting was used to analyze the associated proteins. Our results suggested that RA treatment significantly inhibits the viability of HepG2 cells. The MTT and LDH assays indicated dose-dependent decreases in cell proliferation following RA treatment. Hoechst 33258 staining and flow cytometry analysis showed that RA exhibits an apoptosis-inducing effect and induces cell cycle arrest in G1. The proteomics analysis successfully identified 16 differentially expressed proteins. Bioinformatics analysis indicated that the identified proteins participated in several biological processes and exhibited various molecular functions, mainly related to inactivation of the glycolytic pathway. Further western blotting analysis showed that RA could downregulate the expression of glucose transporter-1 and hexokinase-2, leading to the suppression of glucose consumption and generation of lactate and ATP. Taken together, our study found that RA exhibits significant cytotoxic effects by inhibiting cell proliferation and inducing apoptosis and cell cycle arrest, possibly by blocking the glycolytic pathway in human HepG2 cells.
Collapse
Affiliation(s)
- Zhan-Jun Ma
- The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hu Yan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ya-Jiao Wang
- Clinical College of Hebei Medical University, Shijiazhuang, Hebei, 050031, China
| | - Yang Yang
- The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiao-Bin Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - An-Cheng Shi
- The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xu Jing-Wen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Lu Yu-Bao
- The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Lu Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Xue-Xi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Lariciresinol induces apoptosis in HepG2 cells via mitochondrial-mediated apoptosis pathway. Eur J Pharmacol 2017; 821:1-10. [PMID: 29247613 DOI: 10.1016/j.ejphar.2017.12.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 12/18/2022]
Abstract
Lariciresinol (LA) is one of the main active ingredients in many traditional medicinal plants such as Patrinia, and has the role of anti-liver cancer. However, the precise mechanisms are unclear. This study investigated the molecular mechanisms of LA against HepG2 cells. LA anti-tumor activity was assessed with the CCK-8, Ki-67, and immunofluorescence staining. Cells apoptotic ratio was evaluated by Annexin V/PI double-staining assay. A proteomic approach was used to identify differentially expressed proteins after LA treatment. JC-1 staining was carried out to detect the mitochondrial membrane potential (ΔΨm), and the Western blot analysis was used to analyse the apoptosis-associated proteins. Our results suggested that LA significantly suppressed the viability of HepG2 cells. The CCK-8 and Ki-67 expression indicated dose-dependent decreases in cell proliferation. Flow cytometry analysis showed that LA exhibited a apoptosis-inducing effect. The proteomic study observed the presence of apoptosis-associated proteins and mitochondrial dysfunction in HepG2 cells after LA-treatment. Further analysis showed that LA could trigger the mitochondrial-mediated apoptosis pathway, based on a decrease in ΔΨm; deliver of cytochrome c; activation of caspase-9/-3 and poly(ADP-ribose) polymerase; and decrease of the proportion of Bcl-2/Bax. Collectively, our studies found that LA exhibits significant cytotoxic effects by inhibiting cell proliferation, inducing apoptosis, possibly via activation of the mitochondrial-mediated apoptosis pathway.
Collapse
|
14
|
Antioxidant efficacy and the upregulation of Nrf2-mediated HO-1 expression by (+)-lariciresinol, a lignan isolated from Rubia philippinensis, through the activation of p38. Sci Rep 2017; 7:46035. [PMID: 28378774 PMCID: PMC5380954 DOI: 10.1038/srep46035] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/08/2017] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to examine the antioxidative activity of (+)-lariciresinol (LRSL), an optically active lignan isolated from Rubia philippinensis in several in vitro assays. LRSL was also subjected to evaluate its inhibitory effect against the generation of reactive oxygen species (ROS) in murine macrophage (RAW 264.7) cells. The results showed that LRSL possessed very strong radical scavenging activity and reducing power, as well as inhibited ROS generation in a dose-dependent manner without showing any cytotoxicity. The transcriptional and translational levels of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were markedly higher in the sample treated group. LRSL treatment also increased the transcriptional and translational activities of NF-E2-related factor-2 (Nrf-2) with a corresponding increase in the transcriptional and translational activities of the heme oxygenase-1 (HO-1). LRSL activated p38 and treatments with SB239063 (a p38 inhibitor) suppressed the LRSL-induced activation of Nrf2, resulting in a decrease in HO-1 expression. Collectively, the data demonstrated that LRSL has potent antioxidative activity, decreasing ROS generation in RAW 264.7 cells and increasing the transcriptional and translational levels of antioxidant enzymes by activating Nrf2-mediated HO-1 induction via p38 signaling.
Collapse
|