1
|
Pu J, Shi W, Cui J, Yang H, Cao J, Liu Y, Xiao S, Cheng G. Therapeutic Potential of Quadrigemine I Against Lymphoma: Mechanistic Insights from Cell Lines and Xenograft Models Demonstrating DNA Damage, Oxidative Stress, and Pathway Regulation. Int J Mol Sci 2025; 26:4848. [PMID: 40429988 DOI: 10.3390/ijms26104848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/15/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025] Open
Abstract
Lymphoma is one of the malignant tumors that significantly threatens human health. Quadrigemine I, an indole alkaloid derived from the leaves of Psychotria pilifera, has been studied for its potential anti-tumor properties, but its mechanisms remain poorly understood. The CCK-8 assay was used to determine the cytotoxic effect of quadrigemine I on lymphoma cells. Flow cytometry was employed to analyze apoptosis and reactive oxygen species (ROS) levels in these cells. DNA damage was assessed by the comet assay, and the underlying mechanisms were investigated using RNA sequencing (RNA-seq) and real-time quantitative PCR (RT-qPCR). The anti-tumor activity of quadrigemine I was evaluated in tumor xenograft mice. Quadrigemine I suppressed lymphoma cell proliferation with an IC50 of 0.46 µM. It induced apoptosis, promoted ROS generation, and caused DNA damage in tumor cells. RNA-seq analysis revealed that the significantly differentially expressed genes were notably enriched in the ErbB, p53, and apoptosis signaling pathways. RT-qPCR demonstrated altered expression levels of key genes in the aforementioned pathways. In vivo, quadrigemine I significantly inhibited tumor growth in xenograft mice by increasing apoptosis in tumor tissues, with reduced Ki-67 and Bcl-2 expression and elevated cleaved caspase-3 levels. Quadrigemine I may serve as a novel anti-tumor agent for lymphoma therapy.
Collapse
Affiliation(s)
- Junmei Pu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Wenfeng Shi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Jiabao Cui
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Hui Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Shanshan Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| |
Collapse
|
2
|
Ali MY, Namini CK, Clark JM, Pittendrigh BR, Lee SH, Yoon KS. Impacts of short-term ivermectin exposures on fruit flies. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106391. [PMID: 40262871 DOI: 10.1016/j.pestbp.2025.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/24/2025]
Abstract
A short-term ivermectin (IVM) exposure method was newly established to demonstrate effects of sublethal concentrations of IVM on the wild-type fruit fly, Drosophila melanogaster. Using a conventional glass-vial contact approach, exposures to IVM (0.01 to 1000 ppm) for 12 h durations or less were selected to assess the downstream impacts of short-term IVM exposures (STIEs) on fruit flies. Under these conditions, all female flies produced significantly higher levels of reactive oxygen species and malondialdehydes in their ovaries. Additionally, females treated with IVM for 12 h under the STIE conditions exhibited significantly increased levels of DNA damages in their ovaries. Despite the negative impacts described above, the mean percent hatchability values obtained from the eggs oviposited by the IVM-exposed females were not statistically different when compared to the hatchability of the unexposed females. Two concentrations (1 and 10 ppm) of IVM were selected to determine transgenerational effects following short-term IVM exposures. F1, F2 and F8 flies exposed to IVM showed significantly delayed developments (2.5-3.2, 2.5-3.0, and 0.9-1.3 days delayed, respectively). F5, F11 and F17 females showed significantly delayed IVM-induced sluggish behaviors in the presence of lethal IVM (1 %, w/v). F18 females transgenerationally exposed to 1 ppm IVM exhibited significantly increased levels of Mrp1 (8.7-fold) and Cyp6g2 (5.9-fold) transcripts compared to unexposed flies. Comparatively, F18 females transgenerationally exposed to 10 ppm IVM showed significantly increased levels of Cyp9f2 (2.6-fold) transcripts. Current study clearly demonstrated the effects of sublethal IVM on parent and filial generations of fruit flies, providing an important step toward understanding development of IVM resistance under the STIE conditions.
Collapse
Affiliation(s)
- M Yusuf Ali
- Department of Biological Sciences, Southern Illinois University, Edwardsville, IL 62026, USA
| | - Carl K Namini
- Department of Environmental Sciences, Southern Illinois University, Edwardsville, IL 62026, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Si H Lee
- Department of Agricultural Biotechnology, Seoul National University, Republic of Korea
| | - Kyong S Yoon
- Department of Environmental Sciences, Southern Illinois University, Edwardsville, IL 62026, USA.
| |
Collapse
|
3
|
Shao Q, Wang Z, Yi S. Application of Composite Soaking Solution in Fillet Storage and Caco-2 Cell Antioxidant Repair. Foods 2025; 14:442. [PMID: 39942035 PMCID: PMC11816374 DOI: 10.3390/foods14030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The inhibitory effect of compound soaking solution on the quality deterioration of fish fillets during storage and its repair effect on a cell oxidative damage model were investigated. Water holding capacity, cooking loss, thawing loss, thiobarbituric acid and sensory evaluation were used to verify that the composite soaking solution could improve the water loss and quality deterioration of fillets during frozen storage. At 180 d, water holding capacity was increased by 4.59% in the compound soaking solution group compared with the control. Cooking loss decreased by 6.47%, and thawing loss decreased by 13.06% (p < 0.05). The TBA value was reduced by 50%, and the degree of lipid oxidation was lower (p < 0.05). The results of the microstructure analysis showed that the tissue structure of fillets treated by the compound soaking solution was more orderly. The oxidative damage model of cells was achieved by soaking in treated fish fillet digestive juice, which inhibited the increase in reactive oxygen species content, maintained the integrity of the cell structure, and increased cell viability by 32.24% (p < 0.05). Compound soaking solution treatment could inhibit the quality deterioration of fish fillets during storage, and the digestive solution of fish fillets could improve the oxidative stress injury of Caco-2 cells induced by H2O2.
Collapse
Affiliation(s)
| | | | - Shumin Yi
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (Q.S.); (Z.W.)
| |
Collapse
|
4
|
Hu Z, Hu C, Li Y, Jiang Q, Li Q, Fang C. Pumpkin seed oil: a comprehensive review of extraction methods, nutritional constituents, and health benefits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:572-582. [PMID: 37650308 DOI: 10.1002/jsfa.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/01/2023]
Abstract
Pumpkin seed oil (PSO), a rich source of nutrients, is extracted from the seeds of different pumpkin varieties for food and medicines. This article aims to provide an evidence-based review of the literature and to explore the extraction technologies, nutritional properties, and biological activity of PSO. From previous literature, PSO contains a large proportion of unsaturated fatty acids, with linoleic acid as the main component, and an amount of tocopherol, phytosterol, and phenolic acids. Some differences in the yield, composition, and physicochemical properties of PSO can be associated with the pumpkin's cultivars and the extraction methods. Some novel technologies involved in supercritical fluid extraction, enzyme-assisted aqueous extraction, and ultrasound-assisted extraction have been replacing the conventional technologies gradually as promising methods for the safe, non-polluting, and effective recovery of PSO. This healthy vegetable oil was reported by several in vitro and in vivo studies to have potential protective roles in oxidative stress, inflammation, cancer, and cardiovascular diseases. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zicong Hu
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Chaofan Hu
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Yanpo Li
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Qiaojun Jiang
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Qunhe Li
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Cuilan Fang
- Centre for Disease Control and Prevention of Jiulongpo, Chongqing, China
| |
Collapse
|
5
|
Cao X, Wei J, Ge H, Guan D, Li H, Zhang H, Zheng Y, Qian K, Wang J. Involvement of Glutamate Cysteine Ligase Genes in Tolerance to Emamectin Benzoate in Spodoptera frugiperda and Their Putative Regulatory Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13717-13728. [PMID: 37691233 DOI: 10.1021/acs.jafc.3c04392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
As the rate-limiting enzyme in de novo Glutathione (GSH) biosynthesis, the mammalian glutamate cysteine ligase (Gcl) catalytic (Gclc) and modifier (Gclm) subunits are regulated at multiple levels, whereas the function and regulatory mechanism of insect Gcl remain to be explored. In this study, we identified and characterized SfGclc and SfGclm in Spodoptera frugiperda. SfGclc and SfGclm were highly expressed in the hindgut and relatively less expressed in other tissues. The exposure of the third instar larvae to LC30 of emamectin benzoate (EMB) significantly reduced the GSH content with a concomitant upregulation of SfGclc and SfGclm. Further in vivo pretreatment with L-BSO, the Gcl inhibitor, increased the susceptibility of S. frugiperda to EMB. Consistently, overexpression of SfGclc and SfGclm increased the Sf9 cell viability under EMB treatment. Finally, both RNAi and the dual-luciferase reporter assay in Sf9 cells revealed that SfGclc is regulated by transcription factor CncC. These data provide insights into the function and regulatory mechanism of insect Gcl, and they imply that disruption of the redox homeostasis might be a practical strategy to enhance the insecticidal activity of EMB and other insecticides.
Collapse
Affiliation(s)
- Xiaoli Cao
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hai Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hainan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Xu Z, Li L, Bai J, Zhang Y, Min M, Ma W, Ma L. Transcriptome analysis of emamectin benzoate caused midgut damage by inducing oxidative stress, energy metabolism disorder and apoptosis in gypsy moth (Lymantria dispar). PEST MANAGEMENT SCIENCE 2022; 78:4628-4637. [PMID: 35861673 DOI: 10.1002/ps.7083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emamectin benzoate (EMB) is a semisynthetic bioinsecticide, which has been widely used in the control of forestry and agricultural pests. However, the mechanism of its toxic effects on the non-neural tissues has been rarely reported. Here, we explored the mechanism of the midgut damage induced by EMB in gypsy moth (Lymantria dispar) in order to better understand the toxicological mechanism of EMB. RESULTS Our results confirmed that EMB caused damage to the midgut of gypsy moth by inducing apoptosis. Transcriptome showed that 1469, 650 and 950 genes were significantly differentially expressed in the midgut of gypsy moth after 24, 48 and 72 h of EMB exposure, and oxidative stress, energy metabolism disorder and apoptosis may be related to the toxic effects of EMB. The indicators related to oxidative stress, energy metabolism and apoptosis were further examined. The results showed that EMB could cause oxidative stress by increasing ROS level and inhibiting antioxidant enzymes (P < 0.05), such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), which in turn causes mitochondria injury. Subsequently, energy metabolism was inhibited by downregulating the activities and mRNA level of energy metabolism enzymes. Furthermore, the mitochondrial apoptosis pathway was activated, triggering apoptosis, and eventually causing midgut injury in gypsy moth. CONCLUSION Our results indicated that EMB caused damage to midgut by inducing oxidative stress, energy metabolism disorder and apoptosis in gypsy moth. Our findings shed new light on the toxicological mechanism of EMB on non-neural tissues from oxidative stress, energy metabolism and apoptosis perspectives. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lu Li
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Jianyang Bai
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Yue Zhang
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Mengru Min
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
7
|
Xu C, Yu S, Hu J, Effiong K, Ge Z, Tang T, Xiao X. Programmed cell death process in freshwater Microcystis aeruginosa and marine Phaeocystis globosa induced by a plant derived allelochemical. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156055. [PMID: 35598674 DOI: 10.1016/j.scitotenv.2022.156055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/25/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HAB) are a serious problem worldwide. Allelochemicals from natural plants were recently thought to be promising anti-algaecide in controlling harmful algae. However, the programmed cell death (PCD) process of algae under allelopathic pressure induced by 5,4'-dihydroxyflavone (5,4'-DHF) was poorly understood. In this study, two common and worldwide distributed microalgae, Microcystis aeruginosa and Phaeocystis globosa were selected as target algae, and the PCD processes induced by 5,4'-DHF were cross-compared between the two species. Both algae species were inhibited significantly by 5,4'-DHF with the relative sensitivity of 0.11. To uncover the PCD progress systematically, signals for PCD triggering, antioxidant enzyme activity, photosynthetic ability variation, caspase-like activities and typical indicators were investigated. In both species, typical indicators of PCD - phosphatidylserine externalization and chromatin condensation - were detected. The intracellular reactive oxygen species (ROS), nitric oxide (NO) and H2O2 were the potential signal molecules to stimulate PCD, and caspase-like activities were activated with an elevation of cytochrome c indicating the initiation of PCD in both species. However, P. globosa responded to 5,4'-DHF immediately after 3 h with the elevation of ROS and not in M. aeruginosa. Antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in M. aeruginosa and P. globosa also showed different patterns on day 3. Specifically, SOD activity in M. aeruginosa increased significantly while it decreased significantly in P. globosa, CAT activity in M. aeruginosa decreased significantly while it increased significantly in P. globosa (p < 0.05). Malondialdehyde (MDA) content in P. globosa increased significantly (p < 0.001) while it showed no variation in M. aeruginosa. Overall, this study is one of the earliest studies to explore the inhibition and action mechanism of plant derived flavonoids on harmful algae from the perspective of PCD, and provide new insights into the antialgal mechanism of allelochemicals.
Collapse
Affiliation(s)
- Caicai Xu
- Zhejiang University, Ocean College, 1 Zheda Road, Zhoushan, Zhejiang 316000, China
| | - Shumiao Yu
- Zhejiang University, Ocean College, 1 Zheda Road, Zhoushan, Zhejiang 316000, China
| | - Jing Hu
- Zhejiang University, Ocean College, 1 Zheda Road, Zhoushan, Zhejiang 316000, China
| | - Kokoette Effiong
- Zhejiang University, Ocean College, 1 Zheda Road, Zhoushan, Zhejiang 316000, China
| | - Zhiwei Ge
- Zhejiang University, Analysis Center of Agrobiology and Environmental Sciences, Hangzhou 310058, China
| | - Tao Tang
- Zhejiang University, Ocean College, 1 Zheda Road, Zhoushan, Zhejiang 316000, China
| | - Xi Xiao
- Zhejiang University, Ocean College, 1 Zheda Road, Zhoushan, Zhejiang 316000, China; Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Mulberry Ethanol Extract and Rutin Protect Alcohol-Damaged GES-1 Cells by Inhibiting the MAPK Pathway. Molecules 2022; 27:molecules27134266. [PMID: 35807511 PMCID: PMC9268384 DOI: 10.3390/molecules27134266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Mulberry extract has been proven to have the effect of resisting alcohol damage, but its mechanism is still unclear. In this study, the composition of mulberry ethanol extract (MBE) was identified by LC-MS/MS and the main components of MBE were ascertained by measuring. Gastric mucosal epithelial (GES-1) cells were used to elucidate the mechanism of MBE and rutin (the central part of MBE) helped protect against alcohol damage. The results revealed that phenolics accounted for the majority of MBE, accounting for 308.6 mg/g gallic acid equivalents and 108 substances were identified, including 37 flavonoids and 50 non-flavonoids. The treatment of 400 μg/mL MBE and 320 μM rutin reduced early cell apoptosis and the content of intracellular reactive oxygen species, malondialdehyde and increased glutathione. The qPCR results indicated that the MBE inhibits the expression of genes in the mitogen-activated protein kinase (MAPK) pathway, including p38, JNK, ERK and caspase-3; rutin inhibits the expression of p38 and caspase-3. Overall, MBE was able to reduce the oxidative stress of GES-1 cells and regulated apoptosis-related genes of the MAPK pathway. This study provides information for developing anti-ethanol injury drugs or functional foods.
Collapse
|
9
|
Raines K, Copplestone JGD, Lim J. Biomarkers and Ecological indicators for Environmental Radioactivity in Invertebrates. NATO SCIENCE FOR PEACE AND SECURITY SERIES A: CHEMISTRY AND BIOLOGY 2022:245-270. [DOI: 10.1007/978-94-024-2101-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Zhang T, Sun Y, Cao J, Luo J, Wang J, Jiang Z, Huang P. Intrinsic nucleus-targeted ultra-small metal-organic framework for the type I sonodynamic treatment of orthotopic pancreatic carcinoma. J Nanobiotechnology 2021; 19:315. [PMID: 34641905 PMCID: PMC8507249 DOI: 10.1186/s12951-021-01060-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Sonodynamic therapy (SDT) strategies exhibit a high tissue penetration depth and can achieve therapeutic efficacy by facilitating the intertumoral release of reactive oxygen species (ROS) with a short lifespan and limited diffusion capabilities. The majority of SDT systems developed to date are of the highly O2-dependent type II variety, limiting their therapeutic utility in pancreatic cancer and other hypoxic solid tumor types. RESULTS Herein, a nucleus-targeted ultra-small Ti-tetrakis(4-carboxyphenyl)porphyrin (TCPP) metal-organic framework (MOF) platform was synthesized and shown to be an effective mediator of SDT. This MOF was capable of generating large quantities of ROS in an oxygen-independent manner in response to low-intensity ultrasound (US) irradiation (0.5 W cm-2), thereby facilitating both type I and type II SDT. This approach thus holds great promise for the treatment of highly hypoxic orthotopic pancreatic carcinoma solid tumors. This Ti-TCPP MOF was able to induce in vitro cellular apoptosis by directly destroying DNA and inducing S phase cell cycle arrest following US irradiation. The prolonged circulation, high intratumoral accumulation, and nucleus-targeting attributes of these MOF preparations significantly also served to significantly inhibit orthotopic pancreatic tumor growth and prolong the survival of tumor-bearing mice following Ti-TCPP + US treatment. Moreover, this Ti-TCPP MOF was almost completely cleared from mice within 7 days of treatment, and no apparent treatment-associated toxicity was observed. CONCLUSION The nucleus-targeted ultra-small Ti-TCPP MOF developed herein represents an effective approach to the enhanced SDT treatment of tumors in response to low-intensity US irradiation.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District,, Hangzhou, 310009, People's Republic of China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China
| | - Yu Sun
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District,, Hangzhou, 310009, People's Republic of China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China
| | - Jing Cao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District,, Hangzhou, 310009, People's Republic of China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China
| | - Jiali Luo
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District,, Hangzhou, 310009, People's Republic of China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China
| | - Jing Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District,, Hangzhou, 310009, People's Republic of China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China
| | - Zhenqi Jiang
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, People's Republic of China.
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District,, Hangzhou, 310009, People's Republic of China.
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
11
|
Xu Z, Bai J, Li L, Liang L, Ma X, Ma L. Sublethal concentration of emamectin benzoate inhibits the growth of gypsy moth by inducing digestive dysfunction and nutrient metabolism disorder. PEST MANAGEMENT SCIENCE 2021; 77:4073-4083. [PMID: 33908141 DOI: 10.1002/ps.6432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Gypsy moth (Lymantria dispar) is one of the most important pests in the world. Emamectin benzoate (EMB) is widely used in the control of agricultural and forestry pests. Here, we explored the sublethal effects of EMB on gypsy moths in order to better understand the toxicological mechanism of EMB. RESULTS The sublethal concentration of EMB exposure significantly decreased the larvae body weight. To further explore the mechanism, indicators related to digestion and nutrient metabolism were detected. The results showed that EMB exposure caused midgut damage, reduced the activities of digestive enzymes and changed the content of sugar and amino acids. Moreover, the expression of insulin/phosphoinositide-3-kinase (PI3K)/forkhead box protein O (FoxO) pathway and sugar metabolism-related genes was abnormal. The expression of insulin receptor (InR), chico, PI3K, and protein kinase B (Akt) significantly reduced, and that of phosphatase and tensin homologue (PTEN) and FoxO increased. The expression of glycogen phosphorylase (GP) was upregulation and that of glycogen synthase (GS), trehalase (TRE) and trehalose-phosphate synthase (TPS) were downregulation. All results indicated that EMB inhibits the growth of gypsy moth by inducing midgut injury, digestive dysfunction and nutrient metabolism disorder. In addition, EMB caused midgut injury may be related to apoptosis or a collateral effect of the damage in other tissues, and more extensive and deeper research is still needed to investigate the detailed mechanism. CONCLUSION Our finding strengthens the understanding of the sublethal effect of EMB, and provides a theoretical basis for the application of EMB in the prevention and control of gypsy moth.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Jianyang Bai
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Lu Li
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Liwei Liang
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Xiaoqian Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
- Institute of Forest Protection, Heilongjiang Academy of Forestry, Harbin, China
| | - Ling Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
12
|
Asgarshamsi MH, Fassihi A, Hassanzadeh F, Saghaei L, Attar AM, Mohammad-Beigi H. Synthesis, antioxidant activity, and density functional theory study of some novel 4-[(benzo[ d]thiazol-2-ylimino)methyl]phenol derivatives: a comparative approach for the explanation of their radical scavenging activities. Res Pharm Sci 2021; 16:35-47. [PMID: 33953773 PMCID: PMC8074808 DOI: 10.4103/1735-5362.305187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022] Open
Abstract
Background and purpose: Radicals produced by Fenton and Haber-Weiss reactions play detrimental roles in our body. Some oxidized proteins as toxic configurations are identified in amyloid-β deposits. These deposits mostly occur in conditions, such as Alzheimer’s disease. Here, we report the synthesis, evaluation of the antioxidant activity, and implementation of density functional theory (DFT) calculations of some4- [(benzo[d]thiazol-2-ylimino) methyl]phenol derivatives. The aim of this study was to provide a comparative theoretical-experimental approach to explain the antioxidant activities of the compounds. Experimental approach: Compounds were synthesized by the reaction between para hydroxybenzaldehyde and aminobenzothiazole derivatives. The scavenging activity of the compounds was evaluated. Various electronic and energetic descriptors such as high occupied molecular orbital and low unoccupied molecular orbital energy gaps, bonding dissociation enthalpy of OH bond, ionization potential, electron affinity, hardness, softness, and spin density of the radical and neutral species were calculated. DFT calculations with B3LYP hybrid functional and 6-311++ G** basis set in the polarizable continuum model were utilized to obtain these descriptors. Findings/Results: Ascorbic acid showed the best DPPH scavenging activity. However, 4d and 4c showed promising antioxidant activity. The values of EHOMO for 4c and 4d were closer to zero, thus, they showed the best scavenging activities. The computational results were in accordance with the experimental ones. The energetic descriptors indicated that the sequential proton loss-electron transfer mechanism is preferred over other mechanisms. Conclusion and implication: Antioxidant activity of 4-[(Benzo[d]thiazol-2-ylimino) methyl]phenol derivatives confirmed by experimental and theoretical documents proves them as novel antioxidants against amyloid-β based disease.
Collapse
Affiliation(s)
- Mohammad Hossein Asgarshamsi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ahmad Movahedian Attar
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hossein Mohammad-Beigi
- The Centre for Cellular Signal Patterns (CellPAT), Gustav Wieds vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Xu M, Hang H, Huang M, Li J, Xu D, Jiao J, Wang F, Wu H, Sun X, Gu J, Kong X, Gao Y. DJ-1 Deficiency in Hepatocytes Improves Liver Ischemia-Reperfusion Injury by Enhancing Mitophagy. Cell Mol Gastroenterol Hepatol 2021; 12:567-584. [PMID: 33766785 PMCID: PMC8258983 DOI: 10.1016/j.jcmgh.2021.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS DJ-1 is universally expressed in various tissues and organs and is involved in the physiological processes in various liver diseases. However, the role of DJ-1 in liver ischemia-reperfusion (I/R) injury is largely unknown. METHODS In this study, we first examined the DJ-1 expression changes in the liver tissues of mice and clinical donor after hepatic I/R by both quantitative polymerase chain reaction and Western blotting assays. Then we investigated the role of DJ-1 in I/R injury by using a murine liver I/R model. RESULTS We demonstrated that DJ-1 down-regulation in both human and mouse liver tissues in response to I/R injury and Dj-1 deficiency in hepatocytes but not in myeloid cells could significantly ameliorate I/R induced liver injury and inflammatory responses. This hepatoprotective effect was dependent on enhanced autophagy in Dj-1 knockout mice, because inhibition of autophagy by 3-methyladenine and chloroquine could reverse the protective effect on hepatic I/R injury in Dj-1 knockout mice. CONCLUSIONS Dj-1 deficiency in hepatocytes significantly enhanced mitochondrial accumulation and protein stability of PARKIN, which in turn promotes the onset of mitophagy resulting in elevated clearance of damaged mitochondria during I/R injury.
Collapse
Affiliation(s)
- Min Xu
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China
| | - Hualian Hang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Huang
- Department of Transplantation, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jichang Li
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China
| | - Dongwei Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junzhe Jiao
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China
| | - Fang Wang
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Xuehua Sun
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China.
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China.
| |
Collapse
|
14
|
Chen M, Wu Y, Yuan S, Chen J, Li L, Wu J, Zhang J, Yin Y. Research on allergic rhinitis improvement in asthmatic children after dust mite exposure reduction: a randomized, double-blind, cross-placebo study protocol. Trials 2020; 21:686. [PMID: 32727603 PMCID: PMC7392667 DOI: 10.1186/s13063-020-04614-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/15/2020] [Indexed: 11/27/2022] Open
Abstract
Background Allergic rhinitis (AR) in children is a major respiratory inflammatory disease with a high incidence that is increasing yearly. In China, 54.93% of children with asthma have AR, which often requires synchronous treatment. House dust mites (HDMs) are common allergens that often cause attacks of AR and asthma. Reducing allergen exposure is one of the most important measures to control and treat AR and asthma attacks. Hestelia Mite Bait, containing 0.1% emamectin, is a new tool for trapping and killing dust mites, reducing the number of dust mites on mattresses and thereby potentially reducing stimulation by allergens and ultimately improving asthma and rhinitis symptoms. This single-centre, randomized, double-blind, cross-placebo trial will explore the improvement in AR in asthmatic children after dust mite exposure reduction. Methods We will recruit 60 children (aged 3–12 years) who have been diagnosed with AR and asthma and are allergic to dust mites as confirmed by a serum allergen test. Participants will randomly receive the Hestelia Mite Bait intervention for 8 weeks and the placebo intervention for 8 weeks. There will be a 4-week washout period between the two interventions. The primary outcome is the visual analogue scale (VAS) score of AR symptoms; the secondary outcomes include the Rhinitis Control Assessment Test (RCAT) score, Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) score, changes in the dust mite level, drug usage for asthma and AR, Asthma Control Questionnaire-5 (ACQ-5) score, and frequencies of acute asthma attacks, emergency visits, and hospitalizations. Discussion This study aims to scientifically and objectively evaluate the effects of mite bait on rhinitis and asthma improvement after dust mite exposure reduction and provides a convenient means for future prevention and treatment of allergic diseases involving the airways in children. Trial registration www.chictr.org.cn ChiCTR1900024688. Registered on July 21, 2019
Collapse
Affiliation(s)
- Ming Chen
- Department of Respiratory Medicine, Shanghai Children's Medical Center affiliated to Shanghai Jiaotong University of Medicine, Shanghai, 200127, China
| | - YuFen Wu
- Department of Respiratory Medicine, Shanghai Children's Medical Center affiliated to Shanghai Jiaotong University of Medicine, Shanghai, 200127, China
| | - Shuhua Yuan
- Department of Respiratory Medicine, Shanghai Children's Medical Center affiliated to Shanghai Jiaotong University of Medicine, Shanghai, 200127, China
| | - Jiande Chen
- Department of Respiratory Medicine, Shanghai Children's Medical Center affiliated to Shanghai Jiaotong University of Medicine, Shanghai, 200127, China
| | - Luanluan Li
- Department of Respiratory Medicine, Shanghai Children's Medical Center affiliated to Shanghai Jiaotong University of Medicine, Shanghai, 200127, China
| | - Jinhong Wu
- Department of Respiratory Medicine, Shanghai Children's Medical Center affiliated to Shanghai Jiaotong University of Medicine, Shanghai, 200127, China
| | - Jing Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center affiliated to Shanghai Jiaotong University of Medicine, Shanghai, 200127, China.
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center affiliated to Shanghai Jiaotong University of Medicine, Shanghai, 200127, China.
| |
Collapse
|
15
|
A novel Hericium erinaceus polysaccharide: Structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells. Int J Biol Macromol 2020; 154:1460-1470. [DOI: 10.1016/j.ijbiomac.2019.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/21/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
|
16
|
Sun J, Wang J, Li L, Wu Z, Chen X, Yuan J. ROS induced by spring viraemia of carp virus activate the inflammatory response via the MAPK/AP-1 and PI3K signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2020; 101:216-224. [PMID: 32224280 DOI: 10.1016/j.fsi.2020.03.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 06/10/2023]
Abstract
Spring viraemia of carp virus (SVCV) can cause a high mortality in common carp (Cyprinus carpio), and its main pathological processes include the inflammatory response. However, the detailed mechanism is still unclear. Reactive oxygen species (ROS) have been shown to play critical roles in the immune response, including inflammation, in different models. Our previous studies have demonstrated that SVCV infection results in the accumulation of ROS, including H2O2, in epithelioma papulosum cyprini (EPC) cells. In this study, we aimed to explore the relationship between H2O2 accumulation and inflammation during SVCV infection. After EPC cells were infected with SVCV, the expression levels of the inflammatory factors tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2, and interleukin (IL)-8 were up-regulated, while the expression of the anti-inflammatory factor interleukin (IL)-10 was down-regulated, compared with that in mock-infected EPC cells. The antioxidant N-acetyl-l-cysteine (NAC) could dampen the increased TNF-ɑ and COX-2 expression induced by SVCV and H2O2, suggesting a relationship between ROS accumulation and inflammation during SVCV infection. Dual luciferase reporter assays demonstrated that SVCV could not activate the NF-κB pathway. In addition, inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC) treatment had no effect on the expression of inflammatory factors. Furthermore, inhibition of the ERK, JNK, and p38MAPK signaling pathways by U0126, SP600125, and SB203580, respectively, reduced the expression of TNF-ɑ, COX-2, and IL-8, indicating that these three signaling pathways were all involved in the inflammatory response after SVCV infection. In addition, the PI3K signaling pathway was involved in the expression of the chemokine IL-8 in the SVCV-induced inflammatory response. We also showed that inhibition of the MAPK or PI3K signaling pathway facilitated the expression of SVCV-G as well as increased the SVCV viral titer. Altogether these results reveal the mechanism of the SVCV-mediated inflammatory response. Thus, targeting these signaling pathways may provide novel treatment strategies for SVCV-mediated diseases.
Collapse
Affiliation(s)
- Jie Sun
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jingwen Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Zhixin Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Xiaoxuan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
17
|
Sun Q, Zhou M, Zuo Z. Toxic mechanism of eucalyptol and β-cyclocitral on Chlamydomonas reinhardtii by inducing programmed cell death. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121910. [PMID: 31879110 DOI: 10.1016/j.jhazmat.2019.121910] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Eucalyptol and β-cyclocitral are 2 main compounds in cyanobacterial volatile organic compounds and can poison other algae. To uncover the toxic mechanism of the 2 compounds, the cell growth, photosynthetic abilities, H2O2 production, caspase-like activities, nuclear variation and DNA laddering were investigated in Chlamydomonas reinhardtii treated with eucalyptol and β-cyclocitral. Eucalyptol at ≥ 0.1 mM and β-cyclocitral at ≥ 0.05 mM showed toxic effects on C. reinhardtii cells, and 1.2 mM eucalyptol and 0.4 mM β-cyclocitral killed the whole of the cells during 24 h. During the death process, the photosynthetic pigment gradually degraded, and Fv/Fm gradually declined, indicating that the death is not a necrosis due to the gradual disappearance of the physiological process. In the treatments with 1.2 mM eucalyptol and 0.4 mM β-cyclocitral, H2O2 content burst at 10 min and 30 min, respectively. Caspase-9-like and caspase-3-like were activated, and cell nucleuses concentrated firstly and then broke with prolonging the treatment time. Meanwhile, DNA showed laddering after 1 h, and was gradually cleaved by Ca2+-dependent endonucleases to mainly about 100-250 bp fragments. These hallmarks indicated that eucalyptol and β-cyclocitral may poison other algal cells by inducing programmed cell death triggered by the increased H2O2.
Collapse
Affiliation(s)
- Qing Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Min Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
18
|
Xu J, Xiong H, Zhang X, Muhayimana S, Liu X, Xue Y, Huang Q. Comparative cytotoxic effects of five commonly used triazole alcohol fungicides on human cells of different tissue types. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:438-446. [PMID: 32180509 DOI: 10.1080/03601234.2019.1709377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The widespread application of triazole fungicides makes people attach great concern over its adverse effects in mammalian. In this paper, cytotoxic effects of triazole alcohol fungicides (TAFs) were assessed on human HeLa, A549, HCT116 and K562 cells, and the potential mechanism of TAFs cytotoxicity was studied preliminarily. Results showed that TAFs had cytotoxicity on human cells with different level and cytotoxic selectivity. TAFs cytotoxicity was resonated with a typical hormetic biphasic dose action that produced a complex pattern of stimulatory or inhibitory effects on cell viability. Among the five TAFs, diniconazole revealed a widest range of cytotoxicity to inhibit the viability of the adherent and the suspension cells, causing HeLa cells shrinkage, A549 cells shrunken, and K562 cells collapse, and showed stronger cytotoxicity than hexaconazole. Moreover, the involvement of ROS generation in the cytotoxicity of TAFs on human cells was observed, and the apoptosis of HeLa cells and the formation of apoptotic body in K562 cells induced by diniconazole were characterized. The results indicated the cytotoxicity of TAFs with different structures on human cells was depended on their own property and cell specificity, K562 cells were the most susceptible to TAFs and diniconazole was the strongest toxic.
Collapse
Affiliation(s)
- Jiuyong Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Hui Xiong
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Xianfei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Solange Muhayimana
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Xuefeng Liu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Yufan Xue
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
19
|
Niu C, Wang C, Wu G, Yang J, Wen Y, Meng S, Lin X, Pang X, An L. Toxic effects of the Emamectin Benzoate exposure on cultured human bronchial epithelial (16HBE) cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113618. [PMID: 31784274 DOI: 10.1016/j.envpol.2019.113618] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Pesticides pollution has caused serious environmental problems in recent years, and mounting evidence has shown that more and more insecticides have serious risk in human health. Emamectin Benzoate formally regarded as a highly safety insecticide based on its exclusive targets, but the cytotoxicity to human lung was ignored for a long time. In the present study, bioassay experiments were used to assess the toxicity of the Emamectin Benzoatein on human non-target cells including cell viability assay, DNA damage assay, flow cytometer assay and western blotting assay. The results indicated that Emamectin Benzoatecan cause the inhibition of the proliferation, cytochrome c release, activation of caspase-3/9 and increase Bax/Bcl-2 ratio, which means it induced the cytotoxicity on 16HBE cells associated with the mitochondrial apoptosis. Besides, the DNA damge caused by the Emamectin Benzoate suggest it has a potential genotoxic effect on human lung cells.
Collapse
Affiliation(s)
- Chenguang Niu
- Key Laboratory of Clinical Resources Translation, The First Affiliated Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Chunli Wang
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, 475000, Henan, China
| | - Guangyao Wu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Jingnan Yang
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Yanan Wen
- Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Shuangshuang Meng
- Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Xuhong Lin
- Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Xiaobin Pang
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, 475000, Henan, China.
| | - Lei An
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China; Institutes of Biomedical Sciences, Henan Medical School, Henan University, Kaifeng, 475000, Henan, China.
| |
Collapse
|
20
|
Alsayyah A, ElMazoudy R, Al-Namshan M, Al-Jafary M, Alaqeel N. Chronic neurodegeneration by aflatoxin B1 depends on alterations of brain enzyme activity and immunoexpression of astrocyte in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109407. [PMID: 31279280 DOI: 10.1016/j.ecoenv.2019.109407] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Aflatoxin B1 poses the greatest risk among the mycotoxins to target-organisms particularly human, however, no studies addressed the neurotoxicity of chronic exposure of aflatoxin. The oral dose level 1/600th of LD50 for 30, 60, and 90 days was used for three aflatoxin groups, respective to negative and vehicle control groups. Activity levels of brain antioxidants viz: superoxide dismutase, catalase, glutathione, and glutathione peroxidase significantly decreased in the three experimental durations in time-dependent trend, in contrast, lipid peroxidation showed a significant increase compared to controls. Significantly, chronic-dependent increase trend was noticed in the AF60 and AF90 group for acid phosphatase (16.1%, 35.2%), alkaline phosphatase (32.1%, 50.8%), aspartate aminotransferase (38.7%, 120.0%) and lactate dehydrogenase (30.6%, 42.1%) activities, respectively. However, a significant 23.7% decrease in the brain creatine kinase activity following 90 days of AFB1administration. Chronic administration of aflatoxin also causes alterations in activities of protein carbonyl with a maximum increase (twofold) after 90 days. Further, histopathological and immunohistochemical results confirmed time-related vasodilation, necrosis and astrocytes gliosis by high glial fibrillary acidic protein immunostaining in response to AFB1. These findings infer that long-term exposure to AFB1 results in several pathophysiological circumstances in a duration-dependent manner concerning neurodegeneration especially Alzheimer's disease.
Collapse
Affiliation(s)
- Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box.2208, Dammam, 31441, Saudi Arabia
| | - Reda ElMazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.
| | - Mashael Al-Namshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Meneerah Al-Jafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Nouf Alaqeel
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| |
Collapse
|
21
|
Zhang Y, Kong C, Chi H, Li J, Xing J, Wang F, Shao L, Zhai Q. Effect of a beta-cypermethrin and emamectin benzoate pesticide mixture on reproductive toxicity in male mice in a greenhouse environment. Toxicol Mech Methods 2019; 30:100-106. [PMID: 31532271 DOI: 10.1080/15376516.2019.1669241] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the widespread use of pesticides, the resistance to pesticides of pests has gradually increased, caused mixed pesticides to become even more widely used for practical applications. To investigate the effects of mixed pesticides on reproductive health in an occupational greenhouse environment, the greenhouse environment and the characteristics of the actual application were constructed, and then the male mice were comprehensively exposed to a mixture of the beta-cypermethrin and emamectin benzoate environmental. Additionally, the effect of the beta-cypermethrin and emamectin benzoate mixture on the reproductive health of male mice was known. The results showed that with the prolongation of exposure duration, the activities of Glutathione Peroxidase (GSH-Px), Total Superoxide Dismutase (T-SOD), Lactate dehydrogenase (LDH) and Acid phosphatase (ACP) in the testes of mice gradually decreased and the activity of Malondialdehyde (MDA) gradually increased. It was also found that the apoptosis rate of murine testicular cells increased and that DNA damage occurred with prolonged exposure duration. Therefore, it can be inferred that exposure to a mixture of the pesticides beta-cypermethrin and emamectin benzoate in the greenhouse environment may have adverse effects on the reproductive health of male mice.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Chang Kong
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Huimin Chi
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Junxia Li
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Jie Xing
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Fei Wang
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Lijun Shao
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Qingfeng Zhai
- School of Public Health and Management, Weifang Medical University, Weifang, China
| |
Collapse
|
22
|
de Sousa FA, de Morais CR, Vieira JS, Maranho LS, Machado FL, Pereira S, Barbosa LC, Coelho HE, Campos CF, Bonetti AM. Genotoxicity and carcinogenicity of ivermectin and amoxicillin in vivo systems. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103196. [PMID: 31152944 DOI: 10.1016/j.etap.2019.103196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/21/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Antiparasitic substances are chemicals used to control or kill endoparasites and ectoparasites. Based on the premise that Ivermectin (IVM) and Amoxicillin (AMX) are commonly considered in parasitic control in mammals, the present study aimed to evaluate the carcinogenic and genotoxic potential of different concentrations of IVM and AMX through the detection of epithelial tumor test in Drosophila melanogaster. Third-instar larvae descending from the cross between wts/TM3, Sb1 females and mwh/mwh males were treated with different concentrations of IVM (2.9, 5.8, 11.6 and 23.2 x 10-17 mM) or AMX (1.37, 2.74, 5.48 and 10.9 x 10-16mM). The results revealed that IVM increased the frequency of epithelial tumor in D. melanogaster considering all evaluated concentrations, while AMX showed no carcinogenic effect. Furthermore, the Micronucleus (MN) test in Tradescantia pallida was used to evaluate the genotoxic effect of IVM and AMX. T. pallida individuals were exposed for 8 hours at different concentrations of IVM (5.71, 11.42, 22.84 and 45.68 x 10-5mM) or AMX (5.13, 10.26, 20.52 and 41.05 x 10-3mM). Findings showed an increase in the frequency of micronuclei in T. pallida treated with 11.42, 22.84 and 45.68 x 10-5mM of IVM. We conclude that chronic exposure to IVM is directly associated with events resulting from genetic instability (genotoxicity and carcinogenicity). On the other hand, AMX was neither carcinogenic nor genotoxic for D. melanogaster and T. pallida.
Collapse
Affiliation(s)
- Francielle Aparecida de Sousa
- Department of Genetics, University Center of Cerrado Patrocínio, Avenida Líria Terezinha Lassi Capuano, 466, 38747-792, Patrocínio, Minas Gerais, Brazil
| | - Cássio Resende de Morais
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil.
| | - Jéssica Soares Vieira
- Department of Cell Biology, Carmelitana Foundation Mário Palmério, 38500-000, Monte Carmelo, Minas Gerais, Brazil
| | - Lavínia Sales Maranho
- Department of Genetics, University Center of Cerrado Patrocínio, Avenida Líria Terezinha Lassi Capuano, 466, 38747-792, Patrocínio, Minas Gerais, Brazil
| | - Francielli Lara Machado
- Department of Genetics, University Center of Cerrado Patrocínio, Avenida Líria Terezinha Lassi Capuano, 466, 38747-792, Patrocínio, Minas Gerais, Brazil
| | - Samanta Pereira
- Department of Genetics, University Center of Cerrado Patrocínio, Avenida Líria Terezinha Lassi Capuano, 466, 38747-792, Patrocínio, Minas Gerais, Brazil
| | - Lilian Cristina Barbosa
- Department of Genetics, University Center of Cerrado Patrocínio, Avenida Líria Terezinha Lassi Capuano, 466, 38747-792, Patrocínio, Minas Gerais, Brazil
| | - Humberto Eustáquio Coelho
- Department of Animal Pathology, University of Uberaba, Avenida Nenê Sabino, 1801 - Bairro Universitário, 38055-500, Uberaba, Minas Gerais, Brazil
| | - Carlos Fernando Campos
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Ana Maria Bonetti
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
23
|
Bian M, Fan R, Zhao S, Liu W. Targeting the Thioredoxin System as a Strategy for Cancer Therapy. J Med Chem 2019; 62:7309-7321. [PMID: 30963763 DOI: 10.1021/acs.jmedchem.8b01595] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioredoxin reductase (TrxR) participates in the regulation of redox reactions in organisms. It works mainly via its substrate molecule, thioredoxin, to maintain the redox balance and regulate signal transduction, which controls cell proliferation, differentiation, death, and other important physiological processes. In recent years, increasing evidence has shown that the overactivation of TrxR is related to the development of tumors. The exploration of TrxR-targeted antitumor drugs has attracted wide attention and is expected to provide new therapies for cancer treatment. In this perspective, we highlight the specific relationship between TrxR and apoptotic signaling pathways. The cytoplasm and mitochondria both contain TrxR, resulting in the activation of apoptosis. TrxR activity influences reactive oxygen species (ROS) and further regulates the inflammatory signaling pathway. In addition, we discuss representative TrxR inhibitors with anticancer activity and analyze the challenges in developing TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Mianli Bian
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Rong Fan
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Sai Zhao
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,Institute of New Medicine Research , Nanjing Hicin Pharmaceutical Co. Ltd. , Nanjing 210046 , P. R. China
| | - Wukun Liu
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|
24
|
Ren X, Zhang L, Zhang Y, Mao L, Jiang H. Oxidative stress induced by camptothecin and hydroxyl-camptothecin in IOZCAS-Spex-II cells of Spodoptera exigua Hübner. Comp Biochem Physiol C Toxicol Pharmacol 2019; 216:52-59. [PMID: 30414480 DOI: 10.1016/j.cbpc.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
Camptothecin (CPT) and its derivatives show potential insecticidal activities against various insect species due to target at DNA-Topoisomerase I complex and induce apoptosis death of insect cells. Oxidative stress resulted from excessive production of reactive oxygen species (ROS) has been proved to be an important component of the mechanism of pesticide toxicity. The aim of the present study was to investigate whether CPTs promote the increasing of intracellular oxidative stress by enhancing accumulation of intracellular ROS in IOZCAS-Spex-II cells derived from Spodoptera exigua Hübner. Results demonstrated that there was a significant increase in the level of intracellular ROS accompanied by markedly increased DNA damage, lipid peroxidation and protein carbonylation after exposing to CPT and hydroxyl-camptothecin (HCPT) in IOZCAS-Spex-II cells. These results documented ROS generation induced by CPT and HCPT played an essential role in toxicity and mode of action of CPTs against insects. This research will throw new light on the critical roles of oxidative stress in CPTs- induced toxicity against insects, as well as on the exploration of using CPTs as a kind of insecticide with unique mode of action in the future.
Collapse
Affiliation(s)
- Xiaoshuang Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
25
|
Luan S, Muhayimana S, Xu J, Zhang X, Xiao C, Huang Q. The effect of α-tocopherol and dithiothreitol in ameliorating emamectin benzoate cytotoxicity in human K562 cells involving the modulation of ROS accumulation and NF-κB signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:114-121. [PMID: 30315996 DOI: 10.1016/j.ecoenv.2018.09.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/12/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Emamectin benzoate (EMB) toxicity contributes a potential risk to environment and human health. To investigate the effect of α-tocopherol (VitE) and dithiothreitol (DTT) in ameliorating EMB-induced cytotoxicity in human K562 cells, in vitro cultured human K562 cells were incubated with different concentrations of EMB in supplement with VitE and DTT when the cells were in the logarithmic phase. Next, the cell growth inhibition was evaluated using the MTT assay and cellular morphology observation. Reactive oxygen species (ROS) production was monitored using DCFH-DA probe and NF-κB signaling was determined using Western blotting. The results demonstrated that treatment with EMB (time- and concentration-dependent) showed significantly greater inhibition on K562 cell viability, heavier chromatin condensation and DNA fragmentation, and stronger suppression of NF-κB/p105 and p65/RelA expression of K562 cells than the control group (p < 0.01). The supplementation of VitE or DTT could help protect K562 cells against EMB-induced cytotoxicity by improving cell viability, preventing ROS accumulation and up-regulating NF-κB signaling through their ameliorating effects against oxidative stress induced by EMB. VitE had a stronger synergistic effect in limiting EMB cytotoxicity than DTT. Our findings indicate that VitE and DTT are potent antioxidants for human K562 cells, offering a promising means of ameliorating EMB cytotoxicity.
Collapse
Affiliation(s)
- Shaorong Luan
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Solange Muhayimana
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiuyong Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianfei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ciying Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
26
|
Molecular mechanism by which Apis cerana cerana MKK6 ( AccMKK6)-mediated MAPK cascades regulate the oxidative stress response. Biosci Rep 2018; 38:BSR20181301. [PMID: 30442872 PMCID: PMC6294647 DOI: 10.1042/bsr20181301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/30/2023] Open
Abstract
Mitogen-activated protein kinase kinases (MKKs) are important components of the MAPK signaling pathways, which play a key role in responding to stress and inflammatory stimuli. Here, a new MKK gene, AccMKK6, was identified and functionally analyzed in Apis cerana cerana. Real-time quantitative PCR (qPCR) and Western blot analysis demonstrated that the AccMKK6 expression level was up-regulated by several environmental stresses. Moreover, the knockdown of AccMKK6 by RNA interference technology altered the expression levels of some antioxidant genes. In addition, the knockdown of AccMKK6 resulted in increased malonyldialdehyde (MDA) concentration and decreased antioxidant-related enzymes activity in honeybees. To explore the MAPK signaling pathways involved in AccMKK6, we identified the transcription factor kayak in A. cerana cerana. We analyzed the interactions of AccMKK6, Accp38b, and Acckayak using the yeast two-hybrid system. AccMKK6 and Acckayak showed similar expression profiles after several stress treatments. In addition, the expression level of Acckayak was significantly increased when AccMKK6 was silenced. Therefore, we speculate that AccMKK6 may be involved in the MAPK cascades, which play a crucial role in counteracting oxidative stress caused by external stimuli.
Collapse
|
27
|
Yao Q, Xu S, Dong Y, Que Y, Quan L, Chen B. Characterization of Vitellogenin and Vitellogenin Receptor of Conopomorpha sinensis Bradley and Their Responses to Sublethal Concentrations of Insecticide. Front Physiol 2018; 9:1250. [PMID: 30279662 PMCID: PMC6154279 DOI: 10.3389/fphys.2018.01250] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Conopomorpha sinensis Bradley is the dominant borer pest of Litchi chinesis and Euphoria longan. Current management of C. sinensis relies upon insecticide application to adult moths. In addition to the direct mortality induced by insecticides, a sublethal dose of insecticides also affects growth, survival, and reproduction in the exposed insects. Vitellogenin (Vg) and vitellogenin receptor (VgR) are normally identified as essential reproduction-related proteins in insects. In this study, we characterized these two genes from C. sinensis, and investigated their differential responses to sublethal concentrations of insecticide. Cloned CsVg and CsVgR consist of 5391 and 5424-bp open reading frames, which encode proteins of 1796 and 1807 amino acid residues, respectively. The CsVg protein contains the typical vitellogenin, DUF1943 and VWFD domains as other reported lepidopteran Vgs. The CsVgR was characterized as a typical low density lipoprotein receptor with two highly conserved LBD and EGF precursor domains, one hydrophobic transmembrane domain, one cytoplasmic domain, and 13 putative N-glycosylation sites. We next assessed the sublethal effect of four major insecticides on egg-laying in C. sinensis. The toxicity against C. sinensis varied among the insecticides tested, with LC50 values ranging from 0.23 ppm for chlorpyrifos to 20.00 ppm for β-cypermethrin, among which emamectin benzoate (EB) showed a significant negative impact on egg-laying, survival rate, ovarian development, and mating rate of C. sinensis at LC30 doses. Further investigation showed that the transcriptional level of CsVg and CsVgR were impaired in different way at 24, 48, and 72 h after EB exposure, and this result was in agreement with the diminished egg-laying of C. sinensis in the sublethal concentration EB-treated group. A repressed transcription level of CsVgR was observed at 48 h after treatment, suggesting that EB elicits a delayed response in the abundance of CsVgR. These results established different roles of CsVg and CsVgR in response to the sublethal effect of insecticides. CsVg might be a better parameter than CsVgR for assessing the effect of sublethal insecticides on reproduction in C. sinensis.
Collapse
Affiliation(s)
- Qiong Yao
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shu Xu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yizhi Dong
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yinli Que
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Linfa Quan
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bingxu Chen
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
28
|
Ameliorative effect of pumpkin seed oil against emamectin induced toxicity in mice. Biomed Pharmacother 2018; 98:242-251. [DOI: 10.1016/j.biopha.2017.12.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
|
29
|
Long M, Yang SH, Shi W, Li P, Guo Y, Guo J, He JB, Zhang Y. Protective effect of proanthocyanidin on mice Sertoli cell apoptosis induced by zearalenone via the Nrf2/ARE signalling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26724-26733. [PMID: 28956244 DOI: 10.1007/s11356-017-0123-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/05/2017] [Indexed: 05/07/2023]
Abstract
This study evaluated the protective effect of proanthocyanidin (PC) on the cytotoxicity of the Sertoli cell TM4 of mice, as induced by zearalenone (ZEA). Flow cytometry was used to detect the apoptosis rate of cells in each group. The activities of antioxidant enzymes and the content of antioxidant substances were detected by using a proprietary kit; the RT-PCR method was used to detect the expression level of mRNA, the related genes of Nrf2/ARE signal pathway, the nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), glutathione peroxidase (GSH-Px), quinone oxidoreductase 1 (NQO1), γ-glutamylcysteine synthetase (γ-GCS) and the expression level of mRNA, the apoptosis-related genes, Bcl-2 and Bax; the Western-blot method was used to detect the protein expression levels of Nrf2, GSH-Px, HO-1, γ-GCS and NQO1 in each group. Our results showed that PC could reduce the apoptosis rate of the TM4 cells exposed to ZEA (p < 0.01); PC could enhance the decrease in the activities of T-SOD and GSH-Px induced by ZEA (p < 0.05), reduce the increase in the content of MDA, as caused by ZEA; PC could significantly up-regulate the down-regulation levels of the mRNA and protein of Nrf2, GSH-Px, HO-1, γ-GCS and NQO1 induced by ZEA. PC could enhance the decrease in the mRNA expression level of Bcl-2 and down-regulate the mRNA expression of Bax induced by ZEA (p < 0.05). These results demonstrated that PC conferred protective effects against oxidative damage and apoptosis of TM4 cells induced by ZEA. The protection mechanism of PC on TM4 cells might act through the activation of the Nrf2/ARE signalling pathway.
Collapse
Affiliation(s)
- Miao Long
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shu-Hua Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wei Shi
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peng Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Guo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiayi Guo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jian-Bin He
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|