1
|
Sanchez CA, Treviso EM, Rocha CDS, Antunes LMG. Diallyl Disulfide Reduces Ethyl Carbamate-Induced Cytotoxicity and Apoptosis in Intestinal and Hepatic Cells. Chem Res Toxicol 2025; 38:623-634. [PMID: 40145834 PMCID: PMC12015961 DOI: 10.1021/acs.chemrestox.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025]
Abstract
Epidemiological studies indicate that lifestyle and dietary habits are associated with an increasing cancer incidence. Consuming fermented foods and alcoholic beverages and smoking can expose humans to ethyl carbamate (EC), a probable human carcinogen classified as group 2A by the International Agency for Research on Cancer (IARC). Increasing the intake of bioactive compounds can reduce EC-induced toxicity. Diallyl disulfide (DADS), found in garlic, may protect against damage induced by chemical agents and natural compounds. Here, the potential protective effect of DADS against EC was investigated by evaluating EC-induced cytotoxicity, DNA damage, apoptosis, and reactive oxygen species production in colorectal adenocarcinoma (Caco-2) and hepatocarcinoma (HepG2) cells. To this end, resazurin, comet, and annexin V-FITC staining assays and CM-H2DCFDA markers were used to evaluate the effect on Caco-2 and HepG2 cells of protocols combining DADS (10-120 μM) and EC (80 mM). The protocols were as follows: (i) cells pretreated with DADS for 2 h and exposed to EC for 24 h; (ii) cells pretreated with DADS for 24 h and exposed to EC for 24 h; (iii) cells simultaneously exposed to DADS and EC for 24 h; (iv) cells exposed to EC for 24 h and treated with DADS for 2 h. EC induced cytotoxicity and apoptosis in Caco-2 and HepG2 cells and oxidative damage in Caco-2 cells. Combined exposure to DADS and EC for 24 h decreased EC-mediated cytotoxicity and apoptosis in both Caco-2 and HepG2 cells. These findings encourage further studies on the mechanisms of action of the combined DADS and EC.
Collapse
Affiliation(s)
- Caroline Andolfato Sanchez
- Department of Clinical Analysis,
Toxicology Food Science, School of Pharmaceutical Sciences of Ribeirão
Preto, University of São Paulo, Av. do Café, Vila Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil
| | - Estefani Maria Treviso
- Department of Clinical Analysis,
Toxicology Food Science, School of Pharmaceutical Sciences of Ribeirão
Preto, University of São Paulo, Av. do Café, Vila Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil
| | - Cecília
Cristina de Souza Rocha
- Department of Clinical Analysis,
Toxicology Food Science, School of Pharmaceutical Sciences of Ribeirão
Preto, University of São Paulo, Av. do Café, Vila Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analysis,
Toxicology Food Science, School of Pharmaceutical Sciences of Ribeirão
Preto, University of São Paulo, Av. do Café, Vila Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil
| |
Collapse
|
2
|
Shalamitskiy MY, Tanashchuk TN, Cherviak SN, Vasyagin EA, Ravin NV, Mardanov AV. Ethyl Carbamate in Fermented Food Products: Sources of Appearance, Hazards and Methods for Reducing Its Content. Foods 2023; 12:3816. [PMID: 37893709 PMCID: PMC10606259 DOI: 10.3390/foods12203816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Ethyl carbamate, the ethyl ester of carbamic acid, has been identified in fermented foods and alcoholic beverages. Since ethyl carbamate is a probable human carcinogen, reduction of its content is important for food safety and human health. In alcoholic beverages, ethyl carbamate is mostly formed from the reaction of ethanol with urea, citrulline and carbamyl phosphate during fermentation and storage. These precursors are generated from arginine metabolism by wine yeasts and lactic acid bacteria. This review summarizes the mechanisms of ethyl carbamate formation, its impact on human health and methods used in winemaking to minimize its content. These approaches include genetic modification of Saccharomyces cerevisiae wine strains targeting pathways of arginine transport and metabolism, the use of lactic acid bacteria to consume arginine, direct degradation of ethyl carbamate by enzymes and microorganisms, and different technological methods of grape cultivation, alcoholic fermentation, wine aging, temperature and duration of storage and transportation.
Collapse
Affiliation(s)
- Maksim Yu. Shalamitskiy
- All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences, 298600 Yalta, Russia; (M.Y.S.); (T.N.T.); (S.N.C.)
| | - Tatiana N. Tanashchuk
- All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences, 298600 Yalta, Russia; (M.Y.S.); (T.N.T.); (S.N.C.)
| | - Sofia N. Cherviak
- All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences, 298600 Yalta, Russia; (M.Y.S.); (T.N.T.); (S.N.C.)
| | - Egor A. Vasyagin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.A.V.); (N.V.R.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.A.V.); (N.V.R.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.A.V.); (N.V.R.)
| |
Collapse
|
3
|
Kiseleva OI, Kurbatov IY, Arzumanian VA, Ilgisonis EV, Zakharov SV, Poverennaya EV. The Expectation and Reality of the HepG2 Core Metabolic Profile. Metabolites 2023; 13:908. [PMID: 37623852 PMCID: PMC10456947 DOI: 10.3390/metabo13080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
To represent the composition of small molecules circulating in HepG2 cells and the formation of the "core" of characteristic metabolites that often attract researchers' attention, we conducted a meta-analysis of 56 datasets obtained through metabolomic profiling via mass spectrometry and NMR. We highlighted the 288 most commonly studied compounds of diverse chemical nature and analyzed metabolic processes involving these small molecules. Building a complete map of the metabolome of a cell, which encompasses the diversity of possible impacts on it, is a severe challenge for the scientific community, which is faced not only with natural limitations of experimental technologies, but also with the absence of transparent and widely accepted standards for processing and presenting the obtained metabolomic data. Formulating our research design, we aimed to reveal metabolites crucial to the Hepg2 cell line, regardless of all chemical and/or physical impact factors. Unfortunately, the existing paradigm of data policy leads to a streetlight effect. When analyzing and reporting only target metabolites of interest, the community ignores the changes in the metabolomic landscape that hide many molecular secrets.
Collapse
Affiliation(s)
- Olga I. Kiseleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, 119121 Moscow, Russia (E.V.I.); (E.V.P.)
| | - Ilya Y. Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, 119121 Moscow, Russia (E.V.I.); (E.V.P.)
| | - Viktoriia A. Arzumanian
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, 119121 Moscow, Russia (E.V.I.); (E.V.P.)
| | - Ekaterina V. Ilgisonis
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, 119121 Moscow, Russia (E.V.I.); (E.V.P.)
| | - Svyatoslav V. Zakharov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory Street, 1/3, 119991 Moscow, Russia;
| | - Ekaterina V. Poverennaya
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, 119121 Moscow, Russia (E.V.I.); (E.V.P.)
| |
Collapse
|
4
|
Bao T, Karim N, Ke H, Tangpong J, Chen W. Polysaccharide isolated from wax apple suppresses ethyl carbamate-induced oxidative damage in human hepatocytes. J Zhejiang Univ Sci B 2023; 24:574-586. [PMID: 37455135 PMCID: PMC10350369 DOI: 10.1631/jzus.b2200629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 06/27/2023]
Abstract
Wax apple (Syzygium samarangense) has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide, organic acids, flavonoids, minerals, and other substances. In this study, wax apple polysaccharide (WAP) was isolated from this plant and its protective effect against ethyl carbamate (EC)-induced oxidative damage was evaluated in human hepatocytes (L02 cells). Firstly, a series of analyses such as high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC/MS), and 1H and 13C nuclear magnetic resonance (NMR) were conducted to identify the structure of WAP. Thereafter, in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity, genotoxicity, and oxidative damage in L02 cells. Our results revealed that WAP is composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose in a molar ratio of 2.20:3.94:4.45:8.56:8.86:30.82:39.78:1.48. Using a combination of methylation and NMR spectroscopic analysis, the primary structure of WAP was identified as Araf-(1→, Glcp-(1→, →2)-Araf-(1→, →3)-Galp-(1→, →3)-Araf-(1→, and →6)-Galp-(1→. Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity, reducing reactive oxygen species (ROS) and O2•- formation, as well as improving mitochondrial membrane potential (MMP) and glutathione (GSH). In a nutshell, WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage. Meanwhile, further studies are needed to prove the above effects in vivo at the biological and clinical levels.
Collapse
Affiliation(s)
- Tao Bao
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Naymul Karim
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
5
|
Zheng H, Meng K, Liu J, Lin Z, Peng Q, Xie G, Wu P, Elsheery NI. Identification and expression of bifunctional acid urea-degrading enzyme/urethanase from Enterobacter sp. R-SYB082 and its application in degradation of ethyl carbamate in Chinese rice wine (Huangjiu). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4599-4608. [PMID: 35179235 DOI: 10.1002/jsfa.11818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ethyl carbamate (EC) is a potential carcinogen existing in fermented foods such as Chinese rice wine (Huangjiu). Since urea is an important precursor of EC, the degradation of urea could be an effective way to reduce EC in foods. RESULTS In this study, an Enterobacter sp. R-SYB082 with acid urea degradation characteristics was obtained through microbial screening. Further research isolated a new acid urea-degrading enzyme from R-SYB082 strain - ureidoglycolate amidohydrolase (UAH) - which could degrade EC directly. The cloning and expression of UAH in Escherichia coli BL21 (DE3) suggested that the activity of urea-degrading enzyme reached 3560 U L-1 , while urethanase activity reached 2883 U L-1 in the optimal fermentation condition. The enzyme had the dual ability of degrading substrate urea and product EC. The removal rate of EC in Chinese rice wine could reach 90.7%. CONCLUSION This study provided a new method for the integrated control of EC in Chinese rice wine and other fermented foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huajun Zheng
- National Engineering Research Center for Chinese Huangjiu (Branch Center), Shaoxing University, Shaoxing, China
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Kai Meng
- National Engineering Research Center for Chinese Huangjiu (Branch Center), Shaoxing University, Shaoxing, China
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Jun Liu
- Thermo Fisher Scientific (China) Co. Ltd, Shanghai, China
| | - Zichen Lin
- National Engineering Research Center for Chinese Huangjiu (Branch Center), Shaoxing University, Shaoxing, China
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Qi Peng
- National Engineering Research Center for Chinese Huangjiu (Branch Center), Shaoxing University, Shaoxing, China
- School of Life Science, Shaoxing University, Shaoxing, China
- California Institute of Food and Agricultural Research, University of California, Davis, CA, USA
| | - Guangfa Xie
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | | |
Collapse
|
6
|
Sulukan E, Ghosigharehagaji A, Baran A, Yildirim S, Bolat İ, Ceyhun SB. A versatile toxicity evaluation of ethyl carbamate (urethane) on zebrafish embryos: Morphological, physiological, histopathological, immunohistochemical, transcriptional and behavioral approaches. Toxicol Lett 2021; 353:71-78. [PMID: 34606945 DOI: 10.1016/j.toxlet.2021.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/10/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Ethyl carbamate (EC, urethane), which is used as an anesthetic especially by veterinarians due to its very long duration of action, is also a naturally occurring compound in all fermented foods and beverages. Although the health problem of EC is related to its carcinogenic potential, the scarcity of current studies that can be used in the evaluation of usage limits encouraged us to do this study. In this context, zebrafish embryos were exposed to serial doses of EC. According to the results, it was observed that EC exposure caused a significant decrease in survival and hatching rates as well as significant body malformations. Whole-mount staining results showed that EC caused dose-dependent increased apoptosis. Oxidative stress caused by EC exposure was demonstrated by whole-mount staining, transcriptional and immunohistochemically. Furthermore, it has been shown histochemically that EC exposure causes necrosis and degeneration in the brain. In behavioral tests, it was observed that EC caused hyperactivity associated with these neuronal degenerations. In addition, a dramatic decrease in blood flow was detected in association with pericardial edema. In the light of the current results, it should be carefully considered that EC can be found naturally in many human diets, especially fermented foods.
Collapse
Affiliation(s)
- Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Atena Ghosigharehagaji
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
7
|
Raffa CM, Chiampo F. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering (Basel) 2021; 8:bioengineering8070092. [PMID: 34356199 PMCID: PMC8301097 DOI: 10.3390/bioengineering8070092] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/12/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Pesticides are chemical compounds used to eliminate pests; among them, herbicides are compounds particularly toxic to weeds, and this property is exploited to protect the crops from unwanted plants. Pesticides are used to protect and maximize the yield and quality of crops. The excessive use of these chemicals and their persistence in the environment have generated serious problems, namely pollution of soil, water, and, to a lower extent, air, causing harmful effects to the ecosystem and along the food chain. About soil pollution, the residual concentration of pesticides is often over the limits allowed by the regulations. Where this occurs, the challenge is to reduce the amount of these chemicals and obtain agricultural soils suitable for growing ecofriendly crops. The microbial metabolism of indigenous microorganisms can be exploited for degradation since bioremediation is an ecofriendly, cost-effective, rather efficient method compared to the physical and chemical ones. Several biodegradation techniques are available, based on bacterial, fungal, or enzymatic degradation. The removal efficiencies of these processes depend on the type of pollutant and the chemical and physical conditions of the soil. The regulation on the use of pesticides is strictly connected to their environmental impacts. Nowadays, every country can adopt regulations to restrict the consumption of pesticides, prohibit the most harmful ones, and define the admissible concentrations in the soil. However, this variability implies that each country has a different perception of the toxicology of these compounds, inducing different market values of the grown crops. This review aims to give a picture of the bioremediation of soils polluted with commercial pesticides, considering the features that characterize the main and most used ones, namely their classification and their toxicity, together with some elements of legislation into force around the world.
Collapse
|
8
|
Naves MPC, de Morais CR, de Freitas V, Ribeiro DL, Lopes DS, Antunes LMG, de Melo Rodrigues V, de Rezende AAA, Spanó MA. Mutagenic and genotoxic activities of Phospholipase A 2 Bothropstoxin-I from Bothrops jararacussu in Drosophila melanogaster and human cell lines. Int J Biol Macromol 2021; 182:1602-1610. [PMID: 34033823 DOI: 10.1016/j.ijbiomac.2021.05.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 11/29/2022]
Abstract
Phospholipase A2 Bothropstoxin-I (PLA2 BthTX-I) is a myotoxic Lys49-PLA2 from Bothrops jararacussu snake venom. In order to evaluate the DNA damage caused by BthTX-I, we used the Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster and Comet assay in HUVEC and DU-145 cells. For SMART, different concentrations of BthTX-I (6.72 to 430 μg/mL) were used and no significant changes in the survival rate were observed. Significant frequency of mutant spots was observed for the ST cross at the highest concentration of BthTX-I due to recombinogenic activity. In the HB cross, BthTX-I increased the number of mutant spots at intermediate concentrations, being 53.75 μg/mL highly mutagenic and 107.5 μg/mL predominantly recombinogenic. The highest concentrations were neither mutagenic nor recombinogenic, which could indicate cytotoxicity in the wing cells of D. melanogaster. In vitro, all BthTX-I concentrations (1 to 50 μg/mL) induced decrease in HUVEC cell viability, as well as in DU-145 cells at concentrations of 10, 25, and 50 μg/mL. The comet assay showed that in HUVEC and DU-145 cells, all BthTX-I concentrations promoted increase of DNA damage. Further studies should be performed to elucidate the mechanism of action of PLA2 BthTX-I and its possible use in therapeutic strategies against cancer.
Collapse
Affiliation(s)
| | - Cássio Resende de Morais
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Vitor de Freitas
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute in Health, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Mário Antônio Spanó
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| |
Collapse
|
9
|
Wang W, Han Z, Guo D, Xiang Y. Renal Transcriptomics Reveals the Carcinogenic Mechanism of Ethyl Carbamate in Musalais. Onco Targets Ther 2021; 14:1401-1416. [PMID: 33658803 PMCID: PMC7920598 DOI: 10.2147/ott.s282125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Musalais is a traditional fermented wine produced in southern Xinjiang (a province of China) and is protected as a form of national intangible cultural heritage. However, ethyl carbamate (EC), which is naturally produced during the fermentation process, has been shown to induce carcinogenesis and was classified as a group 2A carcinogen by The World Health Organization's International Agency for Research on Cancer. METHODS In this work, rats were treated with musalais containing EC at varying contents (0.1, 1, or 10 mg/kg). To evaluate the toxicity of EC in musalais, the liver and kidney of the rats were subjected to transcriptomics sequencing. Differentially expressed genes (DEGs) between treated and untreated rats were identified, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed on these genes to investigate the biological functions affected by EC in musalais. RESULTS The results demonstrated that high EC content in musalais is possibly involved in the regulation of cytochrome P450 metabolism, chemical carcinogenesis, metabolism of xenobiotics by cytochrome P450, Wnt signaling, and p53 signaling by targeting Mgst1, Gstp1, Gsta5, Gsta1, Adh1, Gsta2, and Ccnd1, thereby inducing cancer. CONCLUSION The present work predicted the potential carcinogenic mechanism of high EC content in musalais, providing a reference for its safety evaluation.
Collapse
Affiliation(s)
- Weihua Wang
- College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alaer City, 843300, People’s Republic of China
| | - ZhanJiang Han
- College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alaer City, 843300, People’s Republic of China
| | - Dongqi Guo
- College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alaer City, 843300, People’s Republic of China
| | - Yanju Xiang
- College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alaer City, 843300, People’s Republic of China
| |
Collapse
|
10
|
Wu L, Wang Y, Zhou S, Zhu Y, Chen X. Enzyme-induced Cu 2+/Cu + conversion as the electrochemical signal for sensitive detection of ethyl carbamate. Anal Chim Acta 2021; 1151:338256. [PMID: 33608078 DOI: 10.1016/j.aca.2021.338256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Traditional enzyme-linked immunosorbent assay (t-ELISA) method suffers from its relatively low sensitivity or accuracy in the detection of trace level of analyte in complicated samples. In this work, to extend the application of ELISA in practical samples, a newly electrochemical immunoassay (ECIA) was developed based on an enzyme-induced Cu2+/Cu+ conversion for the determination of ethyl carbamate (EC). Wherein, three rounds of signal transformation-the catalysis of ALP enzyme, the conversion of Cu2+/Cu+ and signal output of square wave voltammetry (SWV), can be realized to obtain higher sensitivity as compared to t-ELISA. The ECIA method combines the advantages of electrochemistry and ELISA, behaving superior detection performance, such as good selectivity, high sensitivity, and low background signal. For the wine samples, the method showed a linear detection range from 2.5 nM to 2.5 × 104 nM with a limit of detection of 2.28 nM (S/N = 3), which reveals that the ECIA sensor is a promising platform for the detection of trace level of EC in practical samples.
Collapse
Affiliation(s)
- Long Wu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China; College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, PR China.
| | - Yasheng Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Shuhong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yongheng Zhu
- College of Food Science and Technology, And Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xiaoqiang Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| |
Collapse
|
11
|
Štampar M, Breznik B, Filipič M, Žegura B. Characterization of In Vitro 3D Cell Model Developed from Human Hepatocellular Carcinoma (HepG2) Cell Line. Cells 2020; 9:E2557. [PMID: 33260628 PMCID: PMC7759933 DOI: 10.3390/cells9122557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
In genetic toxicology, there is a trend against the increased use of in vivo models as highlighted by the 3R strategy, thus encouraging the development and implementation of alternative models. Two-dimensional (2D) hepatic cell models, which are generally used for studying the adverse effects of chemicals and consumer products, are prone to giving misleading results. On the other hand, newly developed hepatic three-dimensional (3D) cell models provide an attractive alternative, which, due to improved cell interactions and a higher level of liver-specific functions, including metabolic enzymes, reflect in vivo conditions more accurately. We developed an in vitro 3D cell model from the human hepatocellular carcinoma (HepG2) cell line. The spheroids were cultured under static conditions and characterised by monitoring their growth, morphology, and cell viability during the time of cultivation. A time-dependent suppression of cell division was observed. Cell cycle analysis showed time-dependent accumulation of cells in the G0/G1 phase. Moreover, time-dependent downregulation of proliferation markers was shown at the mRNA level. Genes encoding hepatic markers, metabolic phase I/II enzymes, were time-dependently deregulated compared to monolayers. New knowledge on the characteristics of the 3D cell model is of great importance for its further development and application in the safety assessment of chemicals, food products, and complex mixtures.
Collapse
Affiliation(s)
- Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Inhibition of ethyl carbamate accumulation in soy sauce by adding quercetin and ornithine during thermal process. Food Chem 2020; 343:128528. [PMID: 33189477 DOI: 10.1016/j.foodchem.2020.128528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/10/2020] [Accepted: 10/29/2020] [Indexed: 01/12/2023]
Abstract
Ethyl carbamate (EC), a genotoxic and carcinogenic compound in soy sauce accumulated during thermal processes, has raised public health concern for its multipoint potential carcinogenic risk to human. In this work, based on the analysis of EC accumulation during thermal processes of soy sauce, ornithine and quercetin were added before thermal processes to reduce EC accumulation. A reduction rate of 23.7-63.8% in simulated solution was founded. Kinetic studies indicated that ornithine was a byproduct of alcoholysis reaction when EC formed, while quercetin could compete with the precursor ethanol and react with carbamyl compounds, which therefore preventedEC accumulation. A maximum of 47.2% decrease of EC in soy sauce was achieved, and no remarkable changes in volatile compounds profile and color of soy sauce were found. In conclusion, the addition of quercetin and ornithine before thermal processes may be preferable for the controlling of EC content in soy sauce.
Collapse
|
13
|
Salazar-Flores J, Pacheco-Moisés FP, Ortiz GG, Torres-Jasso JH, Romero-Rentería O, Briones-Torres AL, Torres-Sánchez ED. Occupational exposure to organophosphorus and carbamates in farmers in La Cienega, Jalisco, Mexico: oxidative stress and membrane fluidity markers. J Occup Med Toxicol 2020; 15:32. [PMID: 33133223 PMCID: PMC7594453 DOI: 10.1186/s12995-020-00283-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 10/18/2020] [Indexed: 01/22/2023] Open
Abstract
Background The region of La Cienega in Jalisco Mexico, is an important agricultural reference for the production of corn, sorghum and wheat, among other grains, so the use of pesticides for pest control is high. However, in this rural area there are no toxicological studies that assess the occupational risk of pesticide use. Therefore, this study is the first to determine the oxidative stress levels markers (GSH, GSSG, carbonyl groups, nitric oxide metabolites and lipid peroxides) as well as alteration of the mitochondrial membrane fluidity caused by occupational exposure to organophosphorus and carbamates in farmers of this region. This occupational risk can increase cellular oxidation, which explains the high prevalence of neurodegenerative diseases and cancer in Cienega settlers to be analyzed in future studies. Methods Comparative cross-sectional study was performed using two groups: one not exposed group (n = 93) and another one with occupational exposure (n = 113). The latter group was sub-divided into 4 groups based on duration of use/exposure to pesticides. Oxidative stress levels and membrane fluidity were assessed using spectrophotometric methods. Statistical analyses were performed using SPSS software ver. 19.0 for windows. Results The most commonly used pesticides were organophosphorus, carbamates, herbicide-type glyphosate and paraquat, with an average occupational exposure time of 35.3 years. There were statistically significant differences in markers of oxidative stress between exposed farmers and not exposed group (p = 0.000). However, in most cases, no significant differences were found in markers of oxidative stress among the 4 exposure sub-groups (p > 0.05). Conclusion In the Cienega region, despite the indiscriminate use of organophosphorus and carbamates, there are no previous studies of levels oxidative stress. The results show increased levels of oxidative stress in occupationally exposed farmers, particularly membrane fluidity levels increased three times in contrast to not exposed group.
Collapse
Affiliation(s)
- Joel Salazar-Flores
- Department of Medical Sciences and Life, CUCIENEGA, University of Guadalajara, Ocotlan, Jalisco Mexico
| | | | - Genaro G Ortiz
- Department of Philosophical and Methodological Discipline, CUCS, University of Guadalajara, Guadalajara, Jalisco Mexico
| | - Juan H Torres-Jasso
- Department of Biological Sciences, CUCOSTA, University of Guadalajara, Puerto Vallarta, Jalisco Mexico
| | - Odette Romero-Rentería
- Department of Medical Sciences and Life, CUCIENEGA, University of Guadalajara, Ocotlan, Jalisco Mexico
| | - Ana L Briones-Torres
- Department of Chemistry, CUCEI, University of Guadalajara, Guadalajara, Jalisco Mexico
| | - Erandis D Torres-Sánchez
- Department of Medical Sciences and Life, CUCIENEGA, University of Guadalajara, Ocotlan, Jalisco Mexico
| |
Collapse
|
14
|
Li Y, Hu D, Qi J, Cui S, Chen W. Lysosomal Reacidification Ameliorates Vinyl Carbamate-Induced Toxicity and Disruption on Lysosomal pH. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8951-8961. [PMID: 32806125 DOI: 10.1021/acs.jafc.0c00534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ethyl carbamate (EC) is a carcinogen toxicant, commonly found in fermented foods and beverages. The carcinogenic and toxic possibility of EC is thought to be related to its metabolite vinyl carbamate (VC). However, we found interesting mechanisms underlying VC-induced toxicity in this study, which were greatly different from EC. We first conducted a simple synthesis procedure for VC and found that VC possessed higher toxicity but failed to regulate levels of reactive oxygen species, glutathione, and autophagy. Notably, VC treatment resulted in upregulation of lysosomal pH, which was responsible for its cytotoxicity. Cyclic adenosine monophosphate (cAMP) pretreatment could enhance restoration of lysosomal acidity and ameliorate VC-induced damage. Inhibition of protein kinase A and cystic fibrosis transmembrane conductance regulator can block cAMP-induced cytoprotection. Together, our results provided the evidence for novel mechanisms of toxicity and possible protection method under VC exposure, which might give new perspectives on the study of EC-induced toxicity.
Collapse
Affiliation(s)
- Yuting Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Dongwen Hu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Jifeng Qi
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
15
|
Oliveira VC, Naves MPC, de Morais CR, Constante SAR, Orsolin PC, Alves BS, Rinaldi Neto F, da Silva LHD, de Oliveira LTS, Ferreira NH, Esperandim TR, Cunha WR, Tavares DC, Spanó MA. Betulinic acid modulates urethane-induced genotoxicity and mutagenicity in mice and Drosophila melanogaster. Food Chem Toxicol 2020; 138:111228. [DOI: 10.1016/j.fct.2020.111228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
|
16
|
Zhou K, Siroli L, Patrignani F, Sun Y, Lanciotti R, Xu Z. Formation of Ethyl Carbamate during the Production Process of Cantonese Soy Sauce. Molecules 2019; 24:molecules24081474. [PMID: 30991675 PMCID: PMC6514843 DOI: 10.3390/molecules24081474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/13/2019] [Accepted: 04/14/2019] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to clarify the formation of ethyl carbamate (EC) and its influence factors throughout the production process of Cantonese soy sauce. The results showed that EC was not detected in the koji-making and early moromi fermentation stages, but started to be generated when pH of the moromi decreased to about 4.9—at the same time, the levels of ethanol, urea and citrulline increased significantly. Most EC was formed during raw soy sauce hot extraction (40.6%) and sterilization (42.9%) stages. The EC content exhibited the highest correlation with ethanol throughout the whole production process (R = 0.97). The simulation soy sauce produced in laboratory led the same conclusion—moreover, the contents of EC, ethanol and citrulline were higher in soy sauce fermented at 30 °C than in soy sauce fermented at 15 °C. Extraction of raw soy sauce by squeezing contributed little to EC formation. Further research showed that citrulline and ethanol led to significant increases in EC levels in raw soy sauce upon heating. These results indicate that ethanol and citrulline are two critical precursors of EC and that EC is mainly formed during the heat treatment stage of soy sauce.
Collapse
Affiliation(s)
- Kai Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy.
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy.
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy.
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Ferreira DC, Hernandes KC, Nicolli KP, Souza-Silva ÉA, Manfroi V, Zini CA, Welke JE. Development of a Method for Determination of Target Toxic Carbonyl Compounds in Must and Wine Using HS-SPME-GC/MS-SIM After Preliminary GC×GC/TOFMS Analyses. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1343-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|