1
|
Kineman RD, Del Rio-Moreno M, Waxman DJ. Liver-specific actions of GH and IGF1 that protect against MASLD. Nat Rev Endocrinol 2025; 21:105-117. [PMID: 39322791 DOI: 10.1038/s41574-024-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; also known as nonalcoholic fatty liver disease) is a chronic condition associated with metabolic syndrome, a group of conditions that includes obesity, insulin resistance, hyperlipidaemia and cardiovascular disease. Primary growth hormone (GH) deficiency is associated with MASLD, and the decline in circulating levels of GH with weight gain might contribute to the development of MASLD. Raising endogenous GH secretion or administering GH replacement therapy in the context of MASLD enhances insulin-like growth factor 1 (IGF1) production and reduces steatosis and the severity of liver injury. GH and IGF1 indirectly control MASLD progression by regulating systemic metabolic function. Evidence supports the proposal that GH and IGF1 also have a direct role in regulating liver metabolism and health. This Review focuses on how GH acts on the hepatocyte in a sex-dependent manner to limit lipid accumulation, reduce stress, and promote survival and regeneration. In addition, we discuss how GH and IGF1 might regulate non-parenchymal cells of the liver to control inflammation and fibrosis, which have a major effect on hepatocyte survival and regeneration. Development of a better understanding of how GH and IGF1 coordinate the functions of specific, individual liver cell types might provide insight into the aetiology of MASLD initiation and progression and suggest novel approaches for the treatment of MASLD.
Collapse
Affiliation(s)
- Rhonda D Kineman
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA.
| | - Mercedes Del Rio-Moreno
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
2
|
Zhang G, Wang Y, Jiang H, Wang Y. Genomic and transcriptomic analyses of Heteropoda venatoria reveal the expansion of P450 family for starvation resistance in spiders. Gigascience 2025; 14:giaf019. [PMID: 40117180 PMCID: PMC11927401 DOI: 10.1093/gigascience/giaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Research on the mechanism of starvation resistance can help reveal how animals adjust their physiology and behavior to adapt to the uncertainty of food resources. A low metabolic rate is a significant characteristic of spider physiological activity and can increase spider starvation resistance and adapt to complex ecological environments. RESULTS We sequenced the genome of Heteropoda venatoria and discovered significant expansions in gene families related to lipid metabolism, such as cytochrome P450 and steroid hormone biosynthesis genes, through comparative genomic analysis. We also systematically analyzed the gene expression characteristics of H. venatoria at different starvation resistance stages and reported that the fat body plays a crucial role during starvation in spiders. This study indicates that during the early stages of starvation, H. venatoria relies on glucose metabolism to meet its energy demands. In the middle stage, gene expression stabilizes, whereas in the late stage of starvation, pathways for fatty acid metabolism and protein degradation are significantly activated, and autophagy is increased, serving as a survival strategy under extreme starvation. Notably, analysis of expanded P450 gene families revealed that H. venatoria has many duplicated CYP3 clan genes that are highly expressed in the fat body, which may help maintain a low-energy metabolic state, allowing H. venatoria to endure longer periods of starvation. We also observed that the motifs of P450 families in H. venatoria are less conserved than those in insects are, which may be related to the greater polymorphism of spider genomes. CONCLUSIONS This research not only provides important genetic and transcriptomic evidence for understanding the starvation mechanisms of spiders but also offers new insights into the adaptive evolution of arthropods.
Collapse
Affiliation(s)
- Guoqing Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yiru Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Hongcen Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Meakin AS, Nathanielsz PW, Li C, Huber HF, Clifton VL, Wiese MD, Morrison JL. Maternal obesogenic diet during pregnancy and its impact on fetal hepatic function in baboons. Obesity (Silver Spring) 2024; 32:1910-1922. [PMID: 39210592 PMCID: PMC11421985 DOI: 10.1002/oby.24124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/08/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Maternal obesity (MO) increases the risk of later-life liver disease in offspring, especially in males. This may be due to impaired cytochrome P450 (CYP) enzyme activity driven by an altered maternal-fetal hormonal milieu. MO increases fetal cortisol concentrations that may increase CYP activity; however, glucocorticoid receptor (GR)-mediated signaling can be modulated by alternative GR isoform expression. We hypothesized that MO induces sex-specific changes in GR isoform expression and localization that contribute to reduced hepatic CYP activity. METHODS Nonpregnant, nulliparous female baboons were assigned to either an ad libitum control diet or a high-fat, high-energy diet (HF-HED) at 9 months pre pregnancy. At 165 days' gestation (term = 180 days), fetal liver samples were collected (n = 6/sex/group). CYP activity was quantified using functional assays, and GR was measured using quantitative RT-PCR and Western blot. RESULTS CYP3A activity was reduced in the HF-HED group, whereas CYP2B6 activity was reduced in HF-HED males only. Total GR expression was increased in the HF-HED group. Relative nuclear expression of the antagonistic GR isoform GRβ was increased in HF-HED males only. CONCLUSIONS Reduced CYP activity in HF-HED males may be driven in part by dampened hepatic-specific glucocorticoid signaling via altered GR isoform expression. These findings highlight targetable mechanisms that may reduce later-life sex-specific disease risk.
Collapse
Affiliation(s)
- Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, AUS
| | | | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Hillary F. Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Vicki L. Clifton
- Mater Medical Research Institute – The University of Queensland, Brisbane, QLD, AUS
| | - Michael D. Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health Sciences University of South Australia, Adelaide, SA, AUS
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, AUS
| |
Collapse
|
4
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
5
|
Li YY, Madduri SS, Rezeli ET, Santos C, Freeman III H, Peng J, McRitchie SL, Pathmasiri W, Hursting SD, Sumner SJ, Stewart DA. Macronutrient-differential dietary pattern impacts on body weight, hepatic inflammation, and metabolism. Front Nutr 2024; 11:1356038. [PMID: 38868554 PMCID: PMC11168494 DOI: 10.3389/fnut.2024.1356038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/24/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Obesity is a multi-factorial disease frequently associated with poor nutritional habits and linked to many detrimental health outcomes. Individuals with obesity are more likely to have increased levels of persistent inflammatory and metabolic dysregulation. The goal of this study was to compare four dietary patterns differentiated by macronutrient content in a postmenopausal model. Dietary patterns were high carbohydrate (HC), high fat (HF), high carbohydrate plus high fat (HCHF), and high protein (HP) with higher fiber. Methods Changes in body weight and glucose levels were measured in female, ovariectomized C57BL/6 mice after 15 weeks of feeding. One group of five mice fed the HCHF diet was crossed over to the HP diet on day 84, modeling a 21-day intervention. In a follow-up study comparing the HCHF versus HP dietary patterns, systemic changes in inflammation, using an 80-cytokine array and metabolism, by untargeted liquid chromatography-mass spectrometry (LCMS)-based metabolomics were evaluated. Results Only the HF and HCHF diets resulted in obesity, shown by significant differences in body weights compared to the HP diet. Body weight gains during the two-diet follow-up study were consistent with the four-diet study. On Day 105 of the 4-diet study, glucose levels were significantly lower for mice fed the HP diet than for those fed the HC and HF diets. Mice switched from the HCHF to the HP diet lost an average of 3.7 grams by the end of the 21-day intervention, but this corresponded with decreased food consumption. The HCHF pattern resulted in dramatic inflammatory dysregulation, as all 80 cytokines were elevated significantly in the livers of these mice after 15 weeks of HCHF diet exposure. Comparatively, only 32 markers changed significantly on the HP diet (24 up, 8 down). Metabolic perturbations in several endogenous biological pathways were also observed based on macronutrient differences and revealed dysfunction in several nutritionally relevant biosynthetic pathways. Conclusion Overall, the HCHF diet promoted detrimental impacts and changes linked to several diseases, including arthritis or breast neoplasms. Identification of dietary pattern-specific impacts in this model provides a means to monitor the effects of disease risk and test interventions to prevent poor health outcomes through nutritional modification.
Collapse
Affiliation(s)
- Yuan-yuan Li
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Supradeep S. Madduri
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erika T. Rezeli
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charlene Santos
- Animal Studies Core Lab, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Herman Freeman III
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Jing Peng
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan L. McRitchie
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wimal Pathmasiri
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D. Hursting
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan J. Sumner
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Delisha A. Stewart
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Smiriglia A, Lorito N, Serra M, Perra A, Morandi A, Kowalik MA. Sex difference in liver diseases: How preclinical models help to dissect the sex-related mechanisms sustaining NAFLD and hepatocellular carcinoma. iScience 2023; 26:108363. [PMID: 38034347 PMCID: PMC10682354 DOI: 10.1016/j.isci.2023.108363] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Only a few preclinical findings are confirmed in the clinic, posing a critical issue for clinical development. Therefore, identifying the best preclinical models can help to dissect molecular and mechanistic insights into liver disease pathogenesis while being clinically relevant. In this context, the sex relevance of most preclinical models has been only partially considered. This is particularly significant in NAFLD and HCC, which have a higher prevalence in men when compared to pre-menopause women but not to those in post-menopausal status, suggesting a role for sex hormones in the pathogenesis of the diseases. This review gathers the sex-relevant findings and the available preclinical models focusing on both in vitro and in vivo studies and discusses the potential implications and perspectives of introducing the sex effect in the selection of the best preclinical model. This is a critical aspect that would help to tailor personalized therapies based on sex.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marina Serra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
7
|
Eccles JA, Baldwin WS. Detoxification Cytochrome P450s (CYPs) in Families 1-3 Produce Functional Oxylipins from Polyunsaturated Fatty Acids. Cells 2022; 12:82. [PMID: 36611876 PMCID: PMC9818454 DOI: 10.3390/cells12010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This manuscript reviews the CYP-mediated production of oxylipins and the current known function of these diverse set of oxylipins with emphasis on the detoxification CYPs in families 1-3. Our knowledge of oxylipin function has greatly increased over the past 3-7 years with new theories on stability and function. This includes a significant amount of new information on oxylipins produced from linoleic acid (LA) and the omega-3 PUFA-derived oxylipins such as α-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). However, there is still a lack of knowledge regarding the primary CYP responsible for producing specific oxylipins, and a lack of mechanistic insight for some clinical associations between outcomes and oxylipin levels. In addition, the role of CYPs in the production of oxylipins as signaling molecules for obesity, energy utilization, and development have increased greatly with potential interactions between diet, endocrinology, and pharmacology/toxicology due to nuclear receptor mediated CYP induction, CYP inhibition, and receptor interactions/crosstalk. The potential for diet-diet and diet-drug/chemical interactions is high given that these promiscuous CYPs metabolize a plethora of different endogenous and exogenous chemicals.
Collapse
Affiliation(s)
| | - William S. Baldwin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
8
|
Heintz MM, Eccles JA, Olack EM, Maner-Smith KM, Ortlund EA, Baldwin WS. Human CYP2B6 produces oxylipins from polyunsaturated fatty acids and reduces diet-induced obesity. PLoS One 2022; 17:e0277053. [PMID: 36520866 PMCID: PMC9754190 DOI: 10.1371/journal.pone.0277053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple factors in addition to over consumption lead to obesity and non-alcoholic fatty liver disease (NAFLD) in the United States and worldwide. CYP2B6 is the only human detoxification CYP whose loss is associated with obesity, and Cyp2b-null mice show greater diet-induced obesity with increased steatosis than wildtype mice. However, a putative mechanism has not been determined. LC-MS/MS revealed that CYP2B6 metabolizes PUFAs, with a preference for metabolism of ALA to 9-HOTrE and to a lesser extent 13-HOTrE with a preference for metabolism of PUFAs at the 9- and 13-positions. To further study the role of CYP2B6 in vivo, humanized-CYP2B6-transgenic (hCYP2B6-Tg) and Cyp2b-null mice were fed a 60% high-fat diet for 16 weeks. Compared to Cyp2b-null mice, hCYP2B6-Tg mice showed reduced weight gain and metabolic disease as measured by glucose tolerance tests, however hCYP2B6-Tg male mice showed increased liver triglycerides. Serum and liver oxylipin metabolite concentrations increased in male hCYP2B6-Tg mice, while only serum oxylipins increased in female hCYP2B6-Tg mice with the greatest increases in LA oxylipins metabolized at the 9 and 13-positions. Several of these oxylipins, specifically 9-HODE, 9-HOTrE, and 13-oxoODE, are PPAR agonists. RNA-seq data also demonstrated sexually dimorphic changes in gene expression related to nuclear receptor signaling, especially CAR > PPAR with qPCR suggesting PPARγ signaling is more likely than PPARα signaling in male mice. Overall, our data indicates that CYP2B6 is an anti-obesity enzyme, but probably to a lesser extent than murine Cyp2b's. Therefore, the inhibition of CYP2B6 by xenobiotics or dietary fats can exacerbate obesity and metabolic disease potentially through disrupted PUFA metabolism and the production of key lipid metabolites.
Collapse
Affiliation(s)
- Melissa M. Heintz
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Jazmine A. Eccles
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Emily M. Olack
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kristal M. Maner-Smith
- Emory Integrated Metabolomics and Lipodomics Core, Emory University, Atlanta, Georgia, United States of America
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Dutta M, Lim JJ, Cui JY. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab Dispos 2022; 50:478-491. [PMID: 34862253 PMCID: PMC11022899 DOI: 10.1124/dmd.121.000415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023] Open
Abstract
It is well-known that the pregnane X receptor (PXR)/Nr1i2 is a critical xenobiotic-sensing nuclear receptor enriched in liver and intestine and is responsible for drug-drug interactions, due to its versatile ligand binding domain (LBD) and target genes involved in xenobiotic biotransformation. PXR can be modulated by various xenobiotics including pharmaceuticals, nutraceuticals, dietary factors, and environmental chemicals. Microbial metabolites such as certain secondary bile acids (BAs) and the tryptophan metabolite indole-3-propionic acid (IPA) are endogenous PXR activators. Gut microbiome is increasingly recognized as an important regulator for host xenobiotic biotransformation and intermediary metabolism. PXR regulates and is regulated by the gut-liver axis. This review summarizes recent research advancements leveraging pharmaco- and toxico-metagenomic approaches that have redefined the previous understanding of PXR. Key topics covered in this review include: (1) genome-wide investigations on novel PXR-target genes, novel PXR-DNA interaction patterns, and novel PXR-targeted intestinal bacteria; (2) key PXR-modulating activators and suppressors of exogenous and endogenous sources; (3) novel bidirectional interactions between PXR and gut microbiome under physiologic, pathophysiological, pharmacological, and toxicological conditions; and (4) modifying factors of PXR-signaling including species and sex differences and time (age, critical windows of exposure, and circadian rhythm). The review also discusses critical knowledge gaps and important future research topics centering around PXR. SIGNIFICANCE STATEMENT: This review summarizes recent research advancements leveraging O'mics approaches that have redefined the previous understanding of the xenobiotic-sensing nuclear receptor pregnane X receptor (PXR). Key topics include: (1) genome-wide investigations on novel PXR-targeted host genes and intestinal bacteria as well as novel PXR-DNA interaction patterns; (2) key PXR modulators including microbial metabolites under physiological, pathophysiological, pharmacological, and toxicological conditions; and (3) modifying factors including species, sex, and time.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Age- and Diet-Dependent Changes in Hepatic Lipidomic Profiles of Phospholipids in Male Mice: Age Acceleration in Cyp2b-Null Mice. J Lipids 2022; 2022:7122738. [PMID: 35391786 PMCID: PMC8983274 DOI: 10.1155/2022/7122738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
Increases in traditional serum lipid profiles are associated with obesity, cancer, and cardiovascular disease. Recent lipidomic analysis has indicated changes in serum lipidome profiles, especially in regard to specific phosphatidylcholines, associated with obesity. However, little work has evaluated murine hepatic liver lipidomic profiles nor compared these profiles across age, high-fat diet, or specific genotypes, in this case the lack of hepatic Cyp2b enzymes. In this study, the effects of age (9 months old), high-fat diet (4.5 months old), and the loss of three primarily hepatic xeno- and endobiotic metabolizing cytochrome P450 (Cyp) enzymes, Cyp2b9, Cyp2b10, and Cyp2b13 (Cyp2b-null mice), on the male murine hepatic lipidome were compared. Hierarchical clustering and principal component analysis show that age perturbs hepatic phospholipid profiles and serum lipid markers the most compared to young mice, followed by a high-fat diet and then loss of Cyp2b. Several lipid biomarkers such as PC/PE ratios, PE 38 : 6, and LPC concentrations indicate greater potential for NAFLD and hypertension with mixed effects in Cyp2b-null mice(less NAFLD and greater hypertension-associated markers). Lipid profiles from older mice contain greater total and n-6 fatty acids than normal diet (ND)-fed young mice; however, surprisingly, young Cyp2b-null mice contain high n-6 : n-3 ratios. Overall, the lack of Cyp2b typically enhanced adverse physiological parameters observed in the older (9 mo) mice with increased weight gain combined with a deteriorating cholesterol profile, but not necessarily all phospholipid profiles were adversely perturbed.
Collapse
|
11
|
Wu B, Zhao Q, Li Z, Min Z, Shi M, Nie X, He Q, Gui R. Environmental level bisphenol A accelerates alterations of the reno-cardiac axis by the MAPK cascades in male diabetic rats: An analysis based on transcriptomic profiling and bioinformatics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117671. [PMID: 34435562 DOI: 10.1016/j.envpol.2021.117671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
In humans and animal models, the kidneys and cardiovascular systems are negatively affected by BPA from the environment. It is considered that BPA have some potential estrogen-like and non-hormone-like properties. In this study, RNA-sequencing and its-related bioinformatics was used as the basic strategy to clarify the characteristic mechanisms of kidney-heart axis remodeling and dysfunction in diabetic male rats under BPA exposure. We found that continuous BPA exposure in diabetic rats aggravated renal impairment, and caused hemodynamic disorders and dysfunctions. There were 655 and 125 differentially expressed genes in the kidney and heart, respectively. For the kidneys, functional annotation and enrichment, and gene set enrichment analyses identified bile acid secretion related to lipid synthesis and transport, and MAPK cascade pathways. For the heart, these bioinformatics analyses clearly pointed to MAPKs pathways. A total of 12 genes and another total of 6 genes were identified from the kidney tissue and heart tissue, respectively. Western blotting showed that exposure to BPA activated MAPK cascades in both organs. In this study, the exacerbated remodeling of diabetic kidney-heart axis under BPA exposure and diabetes might occur through hemodynamics, metabolism disorders, and the immune-inflammatory response, as well as continuous estrogen-like stimulation, with focus on the MAPK cascades.
Collapse
Affiliation(s)
- Bin Wu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China; Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Physiology, Pathophysiology, Pharmacology and Toxicology (Laboratory of Physiological Science), Hubei University of Arts and Science, Xiangyang, China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuoneng Li
- Institute of Environment Health and Food Safety, Wuhan Center for Diseases Control and Prevention, Wuhan, China
| | - Zhiteng Min
- Department of Occupational Health, Wuhan Center for Diseases Control and Prevention, Wuhan, China; Key Laboratory of Occupational Hazard Identification and Control of Hubei Province, Wuhan University of Science and Technology, Wuhan, China
| | - Mengdie Shi
- Institute of Environment Health and Food Safety, Wuhan Center for Diseases Control and Prevention, Wuhan, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
12
|
Hamilton MC, Heintz MM, Pfohl M, Marques E, Ford L, Slitt AL, Baldwin WS. Increased toxicity and retention of perflourooctane sulfonate (PFOS) in humanized CYP2B6-Transgenic mice compared to Cyp2b-null mice is relieved by a high-fat diet (HFD). Food Chem Toxicol 2021; 152:112175. [PMID: 33838175 PMCID: PMC8154739 DOI: 10.1016/j.fct.2021.112175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023]
Abstract
PFOS is a persistent, fluorosurfactant used in multiple products. Murine Cyp2b's are induced by PFOS and high-fat diets (HFD) and therefore we hypothesized that human CYP2B6 may alleviate PFOS-induced steatosis. Cyp2b-null and hCYP2B6-Tg mice were treated with 0, 1, or 10 mg/kg/day PFOS by oral gavage for 21-days while provided a chow diet (ND) or HFD. Similar to murine Cyp2b10, CYP2B6 is inducible by PFOS. Furthermore, three ND-fed hCYP2B6-Tg females treated with 10 mg/kg/day PFOS died during the exposure period; neither Cyp2b-null nor HFD-fed mice died. hCYP2B6-Tg mice retained more PFOS in serum and liver than Cyp2b-null mice presumably causing the observed toxicity. In contrast, serum PFOS retention was reduced in the HFD-fed hCYP2B6-Tg mice; the opposite trend observed in HFD-fed Cyp2b-null mice. Hepatotoxicity biomarkers, ALT and ALP, were higher in PFOS-treated mice and repressed by a HFD. However, PFOS combined with a HFD exacerbated steatosis in all mice, especially in the hCYP2B6-Tg mice with significant disruption of key lipid metabolism genes such as Srebp1, Pparg, and Hmgcr. In conclusion, CYP2B6 is induced by PFOS but does not alleviate PFOS toxicity presumably due to increased retention. CYP2B6 protects from PFOS-mediated steatosis in ND-fed mice, but increases steatosis when co-treated with a HFD.
Collapse
Affiliation(s)
- Matthew C Hamilton
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA
| | - Melissa M Heintz
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA
| | - Marisa Pfohl
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Emily Marques
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Lucie Ford
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Angela L Slitt
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - William S Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
13
|
Zhou J, Zhang Y, Wu J, Qiao M, Xu Z, Peng X, Mei S. Proteomic and lipidomic analyses reveal saturated fatty acids, phosphatidylinositol, phosphatidylserine, and associated proteins contributing to intramuscular fat deposition. J Proteomics 2021; 241:104235. [PMID: 33894376 DOI: 10.1016/j.jprot.2021.104235] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
Intramuscular fat (IMF) content is an important factor in porcine meat quality. Previous studies have screened multiple candidate genes related to IMF deposition, but the lipids that affect IMF deposition and their lipid-protein network remain unknown. In this study, we performed proteomic and lipidomic analyses of the longissimus dorsi (LD) muscle from high-IMF (IMFH) and low-IMF (IMF-L) groups of Xidu black pigs. Eighty-eight proteins and 143 lipids were differentially abundant between the groups. The differentially abundant proteins were found to be involved in cholesterol metabolism, the PPAR signaling pathway, and ferroptosis. The triacylglycerols (TAGs) upregulated in the IMF-H group were mainly shown to be synthesized by saturated fatty acids (SFAs), while the downregulated TAGs were mainly synthesized by polyunsaturated fatty acids (PUFAs). All differentially abundant phosphatidylinositols (PIs) and phosphatidylserines (PSs) were found to be upregulated in the IMF-H group. A correlation analysis of the proteomic and lipidomic revealed candidate proteins (APOA4, VDAC3, PRNP, CTSB, GSPT1) related to TAG, PI, and PS lipids. These results revealed differences in proteins and lipids between the IMF-H and IMF-L groups, which represent new candidate proteins and lipids that should be investigated to determine the molecular mechanisms controlling IMF deposition in pigs. SIGNIFICANCE: Intramuscular fat (IMF) is a key factor affecting meat quality, and meat with a higher IMF content can have a better flavor. In this study, proteomic results show that the ferroptosis pathway, including the PRNP, VDAC3 and CP proteins, affects IMF deposition. Lipid composition is the key factor affecting IMF deposition, but there are few reports on this. In this study, through lipidomic analysis, we suggest that saturated fatty acid (SFA), phosphatidylinositol (PI), and phosphatidylserine (PS) may contribute to IMF deposition. A correlation analysis reveals the potential regulatory network between lipids and proteins. This study clarifies the difference in protein and lipid compositions in longissimus dorsi (LD) muscle with high and low IMF contents. This information suggests that it would be beneficial to increase the intramuscular fat content of pork not only from a genetic perspective but also from a nutritional perspective.
Collapse
Affiliation(s)
- Jiawei Zhou
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Yu Zhang
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Junjing Wu
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Mu Qiao
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Zhong Xu
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Xianwen Peng
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Shuqi Mei
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China.
| |
Collapse
|
14
|
Bustamante-Marin XM, Merlino JL, Devericks E, Carson MS, Hursting SD, Stewart DA. Mechanistic Targets and Nutritionally Relevant Intervention Strategies to Break Obesity-Breast Cancer Links. Front Endocrinol (Lausanne) 2021; 12:632284. [PMID: 33815289 PMCID: PMC8011316 DOI: 10.3389/fendo.2021.632284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
The worldwide prevalence of overweight and obesity has tripled since 1975. In the United States, the percentage of adults who are obese exceeds 42.5%. Individuals with obesity often display multiple metabolic perturbations, such as insulin resistance and persistent inflammation, which can suppress the immune system. These alterations in homeostatic mechanisms underlie the clinical parameters of metabolic syndrome, an established risk factor for many cancers, including breast cancer. Within the growth-promoting, proinflammatory milieu of the obese state, crosstalk between adipocytes, immune cells and breast epithelial cells occurs via obesity-associated hormones, angiogenic factors, cytokines, and other mediators that can enhance breast cancer risk and/or progression. This review synthesizes evidence on the biological mechanisms underlying obesity-breast cancer links, with emphasis on emerging mechanism-based interventions in the context of nutrition, using modifiable elements of diet alone or paired with physical activity, to reduce the burden of obesity on breast cancer.
Collapse
Affiliation(s)
| | - Jenna L. Merlino
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Emily Devericks
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Meredith S. Carson
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| | - Delisha A. Stewart
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| |
Collapse
|
15
|
Diamante G, Cely I, Zamora Z, Ding J, Blencowe M, Lang J, Bline A, Singh M, Lusis AJ, Yang X. Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. ENVIRONMENT INTERNATIONAL 2021; 146:106260. [PMID: 33221593 PMCID: PMC7775895 DOI: 10.1016/j.envint.2020.106260] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 05/06/2023]
Abstract
Bisphenol A (BPA) is an industrial plasticizer widely found in consumer products, and exposure to BPA during early development has been associated with the prevalence of various cardiometabolic diseases including obesity, metabolic syndrome, type 2 diabetes, and cardiovascular diseases. To elucidate the molecular perturbations underlying the connection of low-dose prenatal BPA exposure to cardiometabolic diseases, we conducted a multi-dimensional systems biology study assessing the liver transcriptome, gut microbial community, and diverse metabolic phenotypes in both male and female mouse offspring exposed to 5 μg/kg/day BPA during gestation. Prenatal exposure to low-dose BPA not only significantly affected liver genes involved in oxidative phosphorylation, PPAR signaling and fatty acid metabolism, but also affected the gut microbial composition in an age- and sex-dependent manner. Bacteria such as those belonging to the S24-7 and Lachnospiraceae families were correlated with offspring phenotypes, differentially expressed liver metabolic genes such as Acadl and Dgat1, and key drivers identified in our gene network modeling such as Malat1 and Apoa2. This multiomics study provides insight into the relationship between gut bacteria and host liver genes that could contribute to cardiometabolic disease risks upon low-dose BPA exposure.
Collapse
Affiliation(s)
- Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Zacary Zamora
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jennifer Lang
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA (UCLA), Los Angeles, CA 90095, USA
| | - Abigail Bline
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Maya Singh
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA (UCLA), Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Heintz MM, McRee R, Kumar R, Baldwin WS. Gender differences in diet-induced steatotic disease in Cyp2b-null mice. PLoS One 2020; 15:e0229896. [PMID: 32155178 PMCID: PMC7064244 DOI: 10.1371/journal.pone.0229896] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease; however, progression to nonalcoholic steatohepatitis (NASH) is associated with most adverse outcomes. CYP2B metabolizes multiple xeno- and endobiotics, and male Cyp2b-null mice are diet-induced obese (DIO) with increased NAFLD. However, the DIO study was not performed long enough to assess progression to NASH. Therefore, to assess the role of Cyp2b in fatty liver disease progression from NAFLD to NASH, we treated wildtype (WT) and Cyp2b-null mice with a normal diet (ND) or choline-deficient, L-amino acid-defined high fat diet (CDAHFD) for 8 weeks and determined metabolic and molecular changes. CDAHFD-fed WT female mice gained more weight and had greater liver and white adipose tissue mass than their Cyp2b-null counterparts; males experienced diet-induced weight loss regardless of genotype. Serum biomarkers of liver injury increased in both CDAHFD-fed female and male mice; however CDAHFD-fed Cyp2b-null females exhibited significantly lower serum ALT, AST, and ASP concentrations compared to WT mice, indicating Cyp2b-null females were protected from liver injury. In both genders, hierarchical clustering of RNA-seq data demonstrates several gene ontologies responded differently in CDAHFD-fed Cyp2b-null mice compared to WT mice (lipid metabolism > fibrosis > inflammation). Oil Red O staining and direct triglycerides measurements confirmed that CDAHFD-fed Cyp2b-null females were protected from NAFLD. CDAHFD-fed Cyp2b-null mice showed equivocal changes in fibrosis with transcriptomic and serum markers suggesting less inflammation due to glucocorticoid-mediated repression of immune responses. In contrast to females, CDAHFD-fed Cyp2b-null males had higher triglyceride levels. Results indicate that female Cyp2b-null mice are protected from NAFLD while male Cyp2b-null mice are more susceptible to NAFLD, with few significant changes in NASH development. This study confirms that increased NAFLD development does not necessarily lead to progressive NASH. Furthermore, it indicates a role for Cyp2b in fatty liver disease that differs based on gender.
Collapse
Affiliation(s)
- Melissa M. Heintz
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States of America
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - Rebecca McRee
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - Ramiya Kumar
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - William S. Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States of America
- Biological Sciences, Clemson University, Clemson, SC, United States of America
- * E-mail:
| |
Collapse
|
17
|
Huang Z, Wang M, Liu L, Peng J, Guo C, Chen X, Huang L, Tan J, Yang G. Transcriptional Repression of CYP3A4 by Increased miR-200a-3p and miR-150-5p Promotes Steatosis in vitro. Front Genet 2019; 10:484. [PMID: 31191607 PMCID: PMC6546834 DOI: 10.3389/fgene.2019.00484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatic cytochrome P450 enzyme activities correlate with non-alcoholic fatty liver disease (NAFLD) and hepatic steatosis. The decreased activity of CYP3A4, an important drug-metabolizing enzyme, is associated with the progression of NAFLD. CYP3A4 is predicted as a target gene of miR-200a-3p and miR-150-5p by MicroInspector and TargetScan algorithms analyses. Here, we found decreased CYP3A4 and increased miR-200a-3p and miR-150-5p in LO2 cells with free fatty acid (FFA)-induced steatosis. Dual-luciferase assay confirmed that both miR-200a-3p and miR-150-5p targeted the 3'-untranslated region (3'-UTR) of CYP3A4 and that such interaction was abolished by miRNA binding site mutations in 3'-UTR of CYP3A4. Using miR-200a-3p and miR-150-5p mimics and inhibitors, we further confirmed that endogenous CYP3A4 was regulated posttranscriptionally by miR-200a-3p or miR-150-5p. Moreover, miR-200a-3p and miR-150-5p inhibitors attenuated FFA-induced steatosis in LO2 cells, and such effect was dependent on CYP3Y4 expression. These results suggest that miR-200a-3p and miR-150-5p, through directly targeting 3'-UTR of CYP3A4, contribute to the development of FFA-induced steatosis.
Collapse
Affiliation(s)
- Zhijun Huang
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengyao Wang
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Li Liu
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinfu Peng
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chengxian Guo
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Chen
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Lu Huang
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, Life Science School, Central South University, Changsha, China
| | - Guoping Yang
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Zeng H, Lin Y, Gong J, Lin S, Gao J, Li C, Feng Z, Zhang H, Zhang J, Li Y, Yu C. CYP3A suppression during diet-induced nonalcoholic fatty liver disease is independent of PXR regulation. Chem Biol Interact 2019; 308:185-193. [PMID: 31132328 DOI: 10.1016/j.cbi.2019.05.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 3A (CYP3A) activity is inhibited, and its expression is suppressed during many diseases, including nonalcoholic fatty liver disease (NAFLD). However, the mechanism is controversial. Here, we report that PXR may not take part in the downregulation of CYP3A during NAFLD. Hepatic CYP3A11 (major subtype of mouse CYP3A) mRNA and protein expression was significantly decreased in both mice fed a high-fat diet (HFD) for 8 weeks and palmitate (PA)-treated mouse primary hepatocytes. Similarly, in HepG2 cells, PA treatment significantly suppressed the CYP3A4 (major subtype of human CYP3A) mRNA level and promoter transcription activity. However, Western blotting analysis found an induction of PXR nuclear translocation during NAFLD in both in vivo and in vitro models. Moreover, immunofluorescence determination also found nuclear translocation effect of PXR by PA stimulation in HepG2 cells. In addition, the siRNA knockdown of PXR did not affect the suppressive effects of PA on the CYP3A4 promoter transcription activity and mRNA levels in HepG2 cells. Similarly, PXR knockdown also did not affect the suppressive effects of PA on CYP3A11 mRNA and protein expression levels in mouse primary hepatoctyes. Taken together, the results showed that the suppressive effect of CYP3A transcription was independent of PXR regulation.
Collapse
Affiliation(s)
- Hang Zeng
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yiming Lin
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiande Gong
- Department of Gastroenterology, Yinzhou People's Hospital, Ningbo, 315040, China
| | - Sisi Lin
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Jianguo Gao
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chunxiao Li
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zemin Feng
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hong Zhang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jie Zhang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Youming Li
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
19
|
Heintz MM, Kumar R, Rutledge MM, Baldwin WS. Cyp2b-null male mice are susceptible to diet-induced obesity and perturbations in lipid homeostasis. J Nutr Biochem 2019; 70:125-137. [PMID: 31202118 DOI: 10.1016/j.jnutbio.2019.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Obesity is an endemic problem in the United States and elsewhere, and data indicate that in addition to overconsumption, exposure to specific chemicals enhances obesity. CYP2B metabolizes multiple endo- and xenobiotics, and recent data suggests that repression of Cyp2b activity increases dyslipidemia and age-onset obesity, especially in males. To investigate the role played by Cyp2b in lipid homeostasis and obesity, we treated wildtype and Cyp2b-null mice with a normal (ND) or 60% high-fat diet (HFD) for 10 weeks and determined metabolic and molecular changes. Male HFD-fed Cyp2b-null mice weigh 15% more than HFD-fed wildtype mice, primarily due to an increase in white adipose tissue (WAT); however, Cyp2b-null female mice did not demonstrate greater body mass or WAT. Serum parameters indicate increased ketosis, leptin and cholesterol in HFD-fed Cyp2b-null male mice compared to HFD-fed wildtype mice. Liver triglycerides and liver:serum triglyceride ratios were higher than their similarly treated wildtype counterparts in Cyp2b-null male mice, indicating a role for Cyp2b in fatty acid metabolism regardless of diet. Furthermore, RNAseq demonstrates that hepatic gene expression in ND-fed Cyp2b-null male mice is similar to HFD-fed WT male mice, suggestive of fatty liver disease progression and a role for Cyp2b in lipid homeostasis. Females did not show as demonstrative changes in liver health, and significantly fewer changes in gene expression, as well as gene expression associated with liver disease. Overall our data indicates that the repression or inhibition of CYP2B may exacerbate metabolic disorders and cause obesity by perturbing fatty acid metabolism, especially in males.
Collapse
Affiliation(s)
- Melissa M Heintz
- Environmental Toxicology Program, Clemson University, Clemson, SC 29634
| | - Ramiya Kumar
- Biological Sciences, Clemson University, Clemson, SC 29634
| | | | - William S Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC 29634; Biological Sciences, Clemson University, Clemson, SC 29634.
| |
Collapse
|
20
|
Adrar NS, Madani K, Adrar S. Impact of the inhibition of proteins activities and the chemical aspect of polyphenols-proteins interactions. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
YENER Y, YERLİKAYA FH. Western diet induces endogen oxidative deoxyribonucleic acid damage and infl ammation in Wistar rats. REV NUTR 2018. [DOI: 10.1590/1678-98652018000300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Objective Nutritional diseases such as metabolic syndrome, cardiovascular disorder, chronic inflammation or even cancer are observed in people who sustain their lifestyle by Western diet due to high calorie intake. The origin of these diseases are the degraded deoxyribonucleic acid structure. In this study, we investigated whether Western diet produced endogenous oxidative deoxyribonucleic acid damage, apoptosis or inflammation. Methods Twenty-eight male Wistar rats, aged 10-12 weeks, were divided into four groups. The rats in control group received the standard diet and the remaining rats were given one of the following three diets for four weeks: a high-fat diet containing 35% fat, a high-sucrose diet containing 69% sucrose and Western diet comprising both two types of diets. After treatment the serum 8-hydroxy-2-deoxyguanosine, poly (adenosine diphosphate ribose) polymerase-1, chitinase-3-like protein 1, soluble urokinase-type plasminogen activator receptor, Fas ligand and cytochrome c levels were measured. Results It was observed no changes in the serum soluble urokinase-type plasminogen activator receptor, Fas ligand and cytochrome c levels whereas a statistically significant increase in the serum 8-hydroxy-2-deoxyguanosine, poly (adenosine diphosphate ribose) polymerase-1 and chitinase-3-like protein 1 levels were found only in rats that were given Western diet. Conclusion The findings show that Western diet produced endogenous oxidative deoxyribonucleic acid damage, which then increased serum poly (adenosine diphosphate ribose) polymerase-1 levels, eventually leading to inflammation.
Collapse
|