1
|
Bian Y, Dong J, Zhou Z, Zhou H, Xu Y, Zhang Q, Chen C, Pi J. The spatiotemporal and paradoxical roles of NRF2 in renal toxicity and kidney diseases. Redox Biol 2025; 79:103476. [PMID: 39724848 PMCID: PMC11732127 DOI: 10.1016/j.redox.2024.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Over 10% of the global population is at risk to kidney disorders. Nuclear factor erythroid-derived 2-related factor 2 (NRF2), a pivotal regulator of redox homeostasis, orchestrates antioxidant response that effectively counters oxidative stress and inflammatory response in a variety of acute pathophysiological conditions, including acute kidney injury (AKI) and early stage of renal toxicity. However, if persistently activated, NRF2-induced transcriptional cascade may disrupt normal cell signaling and contribute to numerous chronic pathogenic processes such as fibrosis. In this concise review, we assembled experimental evidence to reveal the cell- and pathophysiological condition-specific roles of NRF2 in renal chemical toxicity, AKI, and chronic kidney disease (CKD), all of which are closely associated with oxidative stress and inflammation. By incorporating pertinent research findings on NRF2 activators, we dissected the spatiotemporal roles of NRF2 in distinct nephrotoxic settings and kidney diseases. Herein, NRF2 exhibits diverse expression patterns and downstream gene profiles across distinct kidney regions and cell types, and during specific phases of nephropathic progression. These changes are directly or indirectly connected to altered antioxidant defense, damage repair, inflammatory response, regulated cell death and fibrogenesis, culminating ultimately in either protective or deleterious outcomes. The spatiotemporal and paradoxical characteristics of NRF2 in mitigating nephrotoxicity suggest that translational application of NRF2 activation strategy for prevention and interventions of kidney injury are unlikely to be straightforward - right timing and spatial precision must be taken into consideration.
Collapse
Affiliation(s)
- Yiying Bian
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jize Dong
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhengsheng Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
2
|
Singh SSB, Patil KN. SIRT1/AMPK-mediated pathway: Ferulic acid from sugar beet pulp mitigating obesity-induced diabetes-linked complications and improving metabolic health. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159511. [PMID: 38761896 DOI: 10.1016/j.bbalip.2024.159511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/28/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Obesity-induced type 2 diabetes (T2D) increases the risk of metabolic syndrome due to the high calorie intake. The role of sugar beet pulp (SBP) in T2D and the mechanism of its action remain unclear, though it is abundant in phenolics and has antioxidant activity. In this study, we isolated and purified ferulic acid from SBP, referred to as SBP-E, and studied the underlying molecular mechanisms in the regulation of glucose and lipid metabolism developing high glucose/high fat diet-induced diabetic models in vitro and in vivo. SBP-E showed no cytotoxicity and reduced the oxidative stress by increasing glutathione (GSH) in human liver (HepG2) and rat skeletal muscle (L6) cells. It also decreased body weight gain, food intake, fasting blood glucose levels (FBGL), glucose intolerance, hepatic steatosis, and lipid accumulation. Additionally, SBP-E decreased the oxidative stress and improved the antioxidant enzyme levels in high-fat diet (HFD)-induced T2D mice. Further, SBP-E reduced plasma and liver advanced glycation end products (AGEs), malondialdehyde (MDA), and pro-inflammatory cytokines, and increased anti-inflammatory cytokines in HFD-fed mice. Importantly, SBP-E significantly elevated AMPK, glucose transporter, SIRT1 activity, and Nrf2 expression and decreased ACC activity and SREBP1 levels in diabetic models. Collectively, our study results suggest that SBP-E treatment can improve obesity-induced T2D by regulating glucose and lipid metabolism via SIRT1/AMPK signalling and the AMPK/SREBP1/ACC1 pathway.
Collapse
Affiliation(s)
- Sangeetha S B Singh
- Department of Microbiology and Fermentation Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - K Neelakanteshwar Patil
- Department of Microbiology and Fermentation Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Zhang G, Li Z, Zhang S, Bai L, Zhou H, Zhang D. Anti-Type II Diabetic Effects of Coix Seed Prolamin Hydrolysates: Physiological and Transcriptomic Analyses. Foods 2024; 13:2203. [PMID: 39063287 PMCID: PMC11275950 DOI: 10.3390/foods13142203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Previous studies have demonstrated that enzymatically prepared coix seed prolamin hydrolysates (CHPs) contain several bioactive peptides that efficiently inhibit the activity of target enzymes (α-glucosidase and dipeptidyl kinase-IV) in type 2 diabetes mellitus (T2DM). However, the anti-T2DM effects and potential mechanisms of CHPs as a whole in vivo have not yet been systematically explored. Therefore, we evaluated the preventive, therapeutic, and modifying effects of CHPs on T2DM by combining physiological and liver transcriptomics with a T2DM mouse model. The results showed that sustained high-fructose intake led to prediabetic symptoms in mice, with abnormal fluctuations in blood glucose and blood lipid levels. Intervention with CPHs effectively prevented weight loss; regulated abnormal changes in blood glucose; improved impaired glucose tolerance; inhibited the abnormal expression of total cholesterol, triglycerides, and low-density lipoproteins; alleviated insulin resistance; and restored pancreatic islet tissue function in mice fed a high-fructose diet. In addition, we found that CHPs also play a palliative role in the loss of liver function and protect various organ tissues (including the liver, kidneys, pancreas, and heart), and are effective in preventing damage to the liver and pancreatic islet cells. We also found that the intake of CHPs reversed the abnormally altered hepatic gene profile in model mice and identified 381 differentially expressed genes that could serve as key genes for preventing the development of T2DM, which are highly correlated with multiple glycolipid metabolic pathways. We demonstrated that CHPs play a positive role in the normal functioning of the insulin signalling pathway dominated by the IRS-1/PI3K/AKT (insulin receptor substrates-1/phosphoinositide 3-kinase/protein kinase B) pathway. In summary, CHPs can be used as effective food-borne glucose-modifying components of healthy foods.
Collapse
Affiliation(s)
- Guifang Zhang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.Z.); (Z.L.); (S.Z.); (L.B.); (H.Z.)
- Food College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhiming Li
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.Z.); (Z.L.); (S.Z.); (L.B.); (H.Z.)
- Food College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shu Zhang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.Z.); (Z.L.); (S.Z.); (L.B.); (H.Z.)
- Food College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lu Bai
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.Z.); (Z.L.); (S.Z.); (L.B.); (H.Z.)
- Food College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hangqing Zhou
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.Z.); (Z.L.); (S.Z.); (L.B.); (H.Z.)
- Food College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Dongjie Zhang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.Z.); (Z.L.); (S.Z.); (L.B.); (H.Z.)
- Food College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
| |
Collapse
|
4
|
Liu Y, Zhang R, Zou J, Yin H, Zhao M, Zhao L. The impact of chitooligosaccharides with a certain degree of polymerization on diabetic nephropathic mice and high glucose-damaged HK-2 cells. Food Sci Nutr 2024; 12:4173-4184. [PMID: 38873468 PMCID: PMC11167136 DOI: 10.1002/fsn3.4078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 06/15/2024] Open
Abstract
Diabetic nephropathy (DN) is a primary diabetic complication ascribed to the pathological changes in renal microvessels. This study investigated the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch ECH associating protein (Keap1)/antioxidant response element (ARE) signaling pathway impact of chitooligosaccharides (COS) with a certain degree of polymerization (DP) on DN mouse models and high glucose-damaged human kidney 2 (HK-2) cells. The findings indicated that COS effectively reduced the renal function indexes (uric acid [UA], urinary albumin excretion rate [UAER], urine albumin-to-creatinine ratio [UACR], blood urea nitrogen [BUN], and creatinine [Cre]) of DN mice. It increased (p < .05) the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) antioxidant enzyme activity in the serum and kidneys, and decreased (p < .05) the malondialdehyde (MDA) content. The mechanistic investigation showed that COS significantly increased (p < .05) Nrf2 and downstream target gene (GCLM, GCLC, HO-1, and NQO-1) expression, and substantially decreased (p < .05) Keap1 expression. The protein level was consistent with the messenger RNA (mRNA) level in in vitro and in vivo models. The docking data indicated that COS and Keap1 protein binding included six hydrogen bond formation processes (Gly364, Arg415, Arg483, His436, Ser431, and Arg380). The COS intervention mechanism may be related to the Nrf2/Keap1/ARE antioxidant pathway. Therefore, it provides a scientific basis for COS application in developing special medical food for DN patients.
Collapse
Affiliation(s)
- Yuwen Liu
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
| | - Ran Zhang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismShanghaiChina
| | - Jiaqi Zou
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismShanghaiChina
| | - Hao Yin
- Organ Transplant CenterShanghai Changzheng HospitalShanghaiChina
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismShanghaiChina
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismShanghaiChina
- Organ Transplant CenterShanghai Changzheng HospitalShanghaiChina
| |
Collapse
|
5
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Isothiocyanates: Insights from Sulforaphane. Biomedicines 2024; 12:1169. [PMID: 38927376 PMCID: PMC11200786 DOI: 10.3390/biomedicines12061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Isothiocyanates (ITCs) belong to a group of natural products that possess a highly reactive electrophilic -N=C=S functional group. They are stored in plants as precursor molecules, glucosinolates, which are processed by the tyrosinase enzyme upon plant tissue damage to release ITCs, along with other products. Isolated from broccoli, sulforaphane is by far the most studied antioxidant ITC, acting primarily through the induction of a transcription factor, the nuclear factor erythroid 2-related factor 2 (Nrf2), which upregulates downstream antioxidant genes/proteins. Paradoxically, sulforaphane, as a pro-oxidant compound, can also increase the levels of reactive oxygen species, a mechanism which is attributed to its anticancer effect. Beyond highlighting the common pro-oxidant and antioxidant effects of sulforaphane, the present paper was designed to assess the diverse anti-inflammatory mechanisms reported to date using a variety of in vitro and in vivo experimental models. Sulforaphane downregulates the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, cycloxyhenase-2, and inducible nitric oxide synthase. The signalling pathways of nuclear factor κB, activator protein 1, sirtuins 1, silent information regulator sirtuin 1 and 3, and microRNAs are among those affected by sulforaphane. These anti-inflammatory actions are sometimes due to direct action via interaction with the sulfhydryl structural moiety of cysteine residues in enzymes/proteins. The following are among the topics discussed in this paper: paradoxical signalling pathways such as the immunosuppressant or immunostimulant mechanisms; crosstalk between the oxidative and inflammatory pathways; and effects dependent on health and disease states.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
6
|
Abdel-Reheim MA, Ali ME, Gaafar AGA, Ashour AA. Quillaja saponin mitigates methotrexate-provoked renal injury; insight into Nrf-2/Keap-1 pathway modulation with suppression of oxidative stress and inflammation. J Pharm Health Care Sci 2024; 10:17. [PMID: 38594773 PMCID: PMC11003044 DOI: 10.1186/s40780-024-00330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/20/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Methotrexate (MTX) is an antineoplastic/immunosuppressive drug, whose clinical use is impeded owing to its serious adverse effects; one of which is acute kidney injury (AKI). Most of MTX complications emerged from the provoked pro-oxidant-, pro-inflammatory- and pro-apoptotic effects. Quillaja saponaria bark saponin (QBS) is a bioactive triterpene that has been traditionally used as an antitussive, anti-inflammatory supplement, and to boost the immune system due to its potent antioxidant- and anti-inflammatory activities. However, the protective/therapeutic potential of QBS against AKI has not been previously evaluated. This study aimed to assess the modulatory effect of QBS on MTX-induced reno-toxicity. METHODS Thirty-two male rats were divided into 4-groups. Control rats received oral saline (group-I). In group-II, rats administered QBS orally for 10-days. In group-III, rats were injected with single i.p. MTX (20 mg/kg) on day-5. Rats in group-IV received QBS and MTX. Serum BUN/creatinine levels were measured, as kidney-damage-indicating biomarkers. Renal malondialdehyde (MDA), reduced-glutathione (GSH) and nitric-oxide (NOx) were determined, as oxidative-stress indices. Renal expression of TNF-α protein and Nrf-2/Keap-1 mRNAs were evaluated as regulators of inflammation. Renal Bcl-2/cleaved caspase-3 immunoreactivities were evaluated as apoptosis indicators. RESULTS Exaggerated kidney injury upon MTX treatment was evidenced histologically and biochemically. QBS attenuated MTX-mediated renal degeneration, oxidant-burden enhancement, excessive inflammation, and proapoptotic induction. Histopathological analysis further confirmed the reno-protective microenvironment rendered by QBS. CONCLUSIONS In conclusion, our results suggest the prophylactic and/or therapeutic effects of QBS in treating MTX-induced AKI. Such reno-protection is most-likely mediated via Nrf-2 induction that interferes with oxidant load, inflammatory pathways, and proapoptotic signaling.
Collapse
Affiliation(s)
- Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed Gaafar A Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Ahmed Amine Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, El-Nasr Road, P.O. 11751, Cairo, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia, 41636, Egypt.
| |
Collapse
|
7
|
Baralić K, Živanović J, Marić Đ, Bozic D, Grahovac L, Antonijević Miljaković E, Ćurčić M, Buha Djordjevic A, Bulat Z, Antonijević B, Đukić-Ćosić D. Sulforaphane-A Compound with Potential Health Benefits for Disease Prevention and Treatment: Insights from Pharmacological and Toxicological Experimental Studies. Antioxidants (Basel) 2024; 13:147. [PMID: 38397745 PMCID: PMC10886109 DOI: 10.3390/antiox13020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Sulforaphane (SFN), which is a hydrolysis product from glucoraphanin, a compound found in cruciferous vegetables, has been studied for its potential health benefits, particularly in disease prevention and treatment. SFN has proven to be effective in combating different types of cancer by inhibiting the proliferation of tumors and triggering apoptosis. This dual action has been demonstrated to result in a reduction in tumor size and an enhancement of survival rates in animal models. SFN has also shown antidiabetic and anti-obesity effects, improving glucose tolerance and reducing fat accumulation. SFN's ability to activate Nrf2, a transcription factor regulating oxidative stress and inflammation in cells, is a primary mechanism behind its anticancerogenic and antidiabetic effects. Its antioxidant, anti-inflammatory, and anti-apoptotic properties are also suggested to provide beneficial effects against neurodegenerative diseases. The potential health benefits of SFN have led to increased interest in its use as a dietary supplement or adjunct to chemotherapy, but there are insufficient data on its efficacy and optimal doses, as well as its safety. This review aims to present and discuss SFN's potential in treating various diseases, such as cancer, diabetes, cardiovascular diseases, obesity, and neurodegenerative diseases, focusing on its mechanisms of action. It also summarizes studies on the pharmacological and toxicological potential of SFN in in vitro and animal models and explores its protective role against toxic compounds through in vitro and animal studies.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (Đ.M.); (D.B.); (L.G.); (E.A.M.); (M.Ć.); (A.B.D.); (Z.B.); (B.A.); (D.Đ.-Ć.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Song H, Xue H, Zhang Z, Wang J, Li A, Zhang J, Luo P, Zhan M, Zhou X, Chen L, Fang Y. Amelioration of Type 2 Diabetes Using Four Strains of Lactobacillus Probiotics: Effects on Gut Microbiota Reconstitution-Mediated Regulation of Glucose Homeostasis, Inflammation, and Oxidative Stress in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20801-20814. [PMID: 37991826 DOI: 10.1021/acs.jafc.3c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
This study aims to explore the preventive effects and underlying mechanisms of Lactobacillus fermentum CKCC1858 (CKCC1), L. fermentum CKCC1369 (CKCC2), Lactobacillus plantarum CKCC1312 (CKCC3), and Lactobacillus gasseri CKCC1913 (CKCC4) on high-fat diet combined with streptozotocin (HFD/STZ)-stimulated type 2 diabetes (T2D) in mice. Generally, the results indicated that most of the four probiotics reduced weight loss and liver and pancreas damage, significantly (p < 0.05) improved glucose metabolism by regulating glucagon-like peptide-1 (GLP-1), fasting glucose and insulin levels, and increasing expression of glucose transporters. Probiotics improved hyperlipemia, inflammation, and oxidative stress by reducing the secretion of blood lipids and proinflammatory cytokines, increasing antioxidant enzymes. Metagenomic results revealed that probiotics restored gut microbiota via enhancing (reducing) the relative abundance of beneficial bacteria (harmful bacteria) and altered specific metabolic pathways in T2D mice. CKCC1, CKCC3, and CKCC4 showed excellent effects compared to CKCC2. These results indicated that probiotics potentially prevented T2D, which is strain-specific.
Collapse
Affiliation(s)
- Hainan Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hui Xue
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zeng Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ao Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Pengfei Luo
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Meng Zhan
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Xiaoli Zhou
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Lihao Chen
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Yajing Fang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Sharawi ZW, Jaber FA, Althagafy HS. Nrf2/HO-1 as a therapeutic target in renal fibrosis. Life Sci 2023; 334:122209. [PMID: 37890696 DOI: 10.1016/j.lfs.2023.122209] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Chronic kidney disease (CKD) is one of the most prevalent chronic diseases and affects between 10 and 14 % of the world's population. The World Health Organization estimates that by 2040, the disease will be fifth in prevalence. End-stage CKD is characterized by renal fibrosis, which can eventually lead to kidney failure and death. Renal fibrosis develops due to multiple injuries and involves oxidative stress and inflammation. In the human body, nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in the expression of antioxidant, anti-inflammatory, and cytoprotective genes, which prevents oxidative stress and inflammation damage. Heme oxygenase (HO-1) is an inducible homolog influenced by heme products and after exposure to cellular stress inducers such as oxidants, inflammatory chemokines/cytokines, and tissue damage as an outcome or downstream of Nrf2 activation. HO-1 is known for its antioxidative properties, which play an important role in regulating oxidative stress. In renal diseases-induced tissue fibrosis and xenobiotics-induced renal fibrosis, Nrf2/HO-1 has been targeted with promising results. This review summarizes these studies and highlights the interesting bioactive compounds that may assist in attenuating renal fibrosis mediated by HO-1 activation. In conclusion, Nrf2/HO-1 signal activation could have a renoprotective effect strategy against CKD caused by oxidative stress, inflammation, and consequent renal fibrosis.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Mohamadi N, Baradaran Rahimi V, Fadaei MR, Sharifi F, Askari VR. A mechanistic overview of sulforaphane and its derivatives application in diabetes and its complications. Inflammopharmacology 2023; 31:2885-2899. [PMID: 37955784 DOI: 10.1007/s10787-023-01373-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Sulforaphane (SFN) is a type of phytochemical found in many cruciferous vegetables that has been shown to positively benefit the control of Type 2 Diabetes Mellitus (T2DM). The search was done from 2000 until December 2022 using PubMed, Scopus, Web of Sciences, and Google Scholar databases. We included all in vitro, in vivo, and clinical trials. Sulforaphane has been demonstrated to activate the PI3K/AKT and AMP-activated protein kinase pathways and the glucose transporter type 4 to increase insulin production and reduce insulin resistance. Interestingly, SFN possesses protective effects against diabetes complications, such as diabetic-induced hepatic damage, vascular inflammation and endothelial dysfunction, nephropathy, and neuropathy via nuclear factor erythroid 2-related factor 2 activation that leads to the translation of several anti-oxidant enzymes and regulation glycolysis, pentose phosphate pathway, fatty acid metabolism, glutamine metabolism, and glutathione metabolism. Furthermore, multiple clinical trial studies emphasized the ameliorating effects of SFN on T2DM patients. This review provides sufficient evidence for further research and development of sulforaphane as a hypoglycemic drug.
Collapse
Affiliation(s)
- Neda Mohamadi
- Herbal and Traditional Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Mthembu SXH, Mazibuko-Mbeje SE, Moetlediwa MT, Muvhulawa N, Silvestri S, Orlando P, Nkambule BB, Muller CJF, Ndwandwe D, Basson AK, Tiano L, Dludla PV. Sulforaphane: A nutraceutical against diabetes-related complications. Pharmacol Res 2023; 196:106918. [PMID: 37703962 DOI: 10.1016/j.phrs.2023.106918] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
There is an increasing interest in the use of nutraceuticals and plant-derived bioactive compounds from foods for their potential health benefits. For example, as a major active ingredient found from cruciferous vegetables like broccoli, there has been growing interest in understanding the therapeutic effects of sulforaphane against diverse metabolic complications. The past decade has seen an extensive growth in literature reporting on the potential health benefits of sulforaphane to neutralize pathological consequences of oxidative stress and inflammation, which may be essential in protecting against diabetes-related complications. In fact, preclinical evidence summarized within this review supports an active role of sulforaphane in activating nuclear factor erythroid 2-related factor 2 or effectively modulating AMP-activated protein kinase to protect against diabetic complications, including diabetic cardiomyopathy, diabetic neuropathy, diabetic nephropathy, as well as other metabolic complications involving non-alcoholic fatty liver disease and skeletal muscle insulin resistance. With clinical evidence suggesting that foods rich in sulforaphane like broccoli can improve the metabolic status and lower cardiovascular disease risk by reducing biomarkers of oxidative stress and inflammation in patients with type 2 diabetes. This information remains essential in determining the therapeutic value of sulforaphane or its potential use as a nutraceutical to manage diabetes and its related complications. Finally, this review discusses essential information on the bioavailability profile of sulforaphane, while also covering information on the pathological consequences of oxidative stress and inflammation that drive the development and progression of diabetes.
Collapse
Affiliation(s)
- Sinenhlanhla X H Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Marakiya T Moetlediwa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Ndivhuwo Muvhulawa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
12
|
Zhang B, Liu P, Sheng H, Guo Y, Han Y, Suo L, Yuan Q. New Insight into the Potential Protective Function of Sulforaphene against ROS-Mediated Oxidative Stress Damage In Vitro and In Vivo. Int J Mol Sci 2023; 24:13129. [PMID: 37685936 PMCID: PMC10487408 DOI: 10.3390/ijms241713129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Sulforaphene (SFE) is a kind of isothiocyanate isolated from radish seeds that can prevent free-radical-induced diseases. In this study, we investigated the protective effect of SFE on oxidative-stress-induced damage and its molecular mechanism in vitro and in vivo. The results of cell experiments show that SFE can alleviate D-gal-induced cytotoxicity, promote cell cycle transformation by inhibiting the production of reactive oxygen species (ROS) and cell apoptosis, and show a protective effect on cells with H2O2-induced oxidative damage. Furthermore, the results of mice experiments show that SFE can alleviate D-galactose-induced kidney damage by inhibiting ROS, malondialdehyde (MDA), and 4-hydroxyalkenals (4-HNE) production; protect the kidney against oxidative stress-induced damage by increasing antioxidant enzyme activity and upregulating the Nrf2 signaling pathway; and inhibit the activity of pro-inflammatory factors by downregulating the expression of Toll-like receptor 4 (TLR4)-mediated inflammatory response. In conclusion, this research shows that SFE has antioxidant effects, providing a new perspective for studying the anti-aging properties of natural compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (B.Z.); (P.L.); (H.S.); (Y.G.); (Y.H.); (L.S.)
| |
Collapse
|
13
|
Monteiro EB, Ajackson M, Stockler-Pinto MB, Guebre-Egziabher F, Daleprane JB, Soulage CO. Sulforaphane exhibits potent renoprotective effects in preclinical models of kidney diseases: A systematic review and meta-analysis. Life Sci 2023; 322:121664. [PMID: 37023957 DOI: 10.1016/j.lfs.2023.121664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
AIMS Sulforaphane (SFN), a naturally occurring isothiocyanate found in cruciferous vegetables, has received extensive attention as a natural activator of the Nrf2/Keap1 cytoprotective pathway. In this review, a meta-analysis and systematic review of the renoprotective effects of SFN were performed in various preclinical models of kidney diseases. MAIN METHODS The primary outcome was the impact of SFN on renal function biomarkers (uremia, creatininemia, proteinuria or creatinine clearance) and secondary outcomes were kidney lesion histological indices/kidney injury molecular biomarkers. The effects of SFN were evaluated according to the standardized mean differences (SMDs). A random-effects model was applied to estimate the overall summary effect. KEY FINDINGS Twenty-five articles (out of 209 studies) were selected from the literature. SFN administration significantly increased creatinine clearance (SMD +1.88 95 % CI: [1.09; 2.68], P < 0.0001, I2 = 0 %) and decreased the plasma creatinine (SMD -1.24, [-1.59; -0.88], P < 0.0001, I2 = 36.0 %) and urea (SMD -3.22 [-4.42, -2.01], P < 0.0001, I2 = 72.4 %) levels. SFN administration (median dose: 2.5 mg/kg, median duration: 3 weeks) significantly decreased urinary protein excretion (SMD -2.20 [-2.68; -1.73], P < 0.0001, I2 = 34.1 %). It further improved two kidney lesion histological indices namely kidney fibrosis (SMD -3.08 [-4.53; -1.63], P < 0.0001, I2 = 73.7 %) and glomerulosclerosis (SMD -2.24 [-2.96; -1.53], P < 0.0001, I2 = 9.7 %) and decreased kidney injury molecular biomarkers (SMD -1.51 [-2.00; -1.02], P < 0.0001, I2 = 0 %). SIGNIFICANCE These findings provide new insights concerning preclinical strategies for treating kidney disease or kidney failure with SFN supplements and should stimulate interest in clinical evaluations of SFN in patients with kidney disease.
Collapse
Affiliation(s)
- Elisa B Monteiro
- Nutrition and Genomics Laboratory, Basic and Experimental Nutrition Department, Institute of Nutrition, Rio de Janeiro State University, 20550-900 Rio de Janeiro, Brazil
| | - Matheus Ajackson
- Nutrition and Genomics Laboratory, Basic and Experimental Nutrition Department, Institute of Nutrition, Rio de Janeiro State University, 20550-900 Rio de Janeiro, Brazil
| | - Milena B Stockler-Pinto
- Graduate Program in Pathology, Federal Fluminense University (UFF), Niterói, RJ, Brazil; Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói, RJ, Brazil
| | - Fitsum Guebre-Egziabher
- Hospices Civils de Lyon, Department of Nephrology, Hôpital E Herriot, Lyon F-69003, France; Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA-Lyon, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Julio B Daleprane
- Nutrition and Genomics Laboratory, Basic and Experimental Nutrition Department, Institute of Nutrition, Rio de Janeiro State University, 20550-900 Rio de Janeiro, Brazil
| | - Christophe O Soulage
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA-Lyon, Université Claude Bernard Lyon 1, 69500, Bron, France.
| |
Collapse
|
14
|
Lin DW, Hsu YC, Chang CC, Hsieh CC, Lin CL. Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases. Int J Mol Sci 2023; 24:6053. [PMID: 37047024 PMCID: PMC10094034 DOI: 10.3390/ijms24076053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin de Porres Hospital, Chiayi 600, Taiwan;
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (C.-C.C.); (C.-C.H.)
| | - Ching-Chuan Hsieh
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (C.-C.C.); (C.-C.H.)
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
15
|
Yue RZ, Li YJ, Su BH, Li CJ, Zeng R. Atorvastatin reduces contrast media-induced pyroptosis of renal tubular epithelial cells by inhibiting the TLR4/MyD88/NF-κB signaling pathway. BMC Nephrol 2023; 24:25. [PMID: 36732683 PMCID: PMC9893683 DOI: 10.1186/s12882-023-03066-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of hospital-acquired renal failure. However, there is no effective treatment of CI-AKI, and its mechanism is unknown. Interestingly, atorvastatin has been reported to be effective in renal injury. Therefore, the aim of this study was to explore the effect and possible molecular mechanism of atorvastatin in CI-AKI. METHODS On the CI-AKI in vitro model, rat tubular epithelial cells (NRK-52E) were treated with 18 mg I/ml meglumine diatrizoate (MEG) and then pretreated with atorvastatin. pcDNA3.1-TLR4 treatment was performed to overexpress toll-like receptor 4 (TLR4) in NRK-52E cells. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) kits were used to detect NRK-52E cell viability as well as LDH release in each group, respectively; qRT-PCR to determine mRNA expression of TLR4 in cells; western blot to detect protein expression levels of pyroptosis-related proteins (NLRP3, caspase-1, ASC, and GSDMD) and TLR4/MyD88/NF-κB signaling pathway-related proteins (TLR4, MyD88, NF-κBp65, and p-NF-κB p65) in cells. RESULTS MEG treatment significantly inhibited the viability of NRK-52E cells, increased pro-inflammatory factor levels and promoted pyroptosis, representing successful establishment of a rat tubular epithelial cell (NRK-52E) CI-AKI in vitro model. Notably, atorvastatin increased the activity of MEG-treated NRK-52E cells and alleviated cell injury in a concentration-dependent manner. In addition, atorvastatin significantly down-regulated the expression of TLR4 in MEG-treated NRK-52E cells. However, overexpression of TLR4 inhibited the effects of atorvastatin on increasing cell viability, alleviating cell injury, reducing pro-inflammatory factors (IL-1β, IL-6, and TNF-α) levels, and inhibiting apoptosis (by down-regulating the expression of NLRP3, caspase-1, ASC, and GSDMD). Furthermore, atorvastatin also inhibited the expression of TLR4/MyD88/NF-κB pathway-related proteins (TLR4, MyD88, and p-NF-κB p65). CONCLUSION Atorvastatin can attenuate CI-AKI through increasing the activity of MEG-treated renal tubular epithelial cells, relieving cell injury, as well as inhibiting pyroptosis and inflammation. More importantly, the mechanism was achieved by inhibiting the TLR4//MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rong-zheng Yue
- grid.13291.380000 0001 0807 1581Department of nephrology, West China Hospital, School of Clinic Medicine, Sichuan University, 610041 Chengdu, Sichuan China
| | - Ya-juan Li
- grid.13291.380000 0001 0807 1581Department of nephrology, West China Hospital, School of Clinic Medicine, Sichuan University, 610041 Chengdu, Sichuan China
| | - Bai-hai Su
- grid.13291.380000 0001 0807 1581Department of nephrology, West China Hospital, School of Clinic Medicine, Sichuan University, 610041 Chengdu, Sichuan China
| | - Cong-jun Li
- grid.13291.380000 0001 0807 1581Department of nephrology, West China Hospital, School of Clinic Medicine, Sichuan University, 610041 Chengdu, Sichuan China
| | - Rui Zeng
- Department of Cardiovascular diseases, West China Hospital, School of Clinic Medicine, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Wang M, Chen M, Guo R, Ding Y, Zhang H, He Y. The improvement of sulforaphane in type 2 diabetes mellitus (T2DM) and related complications: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Al-Shawadfy MG, Kamel GAM, Abd-Allah ARA. Crosstalk among apoptosis, inflammation, and autophagy in relation to melatonin protective effect against contrast-induced nephropathy in rats. Can J Physiol Pharmacol 2022; 100:858-867. [PMID: 36017872 DOI: 10.1139/cjpp-2022-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contrast medium (CM) is a chemical substance that is used for imaging anatomical boundaries and to explore normal and abnormal physiological findings; the use of CM was associated with kidney injury and acute renal failure. Melatonin (M) possesses antioxidant, anti-inflammatory, and antiapoptotic effects in addition to autophagy modulation. This study aimed to investigate the protective effect of M against contrast-induced nephropathy (CIN) and its impact on the crosstalk between inflammasome, apoptosis, and autophagy in CIN. Male albino rats received M (10, 20, and 40 mg/kg/day, intraperitoneally) for 3 days. One hour after the last administration, rats were subjected to CIN induction (10 mg/kg indomethacin, double doses of l-NAME 10 mg/kg, i.v., and meglumine diatrizoate 60% 6 mL/kg, i.v.). CIN-induced kidney damage was evidenced through elevated kidney function biomarkers and induced renal histopathological changes. Pretreatment with M caused a significant decrease in nephrotoxicity biomarkers and histopathological alterations. Moreover, CIN-induced oxidative stress, NLRP3 inflammasome, and apoptosis were attenuated by M. Furthermore, M modulates autophagy in CIN rats. M inhibits CIN-induced NLRP3-inflammasome activation and apoptosis as well as enhances autophagy.
Collapse
Affiliation(s)
- Marwa Gamal Al-Shawadfy
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Gellan Alaa Mohamed Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Adel R A Abd-Allah
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11754, Egypt
| |
Collapse
|
18
|
Peng Z, Li M, Wang Y, Yang H, Wei W, Liang M, Shi J, Liu R, Li R, Zhang Y, Liu J, Shi X, Wan R, Fu Y, Xie R, Wang Y. Self-Assembling Imageable Silk Hydrogels for the Focal Treatment of Osteosarcoma. Front Cell Dev Biol 2022; 10:698282. [PMID: 35794868 PMCID: PMC9251127 DOI: 10.3389/fcell.2022.698282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The standard treatment for osteosarcoma comprises complete surgical resection and neoadjuvant chemotherapy, which may cause serious side effects and partial or total limb loss. Therefore, to avoid the disadvantages of traditional treatment, we developed self-assembling imageable silk hydrogels for osteosarcoma. Methods: We analysed whether iodine induced apoptosis in MG-63 and Saos-2 cells by using CCK-8 and flow cytometry assays and transmission electron microscopy. Western blotting was used to analyse the pathway of iodine-induced apoptosis in osteosarcoma cells. PEG400, silk fibroin solution, polyvinylpyrrolidone iodine (PVP-I), and meglumine diatrizoate (MD) were mixed to produce an imageable hydrogel. A nude mouse model of osteosarcoma was established, and the hydrogel was injected locally into the interior of the osteosarcoma with X-ray guidance. The therapeutic effect and biosafety of the hydrogel were evaluated. Results: Iodine treatment at 18 and 20 µM for 12 h resulted in cell survival rate reduced to 50 ± 2.1% and 50.5 ± 2.7% for MG-63 and Sao-2 cells, respectively (p < 0.01). The proportion of apoptotic cells was significantly higher in the iodine-treatment group than in the control group (p < 0.05), and apoptotic bodies were observed by transmission electron microscopy. Iodine could regulate the death receptor pathway and induce MG-63 and Saos-2 cell apoptosis. The hydrogels were simple to assemble, and gels could be formed within 38 min. A force of less than 50 N was required to inject the gels with a syringe. The hydrogels were readily loaded and led to sustained iodine release over 1 week. The osteosarcoma volume in the PEG-iodine-silk/MD hydrogel group was significantly smaller than that in the other three groups (p < 0.001). Caspase-3 and poly (ADP-ribose) polymerase (PARP) expression levels were significantly higher in the PEG-iodine-silk/MD hydrogel group than in the other three groups (p < 0.001). Haematoxylin and eosin (H&E) staining showed no abnormalities in the heart, liver, spleen, lung, kidney, pancreas or thyroid in any group. Conclusions: Self-assembling imageable silk hydrogels could be injected locally into osteosarcoma tissues with X-ray assistance. With the advantages of good biosafety, low systemic toxicity and minimal invasiveness, self-assembling imageable silk hydrogels provide a promising approach for improving the locoregional control of osteosarcoma.
Collapse
Affiliation(s)
- Zhibin Peng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Ming Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yuan Wang
- Innovation and Entrepreneurship Square, Science and Technology Innovation City, Hi-Tech Zone, Harbin, China
| | - Hongbo Yang
- Department of Orthopedic Surgery, Affiliated Hospital of Chifeng University, Chifeng University, Chifeng, China
| | - Wei Wei
- Department of Orthopedic Surgery, Harbin 242 Hospital, Harbin, China
| | - Min Liang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jianhui Shi
- Department of Orthopedic Surgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Ruixuan Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Rui Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yubo Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jingsong Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xu Shi
- Department of Orthopedic Surgery, Harbin 242 Hospital, Harbin, China
| | - Ran Wan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Rui Xie
- Department of Digestive Internal Medicine and Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Yansong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- *Correspondence: Yansong Wang,
| |
Collapse
|
19
|
Wang R, Zhang L, Zhang Q, Zhang J, Liu S, Li C, Wang L. Glycolipid Metabolism and Metagenomic Analysis of the Therapeutic Effect of a Phenolics-Rich Extract from Noni Fruit on Type 2 Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2876-2888. [PMID: 35175775 DOI: 10.1021/acs.jafc.1c07441] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The phenolics of noni fruit possess antihyperglycemic activity; however, the molecular mechanisms remain unclear. To understand the potential effects it has on type 2 diabetes (T2D), the glycolipid metabolism and gut microbiota regulation of phenolic-rich extracts from noni fruit (NFEs) were investigated. The results indicated that NFE could remarkably ameliorate hyperglycemia, insulin resistance, oxidative stress, and glycolipid metabolism via the adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway in T2D mice. Furthermore, metagenomic sequencing results revealed that NFE intervention modulated the gut microbiota composition in T2D mice, characterized by increased abundance of unclassified_o_Bacteroidales, Alistipes, Prevotella, Lactobacillus, and Akkermansia and decreased abundance of Oscillibacter, Desulfovibrio, and significantly decreased the pathways related to carbohydrate metabolism, translation, amino acid metabolism, and nucleotide metabolism. Taken together, the results provided new evidence that the hypoglycemic and hypolipidemic activities of NFE in T2D were likely attributed to the activation of the liver AMPK pathway and modulation of gut microbiota.
Collapse
Affiliation(s)
- Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Qingyang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Sixin Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
- School of Science, Hainan University, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| |
Collapse
|
20
|
Gao W, Guo L, Yang Y, Wang Y, Xia S, Gong H, Zhang BK, Yan M. Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Front Cell Dev Biol 2022; 9:809952. [PMID: 35186957 PMCID: PMC8847224 DOI: 10.3389/fcell.2021.809952] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Nrf2 and NF-κB are important regulators of the response to oxidative stress and inflammation in the body. Previous pharmacological and genetic studies have confirmed crosstalk between the two. The deficiency of Nrf2 elevates the expression of NF-κB, leading to increased production of inflammatory factors, while NF-κB can affect the expression of downstream target genes by regulating the transcription and activity of Nrf2. At the same time, many therapeutic drug-induced organ toxicities, including hepatotoxicity, nephrotoxicity, cardiotoxicity, pulmonary toxicity, dermal toxicity, and neurotoxicity, have received increasing attention from researchers in clinical practice. Drug-induced organ injury can destroy body function, reduce the patients’ quality of life, and even threaten the lives of patients. Therefore, it is urgent to find protective drugs to ameliorate drug-induced injury. There is substantial evidence that protective medications can alleviate drug-induced organ toxicity by modulating both Nrf2 and NF-κB signaling pathways. Thus, it has become increasingly important to explore the crosstalk mechanism between Nrf2 and NF-κB in drug-induced toxicity. In this review, we summarize the potential molecular mechanisms of Nrf2 and NF-κB pathways and the important effects on adverse effects including toxic reactions and look forward to finding protective drugs that can target the crosstalk between the two.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Miao Yan,
| |
Collapse
|
21
|
The Pathophysiology and the Management of Radiocontrast-Induced Nephropathy. Diagnostics (Basel) 2022; 12:diagnostics12010180. [PMID: 35054347 PMCID: PMC8774832 DOI: 10.3390/diagnostics12010180] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Contrast-induced nephropathy (CIN) is an impairment of renal function that occurs after the administration of an iodinated contrast medium (CM). Kidney dysfunction in CIN is considered transient and reversible in most cases. However, it is the third most common cause of hospital-acquired acute kidney injury and is associated with increased morbidity and mortality, especially in high-risk patients. Diagnostic and interventional procedures that require intravascular CM are being used with increasing frequency, especially among the elderly, who can be particularly susceptible to CIN due to multiple comorbidities. Therefore, identifying the exact mechanisms of CIN and its associated risk factors is crucial not only to provide optimal preventive management for at-risk patients, but also to increase the feasibility of diagnostic and interventional procedure that use CM. CM induces kidney injury by impairing renal hemodynamics and increasing the generation of reactive oxygen species, in addition to direct cytotoxicity. Periprocedural hydration is the most widely accepted preventive strategy to date. Here, we review the latest research results on the pathophysiology and management of CIN.
Collapse
|
22
|
Chang R. Research advances in the protective effect of sulforaphane against kidney injury and related mechanisms. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225501006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Kidney injury and related diseases have become quite common in recent years, and have attracted more attention. Sulforaphane, a kind of isothiocyanate, is widely distributed in cruciferous plants and it is a common antioxidant. Specifically, sulforaphane can reduce oxidative damage by preventing cells from freeradical damage, preventing cells from degeneration, and acting as an anti-inflammation, etc. This study summarized the investigations of the effects of sulforaphane on kidney injury. This study discussed the mechanisms of sulforaphane on immune, renal ischemia-reperfusion, diabetic nephropathy, age-related, and other factors-induced kidney injury models and discussed the potential and relative mechanisms of sulforaphane for kidney injury protection.
Collapse
|
23
|
Ma X, Chen H, Cao L, Zhao S, Zhao C, Yin S, Hu H. Mechanisms of Physical Fatigue and its Applications in Nutritional Interventions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6755-6768. [PMID: 34124894 DOI: 10.1021/acs.jafc.1c01251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Physical fatigue during exercise can be defined as an impairment of physical performance. Multiple factors have been found contributing to physical fatigue, including neurotransmitter-mediated defense action, insufficient energy supply, and induction of oxidative stress. These mechanistic findings provide a sound theoretical rationale for nutritional intervention since most of these factors can be modulated by nutrient supplementation. In this review, we summarize the current evidence regarding the functional role of nutrients supplementation in managing physical performance and propose the issues that need to be addressed for better utilization of nutritional supplementation approach to improve physical performance.
Collapse
Affiliation(s)
- Xuan Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hui Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lixing Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shuang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
24
|
Li Y, Chen D, Xu C, Zhao Q, Ma Y, Zhao S, Chen C. Glycolipid metabolism and liver transcriptomic analysis of the therapeutic effects of pressed degreased walnut meal extracts on type 2 diabetes mellitus rats. Food Funct 2021; 11:5538-5552. [PMID: 32515761 DOI: 10.1039/d0fo00670j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Walnut meal (WM) is rich in polyphenols which exhibit multiple therapeutic effects. The purpose of this study was to investigate the therapeutic effects of walnut meal extracts (WMP) on glycolipid metabolism and liver transcriptomics in T2DM rats. A T2DM rat model was established by using a high-fat diet combined with streptozotocin. A 5-week WMP therapy showed the effects of decreasing water intake, excretion, fasting blood glucose, fasting insulin, and insulin resistance, increasing β-cell function and insulin sensitivity index; meanwhile regulating dysfunctional lipid metabolism and reducing inflammation; improving body weight, oral glucose tolerance test and insulin sensitivity; and increasing the activities of SOD and CAT while decreasing the MDA levels in the liver and serum of T2DM rats. Moreover, 10 key differentially expressed genes were identified by RNA-seq, including Gck, RT1-Ba, Fasn, Slc13a3, Cd74, Jun, Cyp4a1, Myh7b, Plin3, and Got1, and they were highly potentially related to glycolipid metabolism. Our results suggested that WMP exhibited the anti-diabetic effect and could regulate glycolipid metabolism in T2DM rats. This finding might assist in identifying potential therapeutic targets for T2DM prevention and intervention.
Collapse
Affiliation(s)
- Yulan Li
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Dan Chen
- Yunnan Institute of Tobacco Quality Inspection and Supervision, Kunming 650106, China
| | - Chengmei Xu
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | | | - Yage Ma
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Shenglan Zhao
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Chaoyin Chen
- Yunnan Academy of Forestry and Grassland, Kunming 650204, China
| |
Collapse
|
25
|
Andreucci M, Provenzano M, Faga T, Gagliardi I, Pisani A, Perticone M, Coppolino G, De Sarro G, Serra R, Michael A. Darbepoetin alfa reduces cell death due to radiocontrast media in human renal proximal tubular cells. Toxicol Rep 2021; 8:816-821. [PMID: 33868961 PMCID: PMC8044868 DOI: 10.1016/j.toxrep.2021.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 01/19/2023] Open
Abstract
Radiocontrast medium, sodium diatrizoate, reduces renal cell viability in vitro. Effect of darbepoetin on diatrizoate-treated cells was studied. Pre-treatment of renal cells with darbepoetin could reduce diatrizoate toxicity. Darbepoetin caused changes in the activation state of signaling molecules.
The hypersialylated erythropoiesis stimulating agent (ESA) darbepoetin alfa was developed for the treatment of anemia, and has also been reported to have other nonerythropoietic effects. This study outlines one such effect against the toxicity of the radiocontrast medium (RCM) sodium diatrizoate (NaD) in human renal proximal tubular (HK-2) cells in vitro. Using a standard cell viability assay, we observed that pre-incubation of HK-2 cells with darbepoetin (at concentrations of 0.25and 1.0 μg/mL) for 2.5 h prior to addition of NaD (75 mg I/mL, for 2 h) reduced the decrease in cell viability due to the RCM, assayed 22 h after removal of the NaD, whilst maintaining the cells incubated with darbepoetin. Western blot analysis showed that darbepoetin reduced the phosphorylation of c-Jun N-terminal kinases (JNK)1/2 over a period of 1 h incubation with NaD, but did not have an obvious effect on several other targets associated with cell death/survival. However, incubation of HK-2 cells with darbepoetin for a further 22 h after prior exposure to NaD (75 mg I/mL, for 2 h) and subsequent immunoblotting showed that darbepoetin: caused recovery of the activity (phosphorylation) of pro-proliferative/survival signalling molecules, such as Akt (Ser473), STAT (signal transducer and activator of transcription)3(Tyr705); decreased activation of the pro-apoptotic transcription factor FOXO3a by increasing its phosphorylation at Thr32; decreased phosphorylation (activation) of p38 Mitogen activated protein kinase; and reduced poly(ADP-ribose)polymerase (PARP)-1 cleavage. In summary, we present here a beneficial nonerythropoietic effect of darbepoetin alfa against radiocontrast-induced toxicity together with modulation of signalling molecules that play a crucial role in determining cell fate.
Collapse
Affiliation(s)
- Michele Andreucci
- Department of "Health Sciences", Nephrology Unit, "Magna Graecia" University, I-88100, Catanzaro, Italy
| | - Michele Provenzano
- Department of "Health Sciences", Nephrology Unit, "Magna Graecia" University, I-88100, Catanzaro, Italy
| | - Teresa Faga
- Department of "Health Sciences", Nephrology Unit, "Magna Graecia" University, I-88100, Catanzaro, Italy
| | - Ida Gagliardi
- Department of "Health Sciences", Nephrology Unit, "Magna Graecia" University, I-88100, Catanzaro, Italy
| | - Antonio Pisani
- Department of "Public Health", Nephrology Unit, "Federico II" University, I-80131, Naples, Italy
| | - Maria Perticone
- Department of Experimental and Clinical Medicine, "Magna Græcia" University, I-88100, Catanzaro, Italy
| | - Giuseppe Coppolino
- Department of "Health Sciences", Nephrology Unit, "Magna Graecia" University, I-88100, Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of "Health Sciences", Pharmacology Unit, "Magna Graecia" University, I-88100, Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters: "Magna Graecia" University, I-88100, Catanzaro, Italy
| | - Ashour Michael
- Department of "Health Sciences", Nephrology Unit, "Magna Graecia" University, I-88100, Catanzaro, Italy
| |
Collapse
|
26
|
Uddin MJ, Kim EH, Hannan MA, Ha H. Pharmacotherapy against Oxidative Stress in Chronic Kidney Disease: Promising Small Molecule Natural Products Targeting Nrf2-HO-1 Signaling. Antioxidants (Basel) 2021; 10:antiox10020258. [PMID: 33562389 PMCID: PMC7915495 DOI: 10.3390/antiox10020258] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
The global burden of chronic kidney disease (CKD) intertwined with cardiovascular disease has become a major health problem. Oxidative stress (OS) plays an important role in the pathophysiology of CKD. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) antioxidant system plays a critical role in kidney protection by regulating antioxidants during OS. Heme oxygenase-1 (HO-1), one of the targets of Nrf2-ARE, plays an important role in regulating OS and is protective in a variety of human and animal models of kidney disease. Thus, activation of Nrf2-HO-1 signaling may offer a potential approach to the design of novel therapeutic agents for kidney diseases. In this review, we have discussed the association between OS and the pathogenesis of CKD. We propose Nrf2-HO-1 signaling-mediated cell survival systems be explored as pharmacological targets for the treatment of CKD and have reviewed the literature on the beneficial effects of small molecule natural products that may provide protection against CKD.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
| | - Ee Hyun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (M.J.U.); (E.H.K.)
- Correspondence: ; Tel.: +82-2-3277-4075
| |
Collapse
|
27
|
Liebman SE, Le TH. Eat Your Broccoli: Oxidative Stress, NRF2, and Sulforaphane in Chronic Kidney Disease. Nutrients 2021; 13:nu13010266. [PMID: 33477669 PMCID: PMC7831909 DOI: 10.3390/nu13010266] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
The mainstay of therapy for chronic kidney disease is control of blood pressure and proteinuria through the use of angiotensin-converting enzyme inhibitors (ACE-Is) or angiotensin receptor blockers (ARBs) that were introduced more than 20 years ago. Yet, many chronic kidney disease (CKD) patients still progress to end-stage kidney disease—the ultimate in failed prevention. While increased oxidative stress is a major molecular underpinning of CKD progression, no treatment modality specifically targeting oxidative stress has been established clinically. Here, we review the influence of oxidative stress in CKD, and discuss regarding the role of the Nrf2 pathway in kidney disease from studies using genetic and pharmacologic approaches in animal models and clinical trials. We will then focus on the promising therapeutic potential of sulforaphane, an isothiocyanate derived from cruciferous vegetables that has garnered significant attention over the past decade for its potent Nrf2-activating effect, and implications for precision medicine.
Collapse
|
28
|
Guerrero-Hue M, Rayego-Mateos S, Vázquez-Carballo C, Palomino-Antolín A, García-Caballero C, Opazo-Rios L, Morgado-Pascual JL, Herencia C, Mas S, Ortiz A, Rubio-Navarro A, Egea J, Villalba JM, Egido J, Moreno JA. Protective Role of Nrf2 in Renal Disease. Antioxidants (Basel) 2020; 10:antiox10010039. [PMID: 33396350 PMCID: PMC7824104 DOI: 10.3390/antiox10010039] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the fastest-growing causes of death and is predicted to become by 2040 the fifth global cause of death. CKD is characterized by increased oxidative stress and chronic inflammation. However, therapies to slow or prevent CKD progression remain an unmet need. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that plays a key role in protection against oxidative stress and regulation of the inflammatory response. Consequently, the use of compounds targeting Nrf2 has generated growing interest for nephrologists. Pre-clinical and clinical studies have demonstrated that Nrf2-inducing strategies prevent CKD progression and protect from acute kidney injury (AKI). In this article, we review current knowledge on the protective mechanisms mediated by Nrf2 against kidney injury, novel therapeutic strategies to induce Nrf2 activation, and the status of ongoing clinical trials targeting Nrf2 in renal diseases.
Collapse
Affiliation(s)
- Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Sandra Rayego-Mateos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Cristina Vázquez-Carballo
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
| | - Alejandra Palomino-Antolín
- Research Unit, Hospital Universitario Santa Cristina, IIS-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (A.P.-A.); (J.E.)
- Departament of Pharmacology and Therapeutics, Medicine Faculty, Instituto Teófilo Hernando, Autónoma University, 28029 Madrid, Spain
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Lucas Opazo-Rios
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Carmen Herencia
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
| | - Sebastián Mas
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Red Nacional Investigaciones Nefrológicas (REDINREN), 28040 Madrid, Spain
| | - Alfonso Rubio-Navarro
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Javier Egea
- Research Unit, Hospital Universitario Santa Cristina, IIS-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (A.P.-A.); (J.E.)
- Departament of Pharmacology and Therapeutics, Medicine Faculty, Instituto Teófilo Hernando, Autónoma University, 28029 Madrid, Spain
| | - José Manuel Villalba
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain;
| | - Jesús Egido
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain;
- Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-957-218-039
| |
Collapse
|
29
|
Ma C, Chen T, Ti Y, Yang Y, Qi Y, Zhang C, Liu L, Bu P. Ranolazine alleviates contrast-associated acute kidney injury through modulation of calcium independent oxidative stress and apoptosis. Life Sci 2020; 267:118920. [PMID: 33352171 DOI: 10.1016/j.lfs.2020.118920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
This study investigates the role of ranolazine in contrast-associated acute kidney injury (CA-AKI) and potential mechanisms. For in vivo studies, mouse models of CA-AKI and control mice were treated with ranolazine or vehicle. Blood urea nitrogen (BUN) and serum creatinine were detected by spectrophotometry. Anti-T-cell immunoglobulin and mucin domain 1 (TIM 1) and anti-lipocalin 2 antibody (LCN2) were detected by immunofluorescence. Hemodynamic parameters were detected via invasive blood pressure measurement and renal artery color doppler ultrasound, capillary density was measured by CD31 immunofluorescence, vascular permeability assay was performed by Evans blue dye. The expressions of oxidative stress and apoptotic markers were measured and analyzed by immunofluorescence and western blotting. For in vitro studies, intracellular calcium concentration of HUVECs was measured with Fluo 3-AM under confocal microscopy. Results show that compared with control mice, serum BUN, creatinine, TIM 1 and LCN2 levels were elevated in CA-AKI mice, but this effect was alleviated by ranolazine-pretreatment. Safe doses of ranolazine (less than 64 mg/kg) had no significant effect on overall blood pressure, but substantially improved renal perfusion, reduced contrast-induced microcirculation disturbance, improved renal capillary density and attenuated renal vascular permeability in ranolazine-pretreated CA-AKI mice. Mechanistically, ranolazine markedly down-regulated oxidative stress and apoptosis markers compared to CA-AKI mice. Intracellularly, ranolazine attenuated calcium overload in HUVECs. These results indicate that ranolazine alleviates CA-AKI through modulation of calcium independent oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Chang Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tongshuai Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Ti
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Qi
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunmei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingxin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peili Bu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
30
|
Cardozo LFMF, Alvarenga LA, Ribeiro M, Dai L, Shiels PG, Stenvinkel P, Lindholm B, Mafra D. Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutr Rev 2020; 79:1204-1224. [DOI: 10.1093/nutrit/nuaa129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Sulforaphane (SFN) is a sulfur-containing isothiocyanate found in cruciferous vegetables (Brassicaceae) and a well-known activator of nuclear factor-erythroid 2-related factor 2 (Nrf2), considered a master regulator of cellular antioxidant responses. Patients with chronic diseases, such as diabetes, cardiovascular disease, cancer, and chronic kidney disease (CKD) present with high levels of oxidative stress and a massive inflammatory burden associated with diminished Nrf2 and elevated nuclear transcription factor-κB-κB expression. Because it is a common constituent of dietary vegetables, the salutogenic properties of sulforaphane, especially it’s antioxidative and anti-inflammatory properties, have been explored as a nutritional intervention in a range of diseases of ageing, though data on CKD remain scarce. In this brief review, the effects of SFN as a senotherapeutic agent are described and a rationale is provided for studies that aim to explore the potential benefits of SFN-rich foods in patients with CKD.
Collapse
Affiliation(s)
- Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Livia A Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lu Dai
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Wei W, Ma N, Fan X, Yu Q, Ci X. The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches. Free Radic Biol Med 2020; 158:1-12. [PMID: 32663513 DOI: 10.1016/j.freeradbiomed.2020.06.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is a common clinical syndrome that is related to high morbidity and mortality. Oxidative stress, including the production of reactive oxygen species (ROS), appears to be the main element in the occurrence of AKI and the cause of the progression of chronic kidney disease (CKD) into end-stage renal disease (ESRD). Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant regulator of redox balance that has been shown to improve kidney disease by eliminating ROS. To date, researchers have found that the use of Nrf2-activated compounds can effectively reduce ROS, thereby preventing or retarding the progression of various types of AKI. In this review, we summarized the molecular mechanisms of Nrf2 and ROS in AKI and described the latest findings on the therapeutic potential of Nrf2 activators in various types of AKI.
Collapse
Affiliation(s)
- Wei Wei
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Ning Ma
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Xiaoye Fan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun, 130062, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
32
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
33
|
The Mechanism of Contrast-Induced Acute Kidney Injury and Its Association with Diabetes Mellitus. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:3295176. [PMID: 32788887 PMCID: PMC7330652 DOI: 10.1155/2020/3295176] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is the third most common hospital-acquired AKI after AKI induced by renal perfusion insufficiency and nephrotoxic drugs, taking great adverse effects on the prognosis and increasing hospital stay and medical cost. Diabetes nephropathy (DN) is a common chronic complication of DM (diabetes mellitus), and DN is an independent risk factor for chronic kidney disease (CKD) and CI-AKI. The incidence of CI-AKI significantly increases in patients with renal injury, especially in DM-related nephropathy. The etiology of CI-AKI is not fully clear, and research studies on how DM becomes a facilitated factor of CI-AKI are limited. This review describes the mechanism from three aspects. ① Pathophysiological changes of CI-AKI in kidney under high-glucose status (HGS). HGS can enhance the oxidative stress and increase ROS which next causes stronger vessel constriction and insufficient oxygen supply in kidney via vasoactive substances. HGS also aggravates some ion pump load and the latter increases oxygen consumption. CI-AKI and HGS are mutually causal, making the kidney function continue to decline. ② Immunological changes of DM promoting CI-AKI. Some innate immune cells and pattern recognition receptors (PRRs) in DM and/or DN may respond to some damage-associated molecular patterns (DAMPs) formed by CI-AKI. These effects overlap with some pathophysiological changes in hyperglycemia. ③ Signaling pathways related to both CI-AKI and DM. These pathways involved in CI-AKI are closely associated with apoptosis, inflammation, and ROS production, and some studies suggest that these pathways may be potential targets for alleviating CI-AKI. In conclusion, the pathogenesis of CI-AKI and the mechanism of DM as a predisposing factor for CI-AKI, especially signaling pathways, need further investigation to provide new clinical approaches to prevent and treat CI-AKI.
Collapse
|
34
|
Wang M, Pu D, Zhao Y, Chen J, Zhu S, Lu A, Liao Z, Sun Y, Xiao Q. Sulforaphane protects against skeletal muscle dysfunction in spontaneous type 2 diabetic db/db mice. Life Sci 2020; 255:117823. [PMID: 32445760 DOI: 10.1016/j.lfs.2020.117823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
AIMS Skeletal muscle diseases have become to be the most common complication in patients with type 2 diabetic mellitus (T2DM). However, the effective therapies against skeletal muscle diseases are not yet available. Sulforaphane (SFN) is an organic isothiocyanate found in cruciferous plants. Our aim was to explore whether SFN could attenuate the skeletal muscle diseases in spontaneous type 2 diabetic db/db mice. MATERIALS AND METHODS The db/m and littermate db/db mice were treated with SFN or dimethyl sulfoxide. The grip strength of mice was measured by a grasping forcing machine. The electron transmission microscopy was used to perform the skeletal muscle. The western blot was used to detect the nuclear factor E2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signal pathway related proteins, and inflammatory and apoptotic associated proteins. The mRNA levels of anti-inflammatory and anti-oxidative relative genes were detected by RT-QPCR. KEY FINDINGS We found that SFN could significantly increase the grip strength of the db/db mice. The lean mass and gastrocnemius mass were increased in the db/db mice after administration with SFN. Additionally, the db/db mice restored the skeletal muscle fiber organization after SFN treatment. Mechanistically, SFN could activate the Nrf2/HO-1 signal pathway, and downregulate the expression of inflammatory and apoptotic associated proteins. Furthermore, SFN could also regulate the mRNA levels of anti-inflammatory and anti-oxidative related genes. SIGNIFICANCE Our results demonstrated that SFN can protect against skeletal muscle diseases in db/db type 2 diabetic mice and provide a potential drug to prevent skeletal muscle dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Meili Wang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Die Pu
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shiyu Zhu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ankang Lu
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhilin Liao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
35
|
Huang H, Cao S, Zhang Z, Li L, Chen F, Wu Q. Multiple omics analysis of the protective effects of SFN on estrogen-dependent breast cancer cells. Mol Biol Rep 2020; 47:3331-3346. [DOI: 10.1007/s11033-020-05403-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
|
36
|
Jiang W, Zhao W, Ye F, Huang S, Wu Y, Chen H, Zhou R, Fu G. Inhibiting PKCβ2 protects HK-2 cells against meglumine diatrizoate and AGEs-induced apoptosis and autophagy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:293. [PMID: 32355737 PMCID: PMC7186606 DOI: 10.21037/atm.2020.02.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Contrast induced diabetic nephropathy (CIN) is an important cause of hospital-acquired acute renal failure. Our aim was to observe the effect of protein kinase C β2 (PKCβ2) knockdown on human proximal tubular epithelial cells (HK-2 cells) against meglumine diatrizoate and advanced glycation end products (AGEs)-induced apoptosis and autophagy. Methods Cell viability was detected using cell counting kit-8 (CCK-8) assay in HK-2 cells after disposal with meglumine diatrizoate and AGEs with or without PKCβ2 siRNA/inhibitor LY333531. Flow cytometry and western blot were used to test cell apoptosis and the related protein levels in meglumine diatrizoate and AGEs co-treated HK-2 cells with or without PKCβ2 siRNA/inhibitor LY333531. Autophagy related proteins were detected using western blot. Immunofluorescence staining was used to examine the autophagy-specific protein light chain 3 (LC3), and autophagosome and autolysosome formation was observed under a transmission electron microscopy. Results CCK-8 assay results showed that meglumine diatrizoate inhibited AGEs-induced HK-2 cell viability. Furthermore, meglumine diatrizoate promoted cell apoptosis and the expression level of caspase3 in AGEs-induced HK-2. Western blot results showed that meglumine diatrizoate elevated the expression levels of PKCβ2 and p-PKCβ2 in AGEs-induced HK-2 cells, and up-regulated the expression level of Beclin-1 and the ratio of LC3 II/LC3 I, and down-regulated the expression level of p62 in AGEs-induced HK-2 cells. We found that PKCβ2 knockdown alleviated meglumine diatrizoate and AGEs-induced HK-2 cell apoptosis and autophagy. Intriguingly, PKCβ2 inhibitor LY333531 reversed 3-methyladenine (3-MA)-induced autophagy inhibition in meglumine diatrizoate and AGEs-induced HK-2 cells. Conclusions Our findings reveal that inhibiting PKCβ2 protects HK-2 cells against meglumine diatrizoate and AGEs-induced apoptosis and autophagy, which provide a novel therapeutic insight for CIN in diabetic patients.
Collapse
Affiliation(s)
- Wenbing Jiang
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Zhao
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Fanhao Ye
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Shiwei Huang
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Youyang Wu
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Hao Chen
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Rui Zhou
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
37
|
Rafiei H, Ashrafizadeh M, Ahmadi Z. MicroRNAs as novel targets of sulforaphane in cancer therapy: The beginning of a new tale? Phytother Res 2020; 34:721-728. [PMID: 31972874 DOI: 10.1002/ptr.6572] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Effective management and treatment of cancer depend on developing novel antitumor drugs with the capability of targeting various molecular pathways. Identification and subsequent targeting of these pathways are of importance in cancer therapy. MicroRNAs (miRNAs) are small noncoding RNA molecules responsible for post-transcriptional regulation of genes. Notably, miRNAs participate in a number of biological processes such as proliferation, apoptosis, differentiation, and cell cycle regulation. So, any impairment in the expression and function of miRNAs is associated with development of disorders, particularly cancer. Naturally occurring nutraceutical compounds have attracted much attention due to their great antitumor activity. Among them, sulforaphane isolated from Brassica oleracea (broccoli) is of interest due to its therapeutic and biological activities such as antidiabetic, antioxidant, anti-inflammatory, hepatoprotection, and cardiprotection. Sulforaphane has demonstrated great antitumor activity and is able to significantly inhibit proliferation, viability, migration, malignancy, and epithelial-to-mesenchymal transition of cancer cells. These antitumor effects have widely been investigated, and it appears that there is a need for a precise review to demonstrate the molecular pathway that sulforaphane follows to exert its antitumor activity. At the present review, we focus on the modulatory impact of sulforaphane on miRNAs and exhibit that how various miRNAs in different cancers are regulated by sulforaphane.
Collapse
Affiliation(s)
- Hossein Rafiei
- Department of Biology, Faculty of Sciences, Islamic Azad University, Shiraz Branch, Shiraz, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of basic science, Islamic Azad university, Shoushtar Branch, Shoushtar, Iran
| |
Collapse
|