1
|
Amankwah JF, Jin W, Ma X, Xu P, Wen H, Amuneke KE, Munganga BP, Li K, Liu J, Li H. Salinity Tolerance in Freshwater Drum ( Aplodinotus grunniens): Investigating Biochemical, Antioxidant, Digestive Enzyme, and Gene Expression Responses to Acute Salinity Stress. Animals (Basel) 2025; 15:1015. [PMID: 40218412 PMCID: PMC11988114 DOI: 10.3390/ani15071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 04/14/2025] Open
Abstract
Variations in salinity levels in aquaculture significantly influence fish physiology, impacting population dynamics and industry viability. This study aimed to examine the physiological response of the freshwater drum (Aplodinotus grunniens) to differing salinity conditions, assessing its potential for cultivation in brackish water environments. Fish averaging 45 ± 0.1 g were subjected to acute salinity tests across three groups: a control group at 0‱ and experimental groups at 7.5‱ and 15‱ over four days. The initial findings indicated that A. grunniens could tolerate salinity levels up to 15‱ without adverse effects. Key biochemical markers, such as aspartate aminotransferase and alanine aminotransferase, exhibited significant fluctuations but decreased over time. Antioxidant enzyme activity increased relative to the control, while malondialdehyde levels declined, indicating effective oxidative stress management. Additionally, digestive enzymes like amylase and lipase demonstrated adaptability to changing salinity. The expression of heat shock proteins 70 and 90 in the gills and livers varied initially but showed no sustained changes. Overall, the results suggest that A. grunniens possesses notable resilience to salinity variations, indicating its suitability for brackish water aquaculture and highlighting the optimal salinity ranges for promoting growth.
Collapse
Affiliation(s)
- Justice Frimpong Amankwah
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- China-ASEAN “The Belt and Road” Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; (K.L.); (J.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
| | - Wu Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xueyan Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haibo Wen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Kennedy Emeka Amuneke
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- Department of Fisheries and Aquaculture, Nnamdi Azikiwe University, Awka 422001, Nigeria
| | | | - Kang Li
- China-ASEAN “The Belt and Road” Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; (K.L.); (J.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jingwei Liu
- China-ASEAN “The Belt and Road” Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; (K.L.); (J.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hongxia Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
2
|
Liu CJ, Chang CH, Lin YX, Lin YT, Yeh CY, He WC, Ranasinghe N, Akram S, Lee TH. Physiology, leptin gene expression, and intestinal morphology of pinhead and starved milkfish (Chanos chanos). Comp Biochem Physiol B Biochem Mol Biol 2025; 276:111048. [PMID: 39557192 DOI: 10.1016/j.cbpb.2024.111048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
"Pinhead" is an abnormal condition of farmed fish which is rarely studied, albeit well known among fish culturists, and is characterized by extreme emaciation and anorexia. In this study, the potential impacts of pinhead condition in milkfish were analyzed and compared to fed, healthy, and a group starved for four weeks. The condition factor and hepatosomatic index of pinhead milkfish were significantly lower compared with fed, healthy individuals. Abnormal plasma osmolality and muscle water content in pinhead milkfish indicated an imbalance in their internal water content. The anorexigenic hormone, leptin A was highly expressed in liver of pinhead milkfish, which could be related to their lack of appetite. Meanwhile, the hepatosomatic index, intestinal somatic index, enterocyte height, number of villi and goblet cells, Na+/K+- ATPase activity, and intestinal protein content of the pinhead milkfish were similar to those of the 4-week starved individuals. Taken together, our results characterized key physiological parameters of pinhead milkfish for the first time. Further investigation is required to understand how environmental or artificial stress can lead to the occurrence of pinhead milkfish, and to develop methods for alleviating this condition.
Collapse
Affiliation(s)
- Chia-Jui Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| | - Chia-Hao Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Xuan Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ting Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Yi Yeh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Cih He
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Naveen Ranasinghe
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Salman Akram
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Xu WB, Zhang YM, Li BZ, Lin CY, Chen DY, Cheng YX, Guo XL, Dong WR, Shu MA. Effects of low salinity stress on osmoregulation and gill transcriptome in different populations of mud crab Scylla paramamosain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161522. [PMID: 36634766 DOI: 10.1016/j.scitotenv.2023.161522] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Animals living in estuaries suffer from rapid and continuous salinity fluctuations, while the global warming and extreme precipitation aggravate this situation. Osmoregulation is important for estuarine animals adapt to salinity fluctuations. The present study investigated the effects of low salinity stress on osmoregulation and gill transcriptome in two populations of mud crab from Hangzhou Bay and Zhangzhou Bay of China, respectively. Crabs were transferred from salinity 25 ppt to 5 ppt for 96 h. Edematous swelling in gill filaments was caused by low salinity stress and was more serious in Zhangzhou Bay population. Gill Na+/K+-ATPase activity increased (p < 0.01) in both populations under the low salinity stress and was significantly higher (p < 0.01) in Hangzhou Bay population than in Zhangzhou Bay population. According to transcriptome analysis, there were 191 genes differentially expressed under the low salinity stress in gill tissue of both populations. Several ion transport and energy metabolism related pathways, as well as the arginine and proline metabolism pathway, were enriched by these genes. On the other hand, 272 genes were identified to differentially express between two populations under the low salinity stress, but not under the control salinity. The enrichment analysis showed that these genes were mainly related to ion transport, energy metabolism, osmolytes metabolism and methyltransferase activity. In conclusion, the present study suggested that mud crab exploited a combination of extracellular anisosmotic regulation and intracellular isosmotic regulation for osmoregulation under the low salinity stress. Hangzhou Bay population showed a greater osmoregulatory capacity, which is probably due to the enhanced ion transport, energy supply, and osmolytes regulation. Meanwhile, epigenetic modification might also contribute to an inherent osmoregulation ability for Hangzhou Bay population to response to salinity fluctuation rapidly.
Collapse
Affiliation(s)
- Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Ling Guo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Aeromonas hydrophila Induces Skin Disturbance through Mucosal Microbiota Dysbiosis in Striped Catfish ( Pangasianodon hypophthalmus). mSphere 2022; 7:e0019422. [PMID: 35766485 PMCID: PMC9429897 DOI: 10.1128/msphere.00194-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens are well equipped to adhere to and initiate infection in teleost fish. Fish skin mucus serves as the first barrier against environmental pathogens. The mucus harbors commensal microbes that impact host physiological and immunological responses. However, how the skin mucosal microbiota responds to the presence of pathogens remains largely unexplored. Thus, little is known about the status of skin mucus prior to infection with noticeable symptoms. In this study, we investigated the interactions between pathogens and the skin mucosal microbiota as well as the fish skin immune responses in the presence of pathogens. Striped catfish (Pangasianodon hypophthalmus) were challenged with different concentrations of the bacterial pathogen Aeromonas hydrophila (AH), and the skin immune response and the mucosal microbiota were examined by quantitative PCR (qPCR) and 16S rRNA gene sequence analysis. We determined that the pathogen concentration needed to stimulate the skin immune response was associated with significant mucosal microbiota changes, and we reconfirmed these observations using an ex vivo fish skin model. Further analysis indicated that changes in the microbiota were attributed to a significant increase in opportunistic pathogens over AH. We concluded that the presence and increase of AH result in dysbiosis of the mucosal microbiota that can stimulate skin immune responses. We believe that our work sheds light on host-pathogen-commensal microbiota interactions and therefore contributes to aquaculture fish health. IMPORTANCE The fish skin mucosal microbiota is essential in modulating the host response to the presence of pathogens. Our study provides a platform to study both the correlation and causation of the interactions among the pathogen, fish skin, and the skin mucosal microbiota. Based on these findings, we provide the first mechanistic information on how mucosal microbiota changes induced by the pathogen AH result in skin disturbance with immune stimulation in striped catfish in the natural state and a potential direction for early-infection screening. Thus, this study is highly significant in the prevention of fish disease.
Collapse
|
5
|
Takvam M, Wood CM, Kryvi H, Nilsen TO. Ion Transporters and Osmoregulation in the Kidney of Teleost Fishes as a Function of Salinity. Front Physiol 2021; 12:664588. [PMID: 33967835 PMCID: PMC8098666 DOI: 10.3389/fphys.2021.664588] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Euryhaline teleosts exhibit major changes in renal function as they move between freshwater (FW) and seawater (SW) environments, thus tolerating large fluctuations in salinity. In FW, the kidney excretes large volumes of water through high glomerular filtration rates (GFR) and low tubular reabsorption rates, while actively reabsorbing most ions at high rates. The excreted product has a high urine flow rate (UFR) with a dilute composition. In SW, GFR is greatly reduced, and the tubules reabsorb as much water as possible, while actively secreting divalent ions. The excreted product has a low UFR, and is almost isosmotic to the blood plasma, with Mg2+, SO42–, and Cl– as the major ionic components. Early studies at the organismal level have described these basic patterns, while in the last two decades, studies of regulation at the cell and molecular level have been implemented, though only in a few euryhaline groups (salmonids, eels, tilapias, and fugus). There have been few studies combining the two approaches. The aim of the review is to integrate known aspects of renal physiology (reabsorption and secretion) with more recent advances in molecular water and solute physiology (gene and protein function of transporters). The renal transporters addressed include the subunits of the Na+, K+- ATPase (NKA) enzyme, monovalent ion transporters for Na+, Cl–, and K+ (NKCC1, NKCC2, CLC-K, NCC, ROMK2), water transport pathways [aquaporins (AQP), claudins (CLDN)], and divalent ion transporters for SO42–, Mg2+, and Ca2+ (SLC26A6, SLC26A1, SLC13A1, SLC41A1, CNNM2, CNNM3, NCX1, NCX2, PMCA). For each transport category, we address the current understanding at the molecular level, try to synthesize it with classical knowledge of overall renal function, and highlight knowledge gaps. Future research on the kidney of euryhaline fishes should focus on integrating changes in kidney reabsorption and secretion of ions with changes in transporter function at the cellular and molecular level (gene and protein verification) in different regions of the nephrons. An increased focus on the kidney individually and its functional integration with the other osmoregulatory organs (gills, skin and intestine) in maintaining overall homeostasis will have applied relevance for aquaculture.
Collapse
Affiliation(s)
- Marius Takvam
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Harald Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tom O Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| |
Collapse
|
6
|
Transcriptomic Analysis of Gill and Kidney from Asian Seabass ( Lates calcarifer) Acclimated to Different Salinities Reveals Pathways Involved with Euryhalinity. Genes (Basel) 2020; 11:genes11070733. [PMID: 32630108 PMCID: PMC7397140 DOI: 10.3390/genes11070733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Asian seabass (or commonly known as barramundi), Lates calcarifer, is a bony euryhaline teleost from the Family Latidae, inhabiting nearshore, estuarine, and marine connected freshwaters throughout the tropical Indo-West Pacific region. The species is catadromous, whereby adults spawn in salinities between 28 and 34 ppt at the mouth of estuaries, with resultant juveniles usually moving into brackish and freshwater systems to mature, before returning to the sea to spawn again as adults. The species lives in both marine and freshwater habitats and can move quickly between the two; thus, the species' ability to tolerate changes in salinity makes it a good candidate for studying the salinity acclimation response in teleosts. In this study, the transcriptome of two major osmoregulatory organs (gills and kidneys) of young juvenile Asian seabass reared in freshwater and seawater were compared. The euryhaline nature of Asian seabass was found to be highly pliable and the moldability of the trait was further confirmed by histological analyses of gills and kidneys. Differences in major expression pathways were observed, with differentially expressed genes including those related to osmoregulation, tissue/organ morphogenesis, and cell volume regulation as central to the osmo-adaptive response. Additionally, genes coding for mucins were upregulated specifically under saline conditions, whereas several genes important for growth and development, as well as circadian entrainment were specifically enriched in fish reared in freshwater. Routing of the circadian rhythm mediated by salinity changes could be the initial step in salinity acclimation and possibly migration in euryhaline fish species such as the Asian seabass.
Collapse
|
7
|
Kumar M, Varghese T, Sahu NP, Gupta G, Dasgupta S. Pseudobranch mimics gill in expressing Na +K +-ATPase 1 α-subunit and carbonic anhydrase in concert with H +-ATPase in adult hilsa (Tenualosa ilisha) during river migration. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:725-738. [PMID: 31848826 DOI: 10.1007/s10695-019-00746-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
In hilsa (Tenualosa ilisha), pseudobranch comprises a row of parallel filaments bear numerous leaf-like lamellae arranged on both sides throughout its length. The purpose of this study was to elucidate involvement of pseudobranchial Na+, K+-ATPase (NKA) 1 α-subunit, and carbonic anhydrase (CA) in concert with H+-ATPase (HAT) compared to their branchial counterparts in freshwater acclimation of hilsa during spawning migration from off-shore of the Bay of Bengal to the Bhagirathi-Hooghly zones of the Ganga river system in India. Adult hilsa fish were collected from seawater (SW), freshwater 1 (FW1), and freshwater 2 (FW2) locations, where the salinity level was 26-28‰, 1-5‰, and 0-0.04‰, respectively. Hilsa migrating through freshwater showed a consistent decrease in the plasma osmolality, sodium (Na+) and chloride (Cl-) ion levels indicates unstable ionic homeostasis. The mRNA expression and activity of NKA 1 α-subunit in pseudobranch as well as in true gills declined with the migration to upstream locations. The pseudobranchial CA activity almost mirrors its branchial counterpart most notably while hilsa entered the freshwater zone, in the upstream river suggesting its diverse role in hypo-osmotic regulatory acclimation. Nevertheless, the H+-ATPase activity of both the tissues increased with the freshwater entry and remained similar during up-river movement into the freshwater environment. The results confirm that the pseudobranchial NKA 1 α-subunit mRNA expression and activity mimic its branchial counterpart in the process of ionoregulatory acclimation during migration through salt barriers. Also, the increase in the activities of pseudobranchial and branchial CA in concert with H+-ATPase (HAT) during freshwater acclimation of hilsa suggests their critical involvement in ion uptake.
Collapse
Affiliation(s)
- Munish Kumar
- Fish Nutrition, Biochemistry and Physiology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Tincy Varghese
- Fish Nutrition, Biochemistry and Physiology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Narottam Prasad Sahu
- Fish Nutrition, Biochemistry and Physiology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Gyandeep Gupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Subrata Dasgupta
- ICAR-Central Institute of Fisheries Education, 32 GN Block, Sector V, Salt Lake City, Kolkata, West Bengal, 700 091, India.
| |
Collapse
|
8
|
Hormonal regulation of Na +-K +-ATPase from the evolutionary perspective. CURRENT TOPICS IN MEMBRANES 2019; 83:315-351. [PMID: 31196608 DOI: 10.1016/bs.ctm.2019.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Na+-K+-ATPase, an α/β heterodimer, is an ancient enzyme that maintains Na+ and K+ gradients, thus preserving cellular ion homeostasis. In multicellular organisms, this basic housekeeping function is integrated to fulfill the needs of specialized organs and preserve whole-body homeostasis. In vertebrates, Na+-K+-ATPase is essential for many fundamental physiological processes, such as nerve conduction, muscle contraction, nutrient absorption, and urine excretion. During vertebrate evolution, three key developments contributed to diversification and integration of Na+-K+-ATPase functions. Generation of novel α- and β-subunits led to formation of multiple Na+-K+-ATPase isoenyzmes with distinct functional characteristics. Development of a complex endocrine system enabled efficient coordination of diverse Na+-K+-ATPase functions. Emergence of FXYDs, small transmembrane proteins that regulate Na+-K+-ATPase, opened new ways to modulate its function. FXYDs are a vertebrate innovation and an important site of hormonal action, suggesting they played an especially prominent role in evolving interaction between Na+-K+-ATPase and the endocrine system in vertebrates.
Collapse
|
9
|
Yang WK, Yang IC, Chuang HJ, Chao TL, Hu YC, Wu WY, Wang YC, Tang CH, Lee TH. Positive correlation of gene expression between branchial FXYD proteins and Na +/K +-ATPase of euryhaline milkfish in response to hypoosmotic challenges. Comp Biochem Physiol A Mol Integr Physiol 2019; 231:177-187. [PMID: 30818021 DOI: 10.1016/j.cbpa.2019.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022]
Abstract
FXYD proteins are crucial regulators of Na+/K+-ATPase (NKA), which plays an important role in ion exchange by providing the driving force for other ion-transporting systems in the osmoregulatory organs, including the gills. In milkfish (Chanos chanos), gill NKA has been widely investigated and found to alter its expression (both mRNA and protein) and activity in response to environmental salinity changes. However, the expression and roles of the regulatory proteins of NKA, the FXYD proteins, in milkfish gills upon salinity challenge is not yet clear. Hence, this study illustrated the potential roles of milkfish branchial FXYD proteins in modulating NKA expression via identification and tissue distributions of FXYD proteins, as well as the effects of salinity on expression of gill fxyd and nka mRNA. Six milkfish FXYD proteins (CcFXYD) were identified. In milkfish gill, gill-specific Ccfxyd11 was the predominant member, followed by Ccfxyd9 and Ccfxyd8. Upon hypoosmotic challenges, increases in gill Ccfxyd11, Ccfxyd8, Ccnka α1, and Ccnka β1 mRNA as well as significantly positive correlations were observed. Moreover, after acute salinity changes, expression of gill Ccfxyd11 and Ccnka was found to change with ambient salinity, and significant positive correlations were also exhibited between Ccfxyd11 and Ccnka α1. Overall, these results revealed close relationships between CcFXYD11 and CcNKA α1 in milkfish gills, highlighting the potential roles of CcFXYD11 in osmoregulation.
Collapse
Affiliation(s)
- Wen-Kai Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan; Bachelor Degree Program in Animal Healthcare, Hungkuang University, Taichung 43302, Taiwan
| | - I-Chan Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsin-Ju Chuang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tse-Lih Chao
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yau-Chung Hu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wen-Yi Wu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Chun Wang
- Planning and Information Division, Fisheries Research Institute, Keelung 20246, Taiwan
| | - Cheng-Hao Tang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan; Department of Oceanography, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
10
|
Damsteegt EL, Wylie MJ, Setiawan AN. Does silvering or 11-ketotestosterone affect osmoregulatory ability in the New Zealand short-finned eel (Anguilla australis)? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:1017-1028. [PMID: 30374566 DOI: 10.1007/s00359-018-1300-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 11/30/2022]
Abstract
Silvering has been associated with advancing osmoregulatory ability. Given the demonstrated role of 11-ketotestosterone (11KT) in mediating many of the silvering-related changes, we investigated the role of 11KT in driving this advanced osmoregulatory ability in the New Zealand short-finned eel (Anguilla australis). Yellow (non-migratory) eels with or without 11KT implants and blank-implanted silver (migratory) eels, either held in freshwater or subjected to seawater challenge, were sampled to determine serum [Na+] and [Cl-], pituitary prolactin mRNA levels, gill Na+/K+-ATPase activity and gill mRNA levels for Na+/K+-ATPase-α1 subunit and for Na+/K+/2Cl- co-transporter-1α-subunit. Developmental stage and 11KT treatment advanced the eels' osmoregulatory ability. Thus, serum [Na+] and [Cl-] were affected by developmental stage and 11KT treatment upon seawater challenge. However, seawater challenge, not 11KT treatment or developmental stage, produced the strongest and the most consistent effects on A. australis osmoregulatory processes, inducing significant effects in all the relevant parameters we measured. In light of our results and in view of the eel's marine ancestry, we contend that A. australis, or freshwater eels in general, are highly tolerant and able to adapt quickly to changing salinities even at the yellow stage, which may preclude a critical need for an advanced osmoregulatory ability at silvering.
Collapse
Affiliation(s)
- Erin L Damsteegt
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | - Matthew J Wylie
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand.,The New Zealand Institute for Plant and Food Research Ltd, Nelson, New Zealand
| | - Alvin N Setiawan
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand.,National Institute of Water and Atmospheric Research, Northland Marine Research Centre, Station Road, Ruakaka, New Zealand
| |
Collapse
|
11
|
Yang WK, Hsu AD, Kang CK, Lai IP, Liao PS, Lee TH. Intestinal FXYD12 and sodium-potassium ATPase: A comparative study on two euryhaline medakas in response to salinity changes. PLoS One 2018; 13:e0201252. [PMID: 30052675 PMCID: PMC6063443 DOI: 10.1371/journal.pone.0201252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
FXYD proteins are the regulators of sodium-potassium ATPase (Na+/K+-ATPase, NKA). In teleosts, NKA is a primary driving force for the operation of many ion transport systems in the osmoregulatory organs (e.g. intestines). Hence, the purpose of this study was to determine the expression of FXYD proteins and NKA α-subunit in the intestines of two closely related medakas (Oryzias dancena and O. latipes), which came from different salinity habitats and have diverse osmoregulatory capabilities, to illustrate the association between NKA and FXYD proteins of two medaka species in response to salinity changes. The results showed that the fxyd12 mRNA was the most predominant in the intestines of both medakas. The association of FXYD12 and NKA in the intestines of the two medaka species was demonstrated via double immunofluorescent staining and co-immunoprecipitation. Upon salinity challenge, the localization of FXYD12 and NKA was similar in the intestines of the two medaka species. However, the expression profiles of intestinal FXYD12 and NKA (mRNA and protein levels), as well as NKA activity differed between the medakas. These results showed that FXYD12 may play a role in modulating NKA activity in the intestines of the two medakas following salinity changes in the maintenance of internal homeostasis. These findings contributed to knowledge of the expression and potential role of vertebrate FXYD12, the regulators of NKA, upon salinity challenge.
Collapse
Affiliation(s)
- Wen-Kai Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, Taichung, Taiwan
| | - An-Di Hsu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chao-Kai Kang
- Tainan Hydraulics Laboratory, National Cheng Kung University, Tainan, Taiwan
| | - Ivan Pochou Lai
- National Taichung First Senior High School, Taichung, Taiwan
| | - Pei-Shao Liao
- National Taichung First Senior High School, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
12
|
Malakpour Kolbadinezhad S, Coimbra J, Wilson JM. Osmoregulation in the Plotosidae Catfish: Role of the Salt Secreting Dendritic Organ. Front Physiol 2018; 9:761. [PMID: 30018560 PMCID: PMC6037869 DOI: 10.3389/fphys.2018.00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023] Open
Abstract
Unlike other marine teleosts, the Plotosidae catfishes reportedly have an extra-branchial salt secreting dendritic organ (DO). Salinity acclimation [brackishwater (BW) 3aaa, seawater (SWcontrol) 34aaa, and hypersaline water (HSW) 60aaa] for 14 days was used to investigate the osmoregulatory abilities of Plotosus lineatus through measurements of blood chemistry, muscle water content (MWC), Na+/K+-ATPase (NKA) specific activity and ion transporter expression in gills, DO, kidney and intestine. Ion transporter expression was determined using immunoblotting, immunohistochemistry (IHC) and quantitative polymerase chain reaction (qPCR). HSW elevated mortality, plasma osmolality and ions, and hematocrit, and decreased MWC indicating an osmoregulatory challenge. NKA specific activity and protein levels were significantly higher in DO compared to gill, kidney and intestine at all salinities. NKA specific activity increased in kidney and posterior intestine with HSW but only kidney showed correspondingly higher NKA α-subunit protein levels. Since DO mass was greater in HSW, the total amount of DO NKA activity expressed per gram fish was greater indicating higher overall capacity. Gill NKA and V-ATPase protein levels were greater with HSW acclimation but this was not reflected in NKA activity, mRNA or ionocyte abundance. BW acclimation resulted in lower NKA activity in gill, kidney and DO. Cl- levels were better regulated and the resulting strong ion ratio in BW suggests a metabolic acidosis. Elevated DO heat shock protein 70 levels in HSW fish indicate a cellular stress. Strong NKA and NKCC1 (Na+:K+:2Cl- cotransporter1) co-localization was observed in DO parenchymal cells, which was rare in gill ionocytes. NKCC1 immunoblot expression was only detected in DO, which was highest at HSW. Cystic fibrosis transmembrane regulator Cl- channel (CFTR) localize apically to DO NKA immunoreactive cells. Taken together, the demonstration of high NKA activity in DO coexpressed with NKCC1 and CFTR indicates the presence of the conserved secondary active Cl- secretion mechanism found in other ion transporting epithelia suggesting a convergent evolution with other vertebrate salt secreting organs. However, the significant osmoregulatory challenge of HSW indicates that the DO may be of limited use under more extreme salinity conditions in contrast to the gill based ionoregulatory strategy of marine teleosts.
Collapse
Affiliation(s)
- Salman Malakpour Kolbadinezhad
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - João Coimbra
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jonathan M Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.,Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
13
|
|
14
|
Zhu H, Liu Z, Gao F, Lu M, Liu Y, Su H, Ma D, Ke X, Wang M, Cao J, Yi M. Characterization and expression of Na +/K +-ATPase in gills and kidneys of the Teleost fish Oreochromis mossambicus, Oreochromis urolepis hornorum and their hybrids in response to salinity challenge. Comp Biochem Physiol A Mol Integr Physiol 2018; 224:1-10. [PMID: 29852253 DOI: 10.1016/j.cbpa.2018.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 10/14/2022]
Abstract
Tilapia (Oreochromis mossambicus, O. urolepis hornorum, their hybrids O. mossambicus♀ × O. hornorum♂ and O. hornorum♀ × O. mossambicus♂) were exposed to a high salinity environment to evaluate their osmoregulatory responses. The plasma osmolality of all the tilapia species were elevated with the salinity challenge. The activities of Na+/K+-ATPase (NKA) in both the gill and kidney showed a similar increased change tendency compared with the control. The distribution of NKA α1 mRNA in all the examined tissues suggested that NKA α1 has a possible housekeeping role for this isoform. The amount of NKA α1 mRNA in the gill and kidney was elevated in the four fishes with similar expression patterns after transfer from freshwater to seawater. The NKAα1 mRNA expression levels in the gill reached their peak level at 24 h after transfer (P < 0.01) compared to the freshwater group, following decreases in the pretreatment level at 48 h (P > 0.05). However, the NKAα1 mRNA expression levels in the kidney were not significantly affected with increasing environmental salinity (P > 0.05). The differences in the responses to saltwater challenge may be associated with differences in saltwater tolerance between the four tilapia. The drastic increase in the plasma osmolality, NKA activities and mRNA expression suggested that the hybrids (O. mossambicus♀ × O. hornorum♂) possess heterosis in salinity responsiveness compared to that of both the parents, indicating a maternal effect on the salinity tolerance of the tilapia hybrids. This study provides a theoretical basis to further study the mechanism of fish osmoregulation response to salinity challenge.
Collapse
Affiliation(s)
- Huaping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Zhigang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yujiao Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Huanhuan Su
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Dongmei Ma
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xiaoli Ke
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Miao Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jianmeng Cao
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Mengmeng Yi
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
15
|
Song Q, Zhou H, Han Q, Diao X. Toxic responses of Perna viridis hepatopancreas exposed to DDT, benzo(a)pyrene and their mixture uncovered by iTRAQ-based proteomics and NMR-based metabolomics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:48-57. [PMID: 28917945 DOI: 10.1016/j.aquatox.2017.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) and benzo(a)pyrene (BaP) are environmental estrogens (EEs) that are ubiquitous in the marine environment. In the present study, we integrated isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic and nuclear magnetic resonance (NMR)-based metabolomic approaches to explore the toxic responses of green mussel hepatopancreas exposed to DDT (10μg/L), BaP (10μg/L) and their mixture. The metabolic responses indicated that BaP primarily disturbed energy metabolism and osmotic regulation in the hepatopancreas of the male green mussel P. viridis. Both DDT and the mixture of DDT and BaP perturbed the energy metabolism and osmotic regulation in P. viridis. The proteomic responses revealed that BaP affected the proteins involved in energy metabolism, material transformation, cytoskeleton, stress responses, reproduction and development in green mussels. DDT exposure could change the proteins involved in primary metabolism, stress responses, cytoskeleton and signal transduction. However, the mixture of DDT and BaP altered proteins associated with material and energy metabolism, stress responses, signal transduction, reproduction and development, cytoskeleton and apoptosis. This study showed that iTRAQ-based proteomic and NMR-based metabolomic approaches could effectively elucidate the essential molecular mechanism of disturbances in hepatopancreas function of green mussels exposed to environmental estrogens.
Collapse
Affiliation(s)
- Qinqin Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Qian Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
16
|
Zhang Q, Wong MKS, Li Y, Li Y, Takei Y. Changes in Plasma and Tissue Long-Chain Polyunsaturated Fatty Acid (LC-PUFA) Content in the Eel Anguilla japonica After External and Internal Osmotic Stress. Zoolog Sci 2017; 34:429-437. [PMID: 28990478 DOI: 10.2108/zs170031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated the effect of external and internal osmotic stress on the profile of long-chain polyunsaturated fatty acids (LC-PUFA) in euryhaline eels Anguilla japonica. Freshwater (FW) fish were transferred to seawater (SW) for external osmotic stress or subjected to internal stress through injection with hypertonic saline. FW eels injected with isotonic saline served as controls. Plasma osmolality, Na+ concentration, and gill Na+/K+ -ATPase activity increased, but hematocrit decreased compared with controls in eels exposed to external or internal osmotic stress. The expression of two major transporter genes for SW adaptation, the Na+ -K+ -2Cl - co-transporter 1a (NKCC1a) in the gill and NKCC2b in the intestine, was up-regulated only in SW-transferred eels, suggesting a direct impact of SW on the gill and intestine via SW ingestion. Total LC-PUFA contents and DHA (22:6 n-3) increased in the gill and liver of SW-transferred eels and in the intestine of hypertonic saline-injected eels. However, total LC-PUFA content in plasma decreased after both external and internal osmotic stimuli. In contrast, the gene expression of two key enzymes involved in the LC-PUFA biosynthesis, Δ6 fatty acid desaturase and elongase, did not change in the gill, intestine and liver of osmotically stressed eels. These results indicate that LC-PUFA is possibly involved in osmoregulation and the increased LC-PUFA contents of osmoregulatory organs might be a result of LC-PUFA transport via circulation, rather than through de novo biosynthesis.
Collapse
Affiliation(s)
- Qinghao Zhang
- 1 Marine Biology Institute & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China
| | - Marty K S Wong
- 2 Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Yiqi Li
- 3 School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yuanyou Li
- 1 Marine Biology Institute & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China.,2 Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan.,4 School of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yoshio Takei
- 2 Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| |
Collapse
|
17
|
Wang PJ, Yang WK, Lin CH, Hwang HH, Lee TH. FXYD8, a Novel Regulator of Renal Na +/K +-ATPase in the Euryhaline Teleost, Tetraodon nigroviridis. Front Physiol 2017; 8:576. [PMID: 28848450 PMCID: PMC5550679 DOI: 10.3389/fphys.2017.00576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022] Open
Abstract
FXYD proteins are important regulators of Na+/K+-ATPase (NKA) activity in mammals. As an inhabitant of estuaries, the pufferfish (Tetraodon nigroviridis) responds to ambient salinity changes with efficient osmoregulation, including alterations in branchial, and renal NKA activities. Previous studies on teleostean FXYDs have mainly focused on the expression and potential functions of FXYD proteins in gills. The goal of the present study was to elucidate the potential role of FXYD8, a member of the fish FXYD protein family, in the modulation of NKA activity in the kidneys of this euryhaline pufferfish by using molecular, biochemical, and physiological approaches. The results demonstrate that T. nigroviridis FXYD8 (TnFXYD8) interacts with NKA in renal tubules. Meanwhile, the protein expression of renal TnFXYD8 was found to be significantly upregulated in hyperosmotic seawater-acclimated pufferfish. Moreover, overexpression of TnFXYD8 in Xenopus oocytes decreased NKA activity. Our results suggest the FXYD8 is able to modulate NKA activity through inhibitory effects upon salinity challenge. The present study further extends our understanding of the functions of FXYD proteins, the regulators of NKA, in vertebrates.
Collapse
Affiliation(s)
- Pei-Jen Wang
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan
- Department of Public Affairs and Civic Education, National Changhua University of EducationChanghua, Taiwan
| | - Wen-Kai Yang
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan
- Bachelor Degree Program in Animal Healthcare, Hungkuang UniversityTaichung, Taiwan
| | - Chia-Hao Lin
- National Institute for Basic Biology, National Institutes of Natural SciencesOkazaki, Japan
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
18
|
Pirkmajer S, Kirchner H, Lundell LS, Zelenin PV, Zierath JR, Makarova KS, Wolf YI, Chibalin AV. Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport. J Physiol 2017; 595:4611-4630. [PMID: 28436536 DOI: 10.1113/jp274254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Small transmembrane proteins such as FXYDs, which interact with Na+ ,K+ -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca2+ -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. ABSTRACT Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na+ ,K+ -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and bony vertebrates (Euteleostomi). Diversification of SERCA regulators was much less extensive, indicating they operate under different evolutionary constraints. Finally, we found that FXYDs in extant vertebrates can be classified into 13 gene subfamilies, which do not always correspond to the established FXYD classification. We therefore propose a revised classification that is based on evolutionary history of FXYDs and that is consistent across vertebrate species. Collectively, our findings provide an improved framework for investigating the function of ion transport in health and disease.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Henriette Kirchner
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Leonidas S Lundell
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Pavel V Zelenin
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Kira S Makarova
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
19
|
Na +, K +-ATPase β1 subunit associates with α1 subunit modulating a "higher-NKA-in-hyposmotic media" response in gills of euryhaline milkfish, Chanos chanos. J Comp Physiol B 2017; 187:995-1007. [PMID: 28283795 DOI: 10.1007/s00360-017-1066-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 01/06/2017] [Accepted: 02/09/2017] [Indexed: 12/17/2022]
Abstract
The euryhaline milkfish (Chanos chanos) is a popular aquaculture species that can be cultured in fresh water, brackish water, or seawater in Southeast Asia. In gills of the milkfish, Na+, K+-ATPase (i.e., NKA; sodium pump) responds to salinity challenges including changes in mRNA abundance, protein amount, and activity. The functional pump is composed of a heterodimeric protein complex composed of α- and β-subunits. Among the NKA genes, α1-β1 isozyme comprises the major form of NKA subunits in mammalian osmoregulatory organs; however, most studies on fish gills have focused on the α1 subunit and did not verify the α1-β1 isozyme. Based on the sequenced milkfish transcriptome, an NKA β1 subunit gene was identified that had the highest amino acid homology to β233, a NKA β1 subunit paralog originally identified in the eel. Despite this high level of homology to β233, phylogenetic analysis and the fact that only a single NKA β1 subunit gene exists in the milkfish suggest that the milkfish gene should be referred to as the NKA β1 subunit gene. The results of accurate domain prediction of the β1 subunit, co-localization of α1 and β1 subunits in epithelial ionocytes, and co-immunoprecipitation of α1 and β1 subunits, indicated the formation of a α1-β1 complex in milkfish gills. Moreover, when transferred to hyposmotic media (fresh water) from seawater, parallel increases in branchial mRNA and protein expression of NKA α1 and β1 subunits suggested their roles in hypo-osmoregulation of euryhaline milkfish. This study molecularly characterized the NKA β1 subunit and provided the first evidence for an NKA α1-β1 association in gill ionocytes of euryhaline teleosts.
Collapse
|
20
|
Na +/K +-ATPase response to salinity change and its correlation with FXYD11 expression in Anguilla marmorata. J Comp Physiol B 2017; 187:973-984. [PMID: 28280923 DOI: 10.1007/s00360-017-1059-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 01/07/2017] [Accepted: 01/18/2017] [Indexed: 10/24/2022]
Abstract
The Na+/K+-ATPase (NKA) is a primary electrogenic protein that promotes ion transport in teleosts. FXYD11 is a putative regulatory subunit of the NKA pump. The regulation of Na +/K + -ATPase and FXYD11 is of critical importance for osmotic homeostasis. To investigate the changes of the two genes under different salinity environments, we first identified NKA (AmNKAα1) and FXYD11 (AmFXYD11) in Anguilla marmorata, and then evaluated the mRNA levels of NKA and FXYD11 as well as the activity of NKA in the gill and kidney at different timepoints (0, 1, 3, 6, 12, 24, 48, 72, 96, and 360 h) under three salinity conditions-0‰ (fresh water: FW), 10‰ (brackish water: BW), and 25‰ (seawater: SW). In the gill, the mRNA levels of AmNKAα1 and AmFXYD11 and the enzyme activity of AmNKAα1 were higher in BW and SW than in FW; the protein abundance was positively correlated with the specific activity of NKA in BW/SW. However, in the kidney, the mRNA level of AmNKAα1 in the BW group was higher than that in the FW group. In addition, AmFXYD mRNA levels in both BW and SW groups were significantly lower than that in the FW control group. These results suggested that AmFXYD11 was tissue specific in response to different salinity environment. Our results clearly demonstrated the important roles of AmNKAα1 and AmFXYD11 in osmotic homeostasis of juvenile A. marmorata under saline environment.
Collapse
|
21
|
Hasan MM, DeFaveri J, Kuure S, Dash SN, Lehtonen S, Merilä J, McCairns RJS. Kidney morphology and candidate gene expression shows plasticity in sticklebacks adapted to divergent osmotic environments. J Exp Biol 2017; 220:2175-2186. [DOI: 10.1242/jeb.146027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/27/2017] [Indexed: 01/09/2023]
Abstract
Novel physiological challenges in different environments can promote the evolution of divergent phenotypes, either through plastic or genetic changes. Environmental salinity serves as a key barrier to the distribution of nearly all aquatic organisms, and species diversification is likely to be enabled by adaptation to alternative osmotic environments. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations found both in marine and freshwater environments. It has evolved both highly plastic and locally adapted phenotypes due to salinity-derived selection, but the physiological and genetic basis of adaptation to salinity is not fully understood. We integrated comparative cellular morphology of the kidney, a key organ for osmoregulation, and candidate gene expression to explore the underpinnings of evolved variation in osmotic plasticity within two populations of sticklebacks from distinct salinity zones in the Baltic Sea: the high salinity Kattegat, representative of the ancestral marine habitat, and the low salinity Bay of Bothnia. A common-garden experiment revealed that kidney morphology in the ancestral high salinity population had a highly plastic response to salinity conditions, whereas this plastic response was reduced in the low salinity population. Candidate gene expression in kidney tissue revealed a similar pattern of population-specific differences, with a higher degree of plasticity in the native high salinity population. Together these results suggest that renal cellular morphology has become canalized to low salinity, and that these structural differences may have functional implications for osmoregulation.
Collapse
Affiliation(s)
- M. Mehedi Hasan
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jacquelin DeFaveri
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Satu Kuure
- Institute of Biotechnology & Laboratory Animal Centre, University of Helsinki, Helsinki, Finland
| | - Surjya N. Dash
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - R. J. Scott McCairns
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
- ESE, Ecology and Ecosystem Health, INRA, Agrocampus Ouest, 35042 Rennes, France
| |
Collapse
|
22
|
Blondeau-Bidet E, Bossus M, Maugars G, Farcy E, Lignot JH, Lorin-Nebel C. Molecular characterization and expression of Na +/K +-ATPase α1 isoforms in the European sea bass Dicentrarchus labrax osmoregulatory tissues following salinity transfer. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1647-1664. [PMID: 27289588 DOI: 10.1007/s10695-016-0247-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/01/2016] [Indexed: 05/14/2023]
Abstract
The Na+/K+-ATPase (NKA) is considered as the main pump involved in active ion transport. In the European sea bass, Dicentrarchus labrax, we found two genes encoding for the alpha 1 subunit isoforms (NKA α1a and NKA α1b). NKA α1a and NKA α1b isoform amino acid (aa) sequences were compared through phylogeny and regarding key functional motifs between salmonids and other acanthomorph species. Analysis of aa sequences of both isoforms revealed a high degree of conservation across teleosts. The expression pattern of both nka α1a and nka α1b was measured in the gill, kidney and posterior intestine of fish in seawater (SW) and transferred to fresh water (FW) at different exposure times. Nka α1a was more expressed than nka α1b whatever the condition and the tissue analyzed. After long-term salinity acclimation (2.5 years) either in FW or SW, transcript levels of nka α1a were higher in the kidney followed by the posterior intestine and the gill. Compared to SW conditions, expression of nka α1a in FW was significantly increased or decreased, respectively, in gill and posterior intestine. In contrast, branchial nka α1b was significantly decreased in FW-acclimated fish. Short-term FW acclimation seems to rapidly increase nka α1a transcript levels in the kidney unlike in gill tissues where different gene expression levels are detected only after long-term acclimation.
Collapse
Affiliation(s)
- Eva Blondeau-Bidet
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France
| | - Maryline Bossus
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France
| | - Gersende Maugars
- Unité Biologie des Organismes et écosystèmes aquatiques (BOREA, UMR 7208), CNRS, IRD 207, Sorbonne Universités, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, Université de Caen Basse Normandie, CP32, 7 rue Cuvier, 75005, Paris, France
| | - Emilie Farcy
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France
| | - Jehan-Hervé Lignot
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France
| | - Catherine Lorin-Nebel
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France.
| |
Collapse
|
23
|
Chang CH, Lo WY, Lee TH. The Antioxidant Peroxiredoxin 6 (Prdx6) Exhibits Different Profiles in the Livers of Seawater- and Fresh Water-Acclimated Milkfish, Chanos chanos, upon Hypothermal Challenge. Front Physiol 2016; 7:580. [PMID: 27965586 PMCID: PMC5126087 DOI: 10.3389/fphys.2016.00580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022] Open
Abstract
A tropical species, the euryhaline milkfish (Chanos chanos), is a crucial economic species in Southeast Asia and is intolerant of water temperature below 12°C. Large numbers of milkfish die during cold periods in winter. Hypothermal environments usually increase oxidative stress in teleosts, and the liver is the major organ for anti-oxidative responses in the body. Peroxiredoxin-6 (Prdx6) in mammals is a multi-functional enzyme and acts as both glutathione peroxidase, phospholipase A2 and acyl-transferase for maintenance of redox status and prevention of cell membrane peroxidation. Prdx6 can protect cells from oxidant-induced membrane damage by translocating the Prdx6 protein from the cytosol to the membrane. Upon cold stress, Ccprdx6 transcript levels were up-regulated after 24 h and 96 h in livers of fresh water (FW)- and seawater (SW)-acclimated milkfish, respectively. In the hypothermal FW group, the Prdx6 protein was up-regulated in the cytosol of hepatocytes with a similar role as glutathione peroxidase to reduce oxidative stress upon hypothermal challenge. Conversely, in hypothermal SW milkfish, total Prdx6 protein was down-regulated. However, cytosolic Prdx6 protein was translocated to the membrane, using the ability of phospholipase A2 to stabilize the membrane redox state. Moreover, H2O2 content was increased in FW-acclimated milkfish livers upon hypothermal challenge. Ex vivo H2O2 treatment of milkfish livers also induced Ccprdx6 transcriptional expression, which provided more evidence of the antioxidant role of milkfish Prdx6. Taken together, upon hypothermal challenge, greater oxidative stress in livers of FW-acclimated milkfish rather than SW-acclimated individuals led to different profiles of hepatic CcPrdx6 expression between the FW and SW group. The results indicated that CcPrdx6 played the role of antioxidant with different mechanisms, i.e., binding to reactive oxygen species and stabilizing membrane fluidity, in livers of hypothermal FW and SW milkfish, respectively.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Life Sciences, National Chung Hsing University Taichung, Taiwan
| | - Wan-Yu Lo
- Department of Biotechnology, Hung Kuang University Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan; Agricultural Biotechnology Center, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
24
|
Jia Y, Yin S, Li L, Li P, Liang F, Wang X, Wang X, Wang L, Su X. iTRAQ proteomic analysis of salinity acclimation proteins in the gill of tropical marbled eel (Anguilla marmorata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:935-946. [PMID: 26721661 DOI: 10.1007/s10695-015-0186-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Osmoregulation plays an important role in the migration process of catadromous fish. The osmoregulatory mechanisms of tropical marbled eel (Anguilla marmorata), a typical catadromous fish, did not gain sufficient attention, especially at the molecular level. In order to enrich the protein database of A. marmorata, a proteomic analysis has been carried out by iTRAQ technique. Among 1937 identified proteins in gill of marbled eel, the expression of 1560 proteins (80 %) was quantified. Compared with the protein expression level in the gill of marbled eel in freshwater (salinity of 0 ‰), 336 proteins were up-regulated and 67 proteins were down-regulated in seawater (salinity of 25 ‰); 33 proteins were up-regulated and 32 proteins were down-regulated in brackish water (salinity of 10 ‰). These up-regulated proteins including Na(+)/K(+)-ATPase, V-type proton ATPase, sodium-potassium-chloride co-transporter and heat shock protein 90 were enriched in many KEGG-annotated pathways, which are related to different functions of the gill. The up-regulated oxidative phosphorylation and seleno-compound metabolism pathways involve the synthesis and consumption of ATP, which represents extra energy consumption. Another identified pathway is the ribosome pathway in which a large number of up-regulated proteins are involved. It is also more notable that tight junction and cardiac muscle contraction pathways may have correlation with ion transport in gill cells. This is the first report describing the proteome of A. marmorata for acclimating to the change of salinity. These results provide a functional database for migratory fish and point out some possible new interactions on osmoregulation in A. marmorata.
Collapse
Affiliation(s)
- Yihe Jia
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Shaowu Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China.
| | - Li Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Fenfei Liang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Xiaolu Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Xiaojun Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Li Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Xinhua Su
- Department of Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow, UK
| |
Collapse
|
25
|
Yang WK, Kang CK, Hsu AD, Lin CH, Lee TH. Different Modulatory Mechanisms of Renal FXYD12 for Na(+)-K(+)-ATPase between Two Closely Related Medakas upon Salinity Challenge. Int J Biol Sci 2016; 12:730-45. [PMID: 27194950 PMCID: PMC4870716 DOI: 10.7150/ijbs.15066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/21/2016] [Indexed: 12/02/2022] Open
Abstract
Upon salinity challenge, the Na+-K+-ATPase (NKA) of fish kidney plays a crucial role in maintaining ion and water balance. Moreover, the FXYD protein family was found to be a regulator of NKA. Our preliminary results revealed that fxyd12 was highly expressed in the kidneys of the two closely related euryhaline medaka species (Oryzias dancena and O. latipes) from different natural habitats (brackish water and fresh water). In this study, we investigated the expression and association of renal FXYD12 and NKA α-subunit as well as potential functions of FXYD12 in the two medakas. These findings illustrated and compared the regulatory roles of FXYD12 for NKA in kidneys of the two medakas in response to salinity changes. In this study, at the mRNA and/or protein level, the expression patterns were similar for renal FXYD12 and NKA in the two medakas. However, different patterns of NKA activities and different interaction levels between FXYD12 and NKA were found in the kidneys of these two medakas. The results revealed that different strategies were used in the kidneys of the two medaka species upon salinity challenge. On the other hand, gene knockdown experiments demonstrated that the function of O. dancena FXYD12 allowed maintenance of a high level of NKA activity. The results of the present study indicated that the kidneys of the examined euryhaline medakas originating from brackish water and fresh water exhibited different modulatory mechanisms through which renal FXYD12 enhanced NKA activity to maintain internal homeostasis. Our findings broadened the knowledge of expression and functions of FXYD proteins, the modulators of NKA, in vertebrates.
Collapse
Affiliation(s)
- Wen-Kai Yang
- 1. Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Chao-Kai Kang
- 2. Tainan Hydraulics Laboratory, National Cheng Kung University, Tainan 709, Taiwan
| | - An-Di Hsu
- 1. Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Hao Lin
- 3. National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Tsung-Han Lee
- 1. Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.; 4. Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
26
|
Chang CH, Yang WK, Lin CH, Kang CK, Tang CH, Lee TH. FXYD11 mediated modulation of Na(+)/K(+)-ATPase activity in gills of the brackish medaka (Oryzias dancena) when transferred to hypoosmotic or hyperosmotic environments. Comp Biochem Physiol A Mol Integr Physiol 2016; 194:19-26. [PMID: 26797570 DOI: 10.1016/j.cbpa.2016.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/23/2023]
Abstract
FXYD proteins regulate Na(+)/K(+)-ATPase (NKA), which is a primary active pump that provides the driving force that triggers osmoregulatory systems in teleosts. To explore the regulatory mechanisms between FXYD and NKA in euryhaline teleosts, the expression of NKA (mRNA, protein, and activity) and FXYD11 and their interaction were examined in the gills of brackish medaka (Oryzias dancena) when transferred from brackish water (BW; 15‰) to fresh water (FW) or seawater (SW; 35‰). The mRNA expression of Odfxyd11 and Odnka-α was elevated 48h post-hypoosmotic transfer. Moreover, FXYD11 protein and NKA activity were upregulated 12h after transfer to FW. When transferred to SW, the protein abundance of FXYD11 and the NKA α-subunit did not show apparent changes, while Odfxyd11 and Odnka-α mRNA expression and NKA activity increased significantly 12h and 1h post-transfer, respectively. To clarify the FXYD11 mechanisms involved in modulating NKA activity via their interaction, co-immunoprecipitation was further applied to O. dancena gills. The results revealed that the levels of protein-protein interaction between branchial NKA and FXYD11 increased acutely 12h after the transfer from BW to FW. However, immediate upregulation of NKA activity 1h following post-exposure to SW, without the elevation of protein-protein interaction levels, was found. Hence, branchial NKA activity of O. dancena was suggested to be rapidly regulated by FXYD11 interaction with NKA when acclimated to hypoosmotic environments. To the best of our knowledge, this is the first study that focuses on the efficacy of interactions between FXYD11 and NKA in the gills of euryhaline teleosts.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Wen-Kai Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Hao Lin
- National Institute for Basic Biology, NINS, Okazaki, Aichi 444-0864, Japan
| | - Chao-Kai Kang
- Tainan Hydraulics Laboratory, National Cheng Kung University, Tainan 709, Taiwan
| | - Cheng-Hao Tang
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
27
|
Wong MKS, Pipil S, Ozaki H, Suzuki Y, Iwasaki W, Takei Y. Flexible selection of diversified Na(+)/K(+)-ATPase α-subunit isoforms for osmoregulation in teleosts. ZOOLOGICAL LETTERS 2016; 2:15. [PMID: 27489726 PMCID: PMC4971688 DOI: 10.1186/s40851-016-0050-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/18/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND METHODS Multiple Na+/K+-ATPase (NKA) α-subunit isoforms express differentially in response to salinity transfer in teleosts but we observed that the isoform nomenclature is inconsistent with the phylogenetic relationship of NKA α-genes. We cloned the catalytic NKA α-subunit isoforms in eels and medaka, analyzed the time course of their expressions in osmoregulatory tissues after transfer from freshwater (FW) to seawater (SW), and performed phylogenetic analyses to deduce an evolutionary scenario that illustrates how various duplication events have led to the current genomic arrangement of NKA α-genes in teleosts. RESULTS AND DISCUSSION Five and six α-subunits were cloned in eels and medaka respectively. In eels, the commonly-reported α1a and α1b isoforms were absent while the α1c isoform was diversified instead (α1c-1, α1c-2, α1c-3, α2, and α3 in eels). Phylogenetic estimation indicated that the α1a and α1b isoforms from salmon, tilapia, and medaka were generated by independent duplication events and thus they are paralogous isoforms. Re-examination of expression changes of known isoforms after salinity challenge revealed that the isoforms selected as predominant SW-types varied among teleost lineages. Diversification of α1 isoforms occurred by various types of gene duplication, or by alternative transcription among tandem genes to form chimeric transcripts, but there is no trend for more α1 copies in euryhaline species. Our data suggest that the isoform switching between FW (α1a predominates) and SW (α1b predominates) that occurs in salmonids is not universal in teleosts. Instead, in eels, α1c-1 was the major α-subunit upregulated gill, intestine, and kidney in SW. Localization of both NKA mRNA and protein showed consistent upregulation in gill and intestine in SW eels, but not in renal distal and collecting tubules, where low transcript expression levels were accompanied by high protein levels, suggesting a tissue-specific translational regulation that determines and fine-tunes the NKA expression. In medaka, α1b was upregulated in SW in anterior intestine while most other α-subunit isoforms were less responsive to salinity changes. CONCLUSION By integrating gene expression and phylogenetic results, we propose that the major NKA α-subunits for SW acclimation were not ancestrally selected, but rather were flexibly determined in lineage-specific fashion in teleosts.
Collapse
Affiliation(s)
- Marty Kwok-Shing Wong
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba Japan
| | - Supriya Pipil
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba Japan
| | - Haruka Ozaki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Iwasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshio Takei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba Japan
| |
Collapse
|
28
|
Li L, Jia Y, Li P, Yin S, Zhang G, Wang X, Wang Y, Wang X, Zang X, Ding Y. Expression and activity of V-H+ -ATPase in gill and kidney of marbled eel Anguilla marmorata in response to salinity challenge. JOURNAL OF FISH BIOLOGY 2015; 87:28-42. [PMID: 26040212 DOI: 10.1111/jfb.12687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
The full-length complementary (c)DNA of vacuolar-type-H(+) -ATPase B1 gene (vhab1) in marbled eel Anguilla marmorata with 1741 base pairs (bp) was identified. It contained a 1512 bp open reading frame encoding a polypeptide with 503 amino acids (55·9 kDa), an 83 bp 5'-untranslated region (UTR) and a 146 bp 3'-UTR. The expression levels of A. marmorata vhab1 in gill and kidney of A. marmorata were evaluated at different intervals during the exposure to various salinities (0, 10 and 25). The results indicated that the expression levels of A. marmorata vhab1 messenger (m)RNA in gill and kidney had a significant increase and reached the highest level at 1 h in brackish water (BW, salinity 10) group and 6 h in seawater (SW, salinity 25) group. Therefore, salinity did affect the relative expression level of A. marmorata vhab1 mRNA in gills, which exhibited the enhancement by c. 44 times in SW group when compared with that in fresh water. No remarkable difference in the expression of A. marmorata vhab1 mRNA was observed after 15 days of SW exposure (P > 0·05). V-H(+) -ATPase activity exhibited an increase by two- to three-fold when compared with that in gill and kidney from the control group. The consequence primarily suggested that A. marmorata vhab1 gene product in elvers from A. marmorata plays an important role in adaptation response to SW.
Collapse
Affiliation(s)
- L Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang 222005, China
| | - Y Jia
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang 222005, China
| | - P Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang 222005, China
| | - S Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang 222005, China
| | - G Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang 222005, China
| | - X Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang 222005, China
| | - Y Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang 222005, China
| | - X Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang 222005, China
| | - X Zang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang 222005, China
| | - Y Ding
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang 222005, China
| |
Collapse
|
29
|
Comparisons of two types of teleostean pseudobranchs, silver moony (Monodactylus argenteus) and tilapia (Oreochromis mossambicus), with salinity-dependent morphology and ion transporter expression. J Comp Physiol B 2015; 185:677-93. [DOI: 10.1007/s00360-015-0913-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 04/27/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
30
|
Tang CH, Leu MY, Yang WK, Tsai SC. Exploration of the mechanisms of protein quality control and osmoregulation in gills of Chromis viridis in response to reduced salinity. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1533-1546. [PMID: 24805086 DOI: 10.1007/s10695-014-9946-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Fish gills are the vital multifunctional organ in direct contact with external environment. Therefore, activation of the cytoprotective mechanisms to maintain branchial cell viability is important for fish upon stresses. Salinity is one of the major factors strongly affecting cellular and organismal functions. Reduction of ambient salinity may occur in coral reef and leads to osmotic stress for reef-associated stenohaline fish. However, the physiological responses to salinity stress in reef-associated fish were not examined substantially. With this regard, the physiological parameters and the responses of protein quality control (PQC) and osmoregulatory mechanisms in gills of seawater (SW; 33-35 ‰)- and brackish water (BW; 20 ‰)-acclimated blue-green damselfish (Chromis viridis) were explored. The results showed that the examined physiological parameters were maintained within certain physiological ranges in C. viridis acclimated to different salinities. In PQC mechanism, expression of heat-shock protein (HSP) 90, 70, and 60 elevated in response to BW acclimation while the levels of ubiquitin-conjugated proteins were similar between the two groups. Thus, it was presumed that upregulation of HSPs was sufficient to prevent the accumulation of aggregated proteins for maintaining the protein quality and viability of gill cells when C. viridis were acclimated to BW. Moreover, gill Na(+)/K(+)-ATPase expression and protein amounts of basolaterally located Na(+)/K(+)/2Cl(-) cotransporter were higher in SW fish than in BW fish. Taken together, this study showed that the cytoprotective and osmoregulatory mechanisms of blue-green damselfish were functionally activated and modulated to withstand the challenge of reduction in salinity for maintaining physiological homeostasis.
Collapse
Affiliation(s)
- Cheng-Hao Tang
- Institute of Marine Biotechnology, National Dong Hwa University, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan,
| | | | | | | |
Collapse
|
31
|
Hu P, Li S, Zhong Y, Mu X, Gui L, Zhang J. Identification of fxyd genes from the spotted scat (Scatophagus argus): molecular cloning, tissue-specific expression, and response to acute hyposaline stress. Comp Biochem Physiol B Biochem Mol Biol 2014; 174:15-22. [PMID: 24878493 DOI: 10.1016/j.cbpb.2014.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/17/2014] [Accepted: 05/20/2014] [Indexed: 11/24/2022]
Abstract
By interacting with Na(+), K(+)-ATPase (NKA), the FXYD domain-containing ion transport regulator (FXYD) is involved in teleost osmoregulation, but knowledge of FXYD in marine fish is limited. In the present study, fxyd11 and fxyd12 were identified from the spotted scat (Scatophagus argus), and the two members of the FXYD protein family were expressed in a tissue-specific manner. Fxyd11 mRNA was predominantly expressed in gills, whereas fxyd12 mRNA was mainly distributed in kidneys and intestines. Acute hyposaline stress altered the activity of NKA and the expression of fxyd11 and fxyd12 in gills, kidneys, and intestines. Branchial fxyd11 mRNA expression remained at a low level during freshwater acclimation, whereas NKA activity increased, showing a negative correlation that differed from previous reports. Similarly, renal expression of fxyd11 and fxyd12 mRNA was negatively correlated with NKA activity. Unlike in gills and kidneys, intestinal NKA activity and mRNA expression of fxyd11 and fxyd12 were comparably suppressed. Taken together, the salinity-dependent expression of fxyd11 and fxyd12, and correlation with NKA activity suggested that both fxyd11 and fxyd12 were involved in the response to acute hyposaline challenge in the spotted scat.
Collapse
Affiliation(s)
- Pan Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Siqi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xingjiang Mu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Junbin Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
32
|
Tang CH, Leu MY, Shao K, Hwang LY, Chang WB. Short-term effects of thermal stress on the responses of branchial protein quality control and osmoregulation in a reef-associated fish, Chromis viridis. Zool Stud 2014. [DOI: 10.1186/s40555-014-0021-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Expression profiles of branchial FXYD proteins in the brackish medaka Oryzias dancena: a potential saltwater fish model for studies of osmoregulation. PLoS One 2013; 8:e55470. [PMID: 23383199 PMCID: PMC3561181 DOI: 10.1371/journal.pone.0055470] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/23/2012] [Indexed: 12/03/2022] Open
Abstract
FXYD proteins are novel regulators of Na+-K+-ATPase (NKA). In fish subjected to salinity challenges, NKA activity in osmoregulatory organs (e.g., gills) is a primary driving force for the many ion transport systems that act in concert to maintain a stable internal environment. Although teleostean FXYD proteins have been identified and investigated, previous studies focused on only a limited group of species. The purposes of the present study were to establish the brackish medaka (Oryzias dancena) as a potential saltwater fish model for osmoregulatory studies and to investigate the diversity of teleostean FXYD expression profiles by comparing two closely related euryhaline model teleosts, brackish medaka and Japanese medaka (O. latipes), upon exposure to salinity changes. Seven members of the FXYD protein family were identified in each medaka species, and the expression of most branchial fxyd genes was salinity-dependent. Among the cloned genes, fxyd11 was expressed specifically in the gills and at a significantly higher level than the other fxyd genes. In the brackish medaka, branchial fxyd11 expression was localized to the NKA-immunoreactive cells in gill epithelia. Furthermore, the FXYD11 protein interacted with the NKA α-subunit and was expressed at a higher level in freshwater-acclimated individuals relative to fish in other salinity groups. The protein sequences and tissue distributions of the FXYD proteins were very similar between the two medaka species, but different expression profiles were observed upon salinity challenge for most branchial fxyd genes. Salinity changes produced different effects on the FXYD11 and NKA α-subunit expression patterns in the gills of the brackish medaka. To our knowledge, this report is the first to focus on FXYD expression in the gills of closely related euryhaline teleosts. Given the advantages conferred by the well-developed Japanese medaka system, we propose the brackish medaka as a saltwater fish model for osmoregulatory studies.
Collapse
|