1
|
Xin Y, Wu S, Miao C, Xu T, Lu Y. Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering. Life (Basel) 2024; 14:447. [PMID: 38672718 PMCID: PMC11051065 DOI: 10.3390/life14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae can convert carbon dioxide into organic matter through photosynthesis. Thus, they are considered as an environment-friendly and efficient cell chassis for biologically active metabolites. Microalgal lipids are a class of organic compounds that can be used as raw materials for food, feed, cosmetics, healthcare products, bioenergy, etc., with tremendous potential for commercialization. In this review, we summarized the commercial lipid products from eukaryotic microalgae, and updated the mechanisms of lipid synthesis in microalgae. Moreover, we reviewed the enhancement of lipids, triglycerides, polyunsaturated fatty acids, pigments, and terpenes in microalgae via environmental induction and/or metabolic engineering in the past five years. Collectively, we provided a comprehensive overview of the products, biosynthesis, induced strategies and genetic engineering in microalgal lipids. Meanwhile, the outlook has been presented for the development of microalgal lipids industries, emphasizing the significance of the accurate analysis of lipid bioactivity, as well as the high-throughput screening of microalgae with specific lipids.
Collapse
Affiliation(s)
- Yi Xin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
| | - Shan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Congcong Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Tao Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Yang YF, Ye GB, Wang HJ, Li HY, Lin CSK, Zheng XF, Pugazhendhi A, Wang X. Utilization of lipidic food waste as low-cost nutrients for enhancing the potentiality of biofuel production from engineered diatom under temperature variations. BIORESOURCE TECHNOLOGY 2023; 387:129611. [PMID: 37541549 DOI: 10.1016/j.biortech.2023.129611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
The scarcity of natural fossil fuels presents a promising opportunity for the development of renewable microalgae-based biofuels. However, the current microalgae cultivation is unable to effectively address the high costs of the production of biofuels. To tackle this challenge, this study focused on recruiting engineered Phaeodactylum tricornutum (FabG-OE) to enhance biomass accumulation and lipid production by employing food waste hydrolysate under temperature variations. The biomass and lipid accumulations of FabG-OE were improved effectively in mixed culture medium and food waste hydrolysate at a volume ratio (v/v) of 80:20 at 30 °C. It was found that oxidative stress might contribute to the overexpression of lipogenic genes, thereby leading to lipogenesis at 30 °C. Upscaling cultivation of FabG-OE at 30 °C using a semi-continuous strategy and batch strategy was conducted to achieve 0.73 and 0.77 g/L/d of biomass containing 0.35 and 0.38 g/L/d of lipid, respectively. In summary, these findings provide valuable insights for advancing microalgae-based biofuel production.
Collapse
Affiliation(s)
- Yu-Feng Yang
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guang-Bin Ye
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Hua-Jun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Xiao-Fei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Xiang Wang
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Humphrey B, Mackenzie M, Lobitz M, Schambach JY, Lasley G, Kolker S, Ricken B, Bennett H, Williams KP, Smallwood CR, Cahill J. Biotic countermeasures that rescue Nannochloropsis gaditana from a Bacillus safensis infection. Front Microbiol 2023; 14:1271836. [PMID: 37920264 PMCID: PMC10618357 DOI: 10.3389/fmicb.2023.1271836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023] Open
Abstract
The natural assemblage of a symbiotic bacterial microbiome (bacteriome) with microalgae in marine ecosystems is now being investigated as a means to increase algal productivity for industry. When algae are grown in open pond settings, biological contamination causes an estimated 30% loss of the algal crop. Therefore, new crop protection strategies that do not disrupt the native algal bacteriome are needed to produce reliable, high-yield algal biomass. Bacteriophages offer an unexplored solution to treat bacterial pathogenicity in algal cultures because they can eliminate a single species without affecting the bacteriome. To address this, we identified a highly virulent pathogen of the microalga Nannochloropsis gaditana, the bacterium Bacillus safensis, and demonstrated rescue of the microalgae from the pathogen using phage. 16S rRNA amplicon sequencing showed that phage treatment did not alter the composition of the bacteriome. It is widely suspected that the algal bacteriome could play a protective role against bacterial pathogens. To test this, we compared the susceptibility of a bacteriome-attenuated N. gaditana culture challenged with B. safensis to a N. gaditana culture carrying a growth-promoting bacteriome. We showed that the loss of the bacteriome increased the susceptibility of N. gaditana to the pathogen. Transplanting the microalgal bacteriome to the bacteriome-attenuated culture reconstituted the protective effect of the bacteriome. Finally, the success of phage treatment was dependent on the presence of beneficial bacteriome. This study introduces two synergistic countermeasures against bacterial pathogenicity in algal cultures and a tractable model for studying interactions between microalgae, phages, pathogens, and the algae microbiome.
Collapse
Affiliation(s)
- Brittany Humphrey
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Morgan Mackenzie
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Mia Lobitz
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Jenna Y. Schambach
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Greyson Lasley
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Stephanie Kolker
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Bryce Ricken
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Haley Bennett
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Kelly P. Williams
- Sandia National Laboratories, Department of Systems Biology, Livermore, CA, United States
| | - Chuck R. Smallwood
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Jesse Cahill
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| |
Collapse
|
4
|
Krishnan A, Cano M, Karns DA, Burch TA, Likhogrud M, Aqui M, Bailey S, Verruto J, Lambert W, Kuzminov F, Naghipor M, Wang Y, Ebmeier CC, Weissman JC, Posewitz MC. Simultaneous CAS9 editing of cp SRP43, LHCA6, and LHCA7 in Picochlorum celeri lowers chlorophyll levels and improves biomass productivity. PLANT DIRECT 2023; 7:e530. [PMID: 37711644 PMCID: PMC10497401 DOI: 10.1002/pld3.530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
High cellular pigment levels in dense microalgal cultures contribute to excess light absorption. To improve photosynthetic yields in the marine microalga Picochlorum celeri, CAS9 gene editing was used to target the molecular chaperone cpSRP43. Depigmented strains (>50% lower chlorophyll) were generated, with proteomics showing attenuated levels of most light harvesting complex (LHC) proteins. Gene editing generated two types of cpSRP43 transformants with distinct lower pigment phenotypes: (i) a transformant (Δsrp43) with both cpSRP43 diploid alleles modified to encode non-functional polypeptides and (ii) a transformant (STR30309) with a 3 nt in-frame insertion in one allele at the CAS9 cut site (non-functional second allele), leading to expression of a modified cpSRP43. STR30309 has more chlorophyll than Δsrp43 but substantially less than wild type. To further decrease light absorption by photosystem I in STR30309, CAS9 editing was used to stack in disruptions of both LHCA6 and LHCA7 to generate STR30843, which has higher (5-24%) productivities relative to wild type in solar-simulating bioreactors. Maximal productivities required frequent partial harvests throughout the day. For STR30843, exemplary diel bioreactor yields of ~50 g m-2 day-1 were attained. Our results demonstrate diel productivity gains in P. celeri by lowering pigment levels.
Collapse
Affiliation(s)
- Anagha Krishnan
- Department of ChemistryColorado School of MinesGoldenColoradoUSA
| | - Melissa Cano
- Department of ChemistryColorado School of MinesGoldenColoradoUSA
| | - Devin A. Karns
- Department of ChemistryColorado School of MinesGoldenColoradoUSA
| | - Tyson A. Burch
- Department of ChemistryColorado School of MinesGoldenColoradoUSA
| | - Maria Likhogrud
- ExxonMobil Technology and Engineering CompanyAnnandaleNew JerseyUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zadabbas Shahabadi H, Akbarzadeh A, Ofoghi H, Kadkhodaei S. Site-specific gene knock-in and bacterial phytase gene expression in Chlamydomonas reinhardtii via Cas9 RNP-mediated HDR. FRONTIERS IN PLANT SCIENCE 2023; 14:1150436. [PMID: 37275253 PMCID: PMC10235511 DOI: 10.3389/fpls.2023.1150436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 06/07/2023]
Abstract
In the present study, we applied the HDR (homology-directed DNA repair) CRISPR-Cas9-mediated knock-in system to accurately insert an optimized foreign bacterial phytase gene at a specific site of the nitrate reductase (NR) gene (exon 2) to achieve homologous recombination with the stability of the transgene and reduce insertion site effects or gene silencing. To this end, we successfully knocked-in the targeted NR gene of Chlamydomonas reinhardtii using the bacterial phytase gene cassette through direct delivery of the CRISPR/Cas9 system as the ribonucleoprotein (RNP) complex consisting of Cas9 protein and the specific single guide RNAs (sgRNAs). The NR insertion site editing was confirmed by PCR and sequencing of the transgene positive clones. Moreover, 24 clones with correct editing were obtained, where the phytase gene cassette was located in exon 2 of the NR gene, and the editing efficiency was determined to be 14.81%. Additionally, site-specific gene expression was analyzed and confirmed using RT-qPCR. Cultivation of the positive knocked-in colonies on the selective media during 10 generations indicated the stability of the correct editing without gene silencing or negative insertion site effects. Our results demonstrated that CRISPR-Cas9-mediated knock-in could be applied for nuclear expression of the heterologous gene of interest, and also confirmed its efficacy as an effective tool for site-specific gene knock-in, avoiding nuclear positional effects and gene silencing in C. reinhardtii. These findings could also provide a new perspective on the advantageous application of RNP-CRISPR/Cas9 gene-editing to accelerate the commercial production of complex recombinant proteins in the food-grade organism "C. reinhardtii".
Collapse
Affiliation(s)
- Hassan Zadabbas Shahabadi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Saeid Kadkhodaei
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| |
Collapse
|
6
|
Schmollinger S, Chen S, Merchant SS. Quantitative elemental imaging in eukaryotic algae. Metallomics 2023; 15:mfad025. [PMID: 37186252 PMCID: PMC10209819 DOI: 10.1093/mtomcs/mfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
All organisms, fundamentally, are made from the same raw material, namely the elements of the periodic table. Biochemical diversity is achieved by how these elements are utilized, for what purpose, and in which physical location. Determining elemental distributions, especially those of trace elements that facilitate metabolism as cofactors in the active centers of essential enzymes, can determine the state of metabolism, the nutritional status, or the developmental stage of an organism. Photosynthetic eukaryotes, especially algae, are excellent subjects for quantitative analysis of elemental distribution. These microbes utilize unique metabolic pathways that require various trace nutrients at their core to enable their operation. Photosynthetic microbes also have important environmental roles as primary producers in habitats with limited nutrient supplies or toxin contaminations. Accordingly, photosynthetic eukaryotes are of great interest for biotechnological exploitation, carbon sequestration, and bioremediation, with many of the applications involving various trace elements and consequently affecting their quota and intracellular distribution. A number of diverse applications were developed for elemental imaging, allowing subcellular resolution, with X-ray fluorescence microscopy (XFM, XRF) being at the forefront, enabling quantitative descriptions of intact cells in a non-destructive method. This Tutorial Review summarizes the workflow of a quantitative, single-cell elemental distribution analysis of a eukaryotic alga using XFM.
Collapse
Affiliation(s)
- Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Kong F, Li M, Liu K, Ge Y, Yamasaki T, Beyly-Adriano A, Ohama T, Li-Beisson Y. Efficient approaches for nuclear transgene stacking in the unicellular green microalga Chlamydomonas reinhardtii. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
8
|
Morales-Pineda M, García-Gómez ME, Bedera-García R, García-González M, Couso I. CO 2 Levels Modulate Carbon Utilization, Energy Levels and Inositol Polyphosphate Profile in Chlorella. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010129. [PMID: 36616258 PMCID: PMC9823770 DOI: 10.3390/plants12010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 05/15/2023]
Abstract
Microalgae have a growing recognition of generating biomass and capturing carbon in the form of CO2. The genus Chlorella has especially attracted scientists' attention due to its versatility in algal mass cultivation systems and its potential in mitigating CO2. However, some aspects of how these green microorganisms respond to increasing concentrations of CO2 remain unclear. In this work, we analyzed Chlorella sorokiniana and Chlorella vulgaris cells under low and high CO2 levels. We monitored different processes related to carbon flux from photosynthetic capacity to carbon sinks. Our data indicate that high concentration of CO2 favors growth and photosynthetic capacity of the two Chlorella strains. Different metabolites related to the tricarboxylic acid cycle and ATP levels also increased under high CO2 concentrations in Chlorella sorokiniana, reaching up to two-fold compared to low CO2 conditions. The signaling molecules, inositol polyphosphates, that regulate photosynthetic capacity in green microalgae were also affected by the CO2 levels, showing a deep profile modification of the inositol polyphosphates that over-accumulated by up to 50% in high CO2 versus low CO2 conditions. InsP4 and InsP6 increased 3- and 0.8-fold, respectively, in Chlorella sorokiniana after being subjected to 5% CO2 condition. These data indicate that the availability of CO2 could control carbon flux from photosynthesis to carbon storage and impact cell signaling integration and energy levels in these green cells. The presented results support the importance of further investigating the connections between carbon assimilation and cell signaling by polyphosphate inositols in microalgae to optimize their biotechnological applications.
Collapse
|
9
|
Enhanced accumulation of oil through co-expression of fatty acid and ABC transporters in Chlamydomonas under standard growth conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:54. [PMID: 35596223 PMCID: PMC9123788 DOI: 10.1186/s13068-022-02154-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/07/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Chloroplast and endoplasmic reticulum (ER)-localized fatty acid (FA) transporters have been reported to play important roles in oil (mainly triacylglycerols, TAG) biosynthesis. However, whether these FA transporters synergistically contribute to lipid accumulation, and their effect on lipid metabolism in microalgae are unknown.
Results
Here, we co-overexpressed two chloroplast-localized FA exporters (FAX1 and FAX2) and one ER-localized FA transporter (ABCA2) in Chlamydomonas. Under standard growth conditions, FAX1/FAX2/ABCA2 over-expression lines (OE) accumulated up to twofold more TAG than the parental strain UVM4, and the total amounts of major polyunsaturated FAs (PUFA) in TAG increased by 4.7-fold. In parallel, the total FA contents and major membrane lipids in FAX1/FAX2/ABCA2-OE also significantly increased compared with those in the control lines. Additionally, the total accumulation contribution ratio of PUFA, to total FA and TAG synthesis in FAX1/FAX2/ABCA2-OE, was 54% and 40% higher than that in UVM4, respectively. Consistently, the expression levels of genes directly involved in TAG synthesis, such as type-II diacylglycerol acyltransferases (DGTT1, DGTT3 and DGTT5), and phospholipid:diacylglycerol acyltransferase 1 (PDAT1), significantly increased, and the expression of PGD1 (MGDG-specific lipase) was upregulated in FAX1/FAX2/ABCA2-OE compared to UVM4.
Conclusion
These results indicate that the increased expression of FAX1/FAX2/ABCA2 has an additive effect on enhancing TAG, total FA and membrane lipid accumulation and accelerates the PUFA remobilization from membrane lipids to TAG by fine-tuning the key genes involved in lipid metabolism under standard growth conditions. Overall, FAX1/FAX2/ABCA2-OE shows better traits for lipid accumulation than the parental line and previously reported individual FA transporter-OE. Our study provides a potential useful strategy to increase the production of FA-derived energy-rich and value-added compounds in microalgae.
Collapse
|
10
|
Hui C, Schmollinger S, Strenkert D, Holbrook K, Montgomery HR, Chen S, Nelson HM, Weber PK, Merchant SS. Simple steps to enable reproducibility: culture conditions affecting Chlamydomonas growth and elemental composition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:995-1014. [PMID: 35699388 DOI: 10.1111/tpj.15867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 05/26/2023]
Abstract
Even subtle modifications in growth conditions elicit acclimation responses affecting the molecular and elemental makeup of organisms, both in the laboratory and in natural habitats. We systematically explored the effect of temperature, pH, nutrient availability, culture density, and access to CO2 and O2 in laboratory-grown algal cultures on growth rate, the ionome, and the ability to accumulate Fe. We found algal cells accumulate Fe in alkaline conditions, even more so when excess Fe is present, coinciding with a reduced growth rate. Using a combination of Fe-specific dyes, X-ray fluorescence microscopy, and NanoSIMS, we show that the alkaline-accumulated Fe was intracellularly sequestered into acidocalcisomes, which are localized towards the periphery of the cells. At high photon flux densities, Zn and Ca specifically over-accumulate, while Zn alone accumulates at low temperatures. The impact of aeration was probed by reducing shaking speeds and changing vessel fill levels; the former increased the Cu quota of cultures, the latter resulted in a reduction in P, Ca, and Mn at low fill levels. Trace element quotas were also affected in the stationary phase, where specifically Fe, Cu, and Zn accumulate. Cu accumulation here depends inversely on the Fe concentration of the medium. Individual laboratory strains accumulate Ca, P, and Cu to different levels. All together, we identified a set of specific changes to growth rate, elemental composition, and the capacity to store Fe in response to subtle differences in culturing conditions of Chlamydomonas, affecting experimental reproducibility. Accordingly, we recommend that these variables be recorded and reported as associated metadata.
Collapse
Affiliation(s)
- Colleen Hui
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Stefan Schmollinger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Daniela Strenkert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Kristen Holbrook
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Hayden R Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Hosea M Nelson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Peter K Weber
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, 94550, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
11
|
Zhang P, Xin Y, He Y, Tang X, Shen C, Wang Q, Lv N, Li Y, Hu Q, Xu J. Exploring a blue-light-sensing transcription factor to double the peak productivity of oil in Nannochloropsis oceanica. Nat Commun 2022; 13:1664. [PMID: 35351909 PMCID: PMC8964759 DOI: 10.1038/s41467-022-29337-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Oleaginous microalgae can produce triacylglycerol (TAG) under stress, yet the underlying mechanism remains largely unknown. Here, we show that, in Nannochloropsis oceanica, a bZIP-family regulator NobZIP77 represses the transcription of a type-2 diacylgycerol acyltransferase encoding gene NoDGAT2B under nitrogen-repletion (N+), while nitrogen-depletion (N−) relieves such inhibition and activates NoDGAT2B expression and synthesis of TAG preferably from C16:1. Intriguingly, NobZIP77 is a sensor of blue light (BL), which reduces binding of NobZIP77 to the NoDGAT2B-promoter, unleashes NoDGAT2B and elevates TAG under N−. Under N+ and white light, NobZIP77 knockout fully preserves cell growth rate and nearly triples TAG productivity. Moreover, exposing the NobZIP77-knockout line to BL under N− can double the peak productivity of TAG. These results underscore the potential of coupling light quality to oil synthesis in feedstock or bioprocess development. Microalgae are promising feedstock for oil production. The authors report that a transcription factor NobZIP77 can regulate oil synthesis by sensing the blue light, and explore these findings to greatly enhance oil productivity via genetic and process engineering in Nannochloropsis oceanica.
Collapse
|
12
|
Latest Expansions in Lipid Enhancement of Microalgae for Biodiesel Production: An Update. ENERGIES 2022. [DOI: 10.3390/en15041550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Research progress on sustainable and renewable biofuel has gained motion over the years, not just due to the rapid reduction of dwindling fossil fuel supplies but also due to environmental and potential energy security issues as well. Intense interest in microalgae (photosynthetic microbes) as a promising feedstock for third-generation biofuels has grown over recent years. Fuels derived from algae are now considered sustainable biofuels that are promising, renewable, and clean. Therefore, selecting the robust species of microalgae with substantial features for quality biodiesel production is the first step in the way of biofuel production. A contemporary investigation is more focused on several strategies and techniques to achieve higher biomass and triglycerides in microalgae. The improvement in lipid enhancement in microalgae species by genetic manipulation approaches, such as metabolic or genetic alteration, and the use of nanotechnology are the most recent ways of improving the production of biomass and lipids. Hence, the current review collects up-to-date approaches for microalgae lipid increase and biodiesel generation. The strategies for high biomass and high lipid yield are discussed. Additionally, various pretreatment procedures that may aid in lipid harvesting efficiency and improve lipid recovery rate are described.
Collapse
|
13
|
Pinello JF, Clark TG. HAP2-Mediated Gamete Fusion: Lessons From the World of Unicellular Eukaryotes. Front Cell Dev Biol 2022; 9:807313. [PMID: 35071241 PMCID: PMC8777248 DOI: 10.3389/fcell.2021.807313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/29/2023] Open
Abstract
Most, if not all the cellular requirements for fertilization and sexual reproduction arose early in evolution and are retained in extant lineages of single-celled organisms including a number of important model organism species. In recent years, work in two such species, the green alga, Chlamydomonas reinhardtii, and the free-living ciliate, Tetrahymena thermophila, have lent important new insights into the role of HAP2/GCS1 as a catalyst for gamete fusion in organisms ranging from protists to flowering plants and insects. Here we summarize the current state of knowledge around how mating types from these algal and ciliate systems recognize, adhere and fuse to one another, current gaps in our understanding of HAP2-mediated gamete fusion, and opportunities for applying what we know in practical terms, especially for the control of protozoan parasites.
Collapse
Affiliation(s)
- Jennifer F. Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Theodore G. Clark
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Parkes R, Barone ME, Aranyos A, Fierli D, Koehler H, Gillespie E, Touzet N. Species-specific responses in pigments and fatty acids of five freshwater chlorophytes exposed to varying cultivation conditions. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Microalgal Production of Biofuels Integrated with Wastewater Treatment. SUSTAINABILITY 2021. [DOI: 10.3390/su13168797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human civilization will need to reduce its impacts on air and water quality and reduce its use of fossil fuels in order to advance towards a more sustainable future. Using microalgae to treat wastewater as well as simultaneously produce biofuels is one of the approaches for a sustainable future. The manufacture of biofuels from microalgae is one of the next-generation biofuel solutions that has recently received a lot of interest, as it can remove nutrients from the wastewater whilst capturing carbon dioxide from the atmosphere. The resulting biomass are employed to generate biofuels, which can run fuel cell vehicles of zero emission, power combustion engines and power plants. By cultivating microalgae in wastewater, eutrophication can be prevented, thereby enhancing the quality of the effluent. Thus, by combining wastewater treatment and biofuel production, the cost of the biofuels, as well as the environmental hazards, can be minimized, as there is a supply of free and already available nutrients and water. In this article, the steps involved to generate the various biofuels through microalgae are detailed.
Collapse
|
16
|
Krishnan A, Likhogrud M, Cano M, Edmundson S, Melanson JB, Huesemann M, McGowen J, Weissman JC, Posewitz MC. Picochlorum celeri as a model system for robust outdoor algal growth in seawater. Sci Rep 2021; 11:11649. [PMID: 34079003 PMCID: PMC8172913 DOI: 10.1038/s41598-021-91106-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/19/2021] [Indexed: 11/08/2022] Open
Abstract
With fast growth rates, broad halotolerance and the ability to thrive at high temperatures, algae in the genus Picochlorum are emerging as promising biomass producers. Recently, we isolated a remarkably productive strain, Picochlorum celeri, that attains > 40 g m-2 day-1 productivities using simulated outdoor light. To test outdoor productivities, Picochlorum celeri was cultivated in 820 L raceway ponds at the Arizona Center for Algae Technology and Innovation. Picochlorum celeri demonstrated the highest outdoor biomass productivities reported to date at this testbed averaging ~ 31 g m-2 day-1 over four months with a monthly (August) high of ~ 36 g m-2 day-1. Several single day productivities were > 40 g m-2 day-1. Importantly for sustainability, Picochlorum celeri achieved these productivities in saline water ranging from seawater to 50 parts per thousand sea salts, without any biocides or pond crashes, for over 143 days. Lastly, we report robust genetic engineering tools for future strain improvements.
Collapse
Affiliation(s)
- Anagha Krishnan
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Maria Likhogrud
- Corporate Strategic Research, ExxonMobil, Annandale, NJ, 08801, USA
| | - Melissa Cano
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Scott Edmundson
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, 98382, USA
| | - Jenna B Melanson
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Michael Huesemann
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, 98382, USA
| | - John McGowen
- Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa, AZ, 85212, USA
| | - Joseph C Weissman
- Corporate Strategic Research, ExxonMobil, Annandale, NJ, 08801, USA.
| | - Matthew C Posewitz
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
17
|
Wang Q, Feng Y, Lu Y, Xin Y, Shen C, Wei L, Liu Y, Lv N, Du X, Zhu W, Jeong BR, Xue S, Xu J. Manipulating fatty-acid profile at unit chain-length resolution in the model industrial oleaginous microalgae Nannochloropsis. Metab Eng 2021; 66:157-166. [PMID: 33823272 DOI: 10.1016/j.ymben.2021.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/22/2021] [Accepted: 03/28/2021] [Indexed: 12/01/2022]
Abstract
The chain length (CL) of fatty acids (FAs) is pivotal to oil property, yet to what extent it can be customized in industrial oleaginous microalgae is unknown. In Nannochloropsis oceanica, to modulate long-chain FAs (LCFAs), we first discovered a fungi/bacteria-originated polyketide synthase (PKS) system which involves a cytoplasmic acyl-ACP thioesterase (NoTE1). NoTE1 hydrolyzes C16:0-, C16:1- and C18:1-ACP in vitro and thus intercepts the specific acyl-ACPs elongated by PKS for polyunsaturated FA biosynthesis, resulting in elevation of C16/C18 monounsaturated FAs when overproduced and increase of C20 when knocked out. For medium-chain FAs (MCFAs; C8-C14), C8:0 and C10:0 FAs are boosted by introducing a Cuphea palustris acyl-ACP TE (CpTE), whereas C12:0 elevated by rationally engineering CpTE enzyme's substrate-binding pocket to shift its CL preference towards C12:0. A mechanistic model exploiting both native and engineered PKS and type II FAS pathways was thus proposed for manipulation of carbon distribution among FAs of various CL. The ability to tailor FA profile at the unit CL resolution from C8 to C20 in Nannochloropsis spp. lays the foundation for scalable production of designer lipids via industrial oleaginous microalgae.
Collapse
Affiliation(s)
- Qintao Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanbin Feng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yandu Lu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chen Shen
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxue Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; University of Chinese Academy of Sciences, Beijing, China
| | - Nana Lv
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Du
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wenqiang Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Byeong-Ryool Jeong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Song Xue
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Antonacci A, Bertalan I, Giardi MT, Scognamiglio V, Turemis M, Fisher D, Johanningmeier U. Enhancing resistance of Chlamydomonas reinhardtii to oxidative stress fusing constructs of heterologous antioxidant peptides into D1 protein. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Nawkarkar P, Chugh S, Sharma S, Jain M, Kajla S, Kumar S. Characterization of the Chloroplast Genome Facilitated the Transformation of Parachlorella kessleri-I, A Potential Marine Alga for Biofuel Production. Curr Genomics 2021; 21:610-623. [PMID: 33414682 PMCID: PMC7770631 DOI: 10.2174/1389202921999201102164754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction The microalga Parachlorella kessleri-I produces high biomass and lipid content that could be suitable for producing economically viable biofuel at a commercial scale. Sequencing the complete chloroplast genome is crucial for the construction of a species-specific chloroplast transformation vector. Methods In this study, the complete chloroplast genome sequence (cpDNA) of P. kessleri-I was assembled; annotated and genetic transformation of the chloroplast was optimized. For the chloroplast transformation, we have tested two antibiotic resistance makers, aminoglycoside adenine transferase (aadA) gene and Sh-ble gene conferring resistance to spectinomycin and zeocin, respectively. Transgene integration and homoplasty determination were confirmed using PCR, Southern blot and Droplet Digital PCR. Results The chloroplast genome (109,642 bp) exhibited a quadripartite structure with two reverse repeat regions (IRA and IRB), a long single copy (LSC), and a small single copy (SSC) region. The genome encodes 116 genes, with 80 protein-coding genes, 32 tRNAs and 4 rRNAs. The cpDNA provided essential information like codons, UTRs and flank sequences for homologous recombination to make a species-specific vector that facilitated the transformation of P. kessleri-I chloroplast. The transgenic algal colonies were retrieved on a TAP medium containing 400 mg. L-1 spectinomycin, but no transgenic was recovered on the zeocin-supplemented medium. PCR and Southern blot analysis ascertained the transgene integration into the chloroplast genome, via homologous recombination. The chloroplast genome copy number in wildtype and transgenic P. kessleri-I was determined using Droplet Digital PCR. Conclusion The optimization of stable chloroplast transformation in marine alga P. kessleri-I should open a gateway for directly engineering the strain for carbon concentration mechanisms to fix more CO2, improving the photosynthetic efficiency and reducing the overall biofuels production cost.
Collapse
Affiliation(s)
- Prachi Nawkarkar
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Sagrika Chugh
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Surbhi Sharma
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Mukesh Jain
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Sachin Kajla
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Shashi Kumar
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| |
Collapse
|
20
|
Chen M, He X, Guo Y, Hu J, Liang B, Zeng K, Yang G. A new molecular design platform for high-performance polymers from versatile bio-based tyramine: a case study of tyramine-derived phthalonitrile resin. Polym Chem 2021. [DOI: 10.1039/d0py01322f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tyramine was first introduced into high-performance polymers as a promising monomer platform; the derived phthalonitrile resin exhibits excellent thermal stability and a high Tg value.
Collapse
Affiliation(s)
- Menghao Chen
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| | - Xian He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| | - Yuhang Guo
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| | - Jianghuai Hu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| | - Bo Liang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| | - Ke Zeng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| | - Gang Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| |
Collapse
|
21
|
The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2020. [DOI: 10.3390/catal11010022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over the last decades, microalgal biomass has gained a significant role in the development of different high-end (nutraceuticals, colorants, food supplements, and pharmaceuticals) and low-end products (biodiesel, bioethanol, and biogas) due to its rapid growth and high carbon-fixing efficiency. Therefore, microalgae are considered a useful and sustainable resource to attain energy security while reducing our current reliance on fossil fuels. From the technologies available for obtaining biofuels using microalgae biomass, thermochemical processes (pyrolysis, Hydrothermal Liquefaction (HTL), gasification) have proven to be processed with higher viability, because they use all biomass. However, due to the complex structure of the biomass (lipids, carbohydrates, and proteins), the obtained biofuels from direct thermochemical conversion have large amounts of heteroatoms (oxygen, nitrogen, and sulfur). As a solution, catalyst-based processes have emerged as a sustainable solution for the increase in biocrude production. This paper’s objective is to present a comprehensive review of recent developments on the catalyst-mediated conversion of algal biomass. Special attention will be given to operating conditions, strains evaluated, and challenges for the optimal yield of algal-based biofuels through pyrolysis and HTL.
Collapse
|
22
|
Tanaka K, Kishi M, Assaye H, Toda T. Low temperatures in dark period affect biomass productivity of a cyanobacterium Arthrospira platensis. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Wang X, Liu SF, Qin ZH, Balamurugan S, Li HY, Lin CSK. Sustainable and stepwise waste-based utilisation strategy for the production of biomass and biofuels by engineered microalgae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114854. [PMID: 32504890 DOI: 10.1016/j.envpol.2020.114854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/04/2020] [Accepted: 05/20/2020] [Indexed: 05/08/2023]
Abstract
Waste streams have emerged as potential feedstocks for biofuel production via microbial bioconversion. Metabolic engineering of the microalga Phaeodactylum tricornutum in its lipid biosynthetic pathways has been conducted with an aim to improve lipid production. However, there has been only limited achievement in satisfying biofuel demands by utilising extracellular organic carbons from low-cost waste streams. Herein, we present a successive staged cultivation mode, based on a previously engineered strain that co-overexpresses two key triacylglycerol biosynthesis genes. We first optimised microalgal biomass and lipid production by using food waste hydrolysate and crude glycerol as the cultivation media. Food waste hydrolysate (5% v/v) is a low-cost organic carbon source for enhanced microalgal biomass production, and the resulting lipid concentration was 1.08-fold higher with food-waste hydrolysate than that of the defined medium. Additionally, the resultant lipid concentration after using crude glycerol (100 mM) was 1.24-fold higher than that using the defined medium. Two carbon feeding modes (hybrid and sequential) were also performed to investigate the potential of engineered P. tricornutum with preliminary mechanistic analyses. The biodiesel properties of lipids produced in the hybrid mode were evaluated for potential application prospects. Collectively, this study demonstrates a waste stream utilisation strategy for efficient and sustainable microalgal biofuel production.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
24
|
Han X, Song X, Li F, Lu Y. Improving lipid productivity by engineering a control-knob gene in the oleaginous microalga Nannochloropsis oceanica. Metab Eng Commun 2020; 11:e00142. [PMID: 32995270 PMCID: PMC7516279 DOI: 10.1016/j.mec.2020.e00142] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023] Open
Abstract
Nannochloropsis spp. are promising industrial microalgae for scalable oil production and the lipid production can be boosted by nutrient starvation and high irradiance. However, these stimuli halt growth, thereby decreasing overall productivity. In this study, we created transgenic N. oceanica where AtDXS gene encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS) derived from Arabidopsis thaliana was overexpressed in vivo. Compared with the wild type (WT), engineered Nannochloropsis showed a higher CO2 absorption capacity and produced more biomass, lipids, and carbohydrates with more robust growth in either preferred conditions or various stressed conditions (low light, high light, nitrogen starvation, and trace element depletion). Specifically, relative to the WT, lipid production increased by ~68.6% in nitrogen depletion (~1.08 g L−1) and ~110.6% in high light (~1.15 g L−1) in the transgenic strains. As for neutral lipid (triacylglycerol, TAG), the engineered strains produced ~93.2% more in nitrogen depletion (~0.77 g L−1) and ~148.6% more in high light (~0.80 g L−1) than the WT. These values exceed available records in engineered industrial microalgae. Therefore, engineering control-knob genes could modify multiple biological processes simultaneously and enable efficient carbon partitioning to lipid biosynthesis with elevated biomass productivity. It could be further exploited for simultaneous enhancement of growth property and oil productivity in more industrial microalgae. An oil-rich strain Nannochloropsis AtDXSoe3 was genetically created. AtDXSoe3 produces ~110.6% more total lipids than wild-type stain. AtDXSoe3 produces ~148.6% more neutral lipid than wild-type stain. AtDXSoe3 exceeds documented engineered microalgae in oil production. Crucial algal traits could be improved by engineering a single ‘control knob’ gene.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, 570228, Hainan Province, China
| | - Xiaojin Song
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
| | - Falan Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, 570228, Hainan Province, China
| |
Collapse
|
25
|
Johansson S, Stephenson P, Edwards R, Yoshida K, Moore C, Terauchi R, Zubkov M, Terry M, Bibby T. Isolation and molecular characterisation of Dunaliella tertiolecta with truncated light-harvesting antenna for enhanced photosynthetic efficiency. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, Labeeuw L, McCauley JI, Kuzhiuparambil U, Ray P, Kahlke T, Ralph PJ. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. FRONTIERS IN PLANT SCIENCE 2020; 11:279. [PMID: 32256509 PMCID: PMC7090149 DOI: 10.3389/fpls.2020.00279] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 05/18/2023]
Abstract
Mankind has recognized the value of land plants as renewable sources of food, medicine, and materials for millennia. Throughout human history, agricultural methods were continuously modified and improved to meet the changing needs of civilization. Today, our rapidly growing population requires further innovation to address the practical limitations and serious environmental concerns associated with current industrial and agricultural practices. Microalgae are a diverse group of unicellular photosynthetic organisms that are emerging as next-generation resources with the potential to address urgent industrial and agricultural demands. The extensive biological diversity of algae can be leveraged to produce a wealth of valuable bioproducts, either naturally or via genetic manipulation. Microalgae additionally possess a set of intrinsic advantages, such as low production costs, no requirement for arable land, and the capacity to grow rapidly in both large-scale outdoor systems and scalable, fully contained photobioreactors. Here, we review technical advancements, novel fields of application, and products in the field of algal biotechnology to illustrate how algae could present high-tech, low-cost, and environmentally friendly solutions to many current and future needs of our society. We discuss how emerging technologies such as synthetic biology, high-throughput phenomics, and the application of internet of things (IoT) automation to algal manufacturing technology can advance the understanding of algal biology and, ultimately, drive the establishment of an algal-based bioeconomy.
Collapse
Affiliation(s)
- Michele Fabris
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| | - Raffaela M. Abbriano
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Donna L. Sutherland
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Audrey S. Commault
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Christopher C. Hall
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Leen Labeeuw
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Janice I. McCauley
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Parijat Ray
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
27
|
Anwar M, Lou S, Chen L, Li H, Hu Z. Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. BIORESOURCE TECHNOLOGY 2019; 292:121972. [PMID: 31444119 DOI: 10.1016/j.biortech.2019.121972] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Recently, ensuring energy security is a key challenge to political and economic strength in the world. Bio-hydrogen production from microalgae is the promising alternative source for potential renewable and self-sustainability energy but still in the initial phase of development. Practically and sustainability of microalgae hydrogen production is still debatable. The genetic engineering and metabolic pathway engineering of hydrogenase and nitrogenase play a key role to enhance hydrogen production. Microalgae have photosynthetic efficiency and synthesize huge carbohydrate biomass, used as 4th generation feedstock to generate bio-hydrogen. Recent genetically modified strains of microalgae are the attractive source for enhancing bio-hydrogen production in the future. The potential of hydrogen production from microRNAs are gaining great interest of researcher. The main objective of this review is attentive discussed recent approaches on new molecular genetics engineering and metabolic pathway developments, modern photo-bioreactors efficiency, economic assessment, limitations and knowledge gap of bio-hydrogen production from microalgae.
Collapse
Affiliation(s)
- Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Sulin Lou
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Liu Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, People's Republic of China.
| |
Collapse
|
28
|
Steadman Tyler CR, Sanders CK, Erickson RS, Dale T, Twary SN, Marrone BL. Functional and phenotypic flow cytometry characterization of Picochlorum soloecismus. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Gallego-Cartagena E, Castillo-Ramírez M, Martínez-Burgos W. Effect of stressful conditions on the carotenogenic activity of a Colombian strain of Dunaliella salina. Saudi J Biol Sci 2019; 26:1325-1330. [PMID: 31762591 PMCID: PMC6864209 DOI: 10.1016/j.sjbs.2019.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022] Open
Abstract
The objective was evaluate the carotenogenic activity of Dunaliella salina isolated from the artificial salt flats of municipality of Manaure (Department of La Guajira, Colombia). Two experimental testings were designed, in triplicate, to induce the reversibility of the cell tonality depending on the culture conditions. In the first test (A), to induce the reversibility from green to red tonality in D. salina cells, these were cultured in J/1 medium at a concentration of 4.0 M NaCl, 390 µmol m-2 s-1, 0.50 mM KNO3. In the second test (B), to induce the reversibility from red to green cell tonality, the cultures were maintained in J/1 medium 1 M NaCl, 190 µmol m-2 s-1, 5.0 mM KNO3 and pH 8.2. The population growth was evaluated by cell count and the pigment content was performed by spectrophotometric techniques. It was found that in both tests the culture conditions influenced the population growth and the pigments production of D. salina. There was a significant difference between the mean values of total carotenoids in the test A with 9.67 ± 0.19 μg/ml and second test with 1.54 ± 0.08 μg/ml at a significance level of p < 0.05. It was demonstrated that the culture conditions of test A induce the production of lipophilic antioxidants, among these carotenoids. The knowledge of the stressful conditions for the production of carotenoids from D. salina isolated from artificial saline of Manaure opens a field in implementation of this biotic resource for biotechnological purposes, production of new antibiotics, nutraceuticals and/or biofuels production.
Collapse
Affiliation(s)
- Euler Gallego-Cartagena
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Colombia
| | - Margarita Castillo-Ramírez
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Colombia
| | - Walter Martínez-Burgos
- Department Bioprocess Engineering and Biotechnology, Federal University of Paraná, Av. Celador Francisco H. dos Santos 210, Curitiba, Paraná, Brazil
| |
Collapse
|
30
|
Nguyen TH, Barnes CL, Agola JP, Sherazi S, Greene LH, Lee JW. Demonstration of horizontal gene transfer from genetically engineered Thermosynechococcus elongatus BP1 to wild-type E. coli DH5α. Gene 2019; 704:49-58. [DOI: 10.1016/j.gene.2019.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 11/28/2022]
|
31
|
Lee JW. Protocol measuring horizontal gene transfer from algae to non-photosynthetic organisms. MethodsX 2019; 6:1564-1574. [PMID: 31309043 PMCID: PMC6607322 DOI: 10.1016/j.mex.2019.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/17/2019] [Indexed: 11/04/2022] Open
Abstract
Horizontal gene transfer (HGT) is a natural process for an organism to transfer genetic material to another organism that is a completely different species, for example, from a blue-green alga to a non-photosynthetic bacterium. The phenomenon of HGT is not only of an interest to the science of molecular genetics and biology, but also to the biosafety issue of genetic engineering. The novel protocol reported here for the first time teaches how to measure HGT from a genetically engineered (GE) blue-green alga (gene donor) to wild-type E. coli (recipient). This novel protocol can be used to measure HGT frequency for both plasmid transgenes and/or genomic transgenes from a donor to recipient organism. According to this novel protocol, the HGT frequency may be calculated from the number of HGT recipient colonies observed, the number of recipient cells plated, and the donor-recipient co-incubation time. This approach can also help test the possible HGT routes to assess whether a HGT is through a direct cell-to-cell interaction or by an indirect cell-to-liquid environment-to-cell process. The protocol may be applied in full and/or in part with adjustments to measure HGT for a wide range of donor and recipient organisms of interest.
Collapse
Affiliation(s)
- James Weifu Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| |
Collapse
|
32
|
Kong F, Yamaoka Y, Ohama T, Lee Y, Li-Beisson Y. Molecular Genetic Tools and Emerging Synthetic Biology Strategies to Increase Cellular Oil Content in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2019; 60:1184-1196. [PMID: 30715500 DOI: 10.1093/pcp/pcz022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 05/26/2023]
Abstract
Microalgae constitute a highly diverse group of eukaryotic and photosynthetic microorganisms that have developed extremely efficient systems for harvesting and transforming solar energy into energy-rich molecules such as lipids. Although microalgae are considered to be one of the most promising platforms for the sustainable production of liquid oil, the oil content of these organisms is naturally low, and algal oil production is currently not economically viable. Chlamydomonas reinhardtii (Chlamydomonas) is an established algal model due to its fast growth, high transformation efficiency, and well-understood physiology and to the availability of detailed genome information and versatile molecular tools for this organism. In this review, we summarize recent advances in the development of genetic manipulation tools for Chlamydomonas, from gene delivery methods to state-of-the-art genome-editing technologies and fluorescent dye-based high-throughput mutant screening approaches. Furthermore, we discuss practical strategies and toolkits that enhance transgene expression, such as choice of expression vector and background strain. We then provide examples of how advanced genetic tools have been used to increase oil content in Chlamydomonas. Collectively, the current literature indicates that microalgal oil content can be increased by overexpressing key enzymes that catalyze lipid biosynthesis, blocking lipid degradation, silencing metabolic pathways that compete with lipid biosynthesis and modulating redox state. The tools and knowledge generated through metabolic engineering studies should pave the way for developing a synthetic biological approach to enhance lipid productivity in microalgae.
Collapse
Affiliation(s)
- Fantao Kong
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yasuyo Yamaoka
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Takeshi Ohama
- School of Environmental Science and Engineering, Kochi University of Technology (KUT), Tosayamada, Kochi, Japan
| | - Youngsook Lee
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Yonghua Li-Beisson
- Aix-Marseille Univ., CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F, France
| |
Collapse
|
33
|
Behera B, Acharya A, Gargey IA, Aly N, P B. Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Bt Md Nasir NAN, Islam AKMA, Anuar N, Yaakob Z. Genetic Improvement and Challenges for Cultivation of Microalgae for Biodiesel: A Review. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180627115502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microalgae are a viable alternative for biofuel production to replace the world dependency on
fossil fuel. It has a wide range of application for the sustainable production of biomaterials. Microalgae
can convert solar energy into important natural components by utilizing marginal nutrients, wastewater
and exhaust CO2 without sharing expensive crop field. Microalgae also have the potentiality to generate
several promising components such as Polyunsaturated Fatty Acids (PUFAs), organic pigments and
pharmaceutically important hydrocarbons. Cultivation and production of microalgae biomass have multifaceted
challenges due to the requirement of large volume of water for the algae growth, high processing
cost and contamination by pathogens. Genetic improvement and modifications are essential to
construct superior microalgae for manufacturing industries using various methods such as selection of
novel strain, stress tolerance, resistance to pathogens, product development and metabolic pathways and
cellular contents. In addition, technologies related to cultivation, harvesting, extraction and processing
are essential to develop for the growth of novel microalgae strains.
Collapse
Affiliation(s)
- Nor-Anis N. Bt Md Nasir
- Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, Kuantan Kampus, 25710, Kuantan, Pahang Darul Makmur, Malaysia
| | - A. K. M. Aminul Islam
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Nurina Anuar
- Department of Chemical and Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Zahira Yaakob
- Department of Chemical and Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
35
|
Arora N, Kumari P, Kumar A, Gangwar R, Gulati K, Pruthi PA, Prasad R, Kumar D, Pruthi V, Poluri KM. Delineating the molecular responses of a halotolerant microalga using integrated omics approach to identify genetic engineering targets for enhanced TAG production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:2. [PMID: 30622644 PMCID: PMC6318984 DOI: 10.1186/s13068-018-1343-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Harnessing the halotolerant characteristics of microalgae provides a viable alternative for sustainable biomass and triacylglyceride (TAG) production. Scenedesmus sp. IITRIND2 is a fast growing fresh water microalga that has the capability to thrive in high saline environments. To understand the microalga's adaptability, we studied its physiological and metabolic flexibility by studying differential protein, metabolite and lipid expression profiles using metabolomics, proteomics, real-time polymerase chain reaction, and lipidomics under high salinity conditions. RESULTS On exposure to salinity, the microalga rewired its cellular reserves and ultrastructure, restricted the ions channels, and modulated its surface potential along with secretion of extrapolysaccharide to maintain homeostasis and resolve the cellular damage. The algal-omics studies suggested a well-organized salinity-driven metabolic adjustment by the microalga starting from increasing the negatively charged lipids, up regulation of proline and sugars accumulation, followed by direction of carbon and energy flux towards TAG synthesis. Furthermore, the omics studies indicated both de-novo and lipid cycling pathways at work for increasing the overall TAG accumulation inside the microalgal cells. CONCLUSION The salt response observed here is unique and is different from the well-known halotolerant microalga; Dunaliella salina, implying diversity in algal response with species. Based on the integrated algal-omics studies, four potential genetic targets belonging to two different metabolic pathways (salt tolerance and lipid production) were identified, which can be further tested in non-halotolerant algal strains.
Collapse
Affiliation(s)
- Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Poonam Kumari
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Amit Kumar
- Centre of Biomedical Research, SGPGIMS, Lucknow, Uttar Pradesh 226014 India
| | - Rashmi Gangwar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Parul A. Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Ramasare Prasad
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS, Lucknow, Uttar Pradesh 226014 India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
- Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
- Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| |
Collapse
|
36
|
Naghshbandi MP, Tabatabaei M, Aghbashlo M, Aftab MN, Iqbal I. Metabolic Engineering of Microalgae for Biofuel Production. Methods Mol Biol 2019; 1980:153-172. [PMID: 30666564 DOI: 10.1007/7651_2018_205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Microalgae are considered as promising cell factories for the production of various types of biofuels, including bioethanol, biodiesel, and biohydrogen by using carbon dioxide and sunlight. In spite of unique advantages of these microorganisms, the commercialization of microalgal biofuels has been hindered by poor economic features. Metabolic engineering is among the most promising strategies put forth to overcome this challenge. In this chapter, metabolic pathways involved in lipid and hydrogen production by microalgae are reviewed and discussed. Moreover, metabolic and genetic engineering approaches investigated for improving the rate of lipid (as a feedstock for biodiesel production) and biohydrogen synthesis are presented. Finally, genetic engineering tools and approaches employed for engineering microalgal metabolic pathways are elaborated. A thorough step-by-step protocol for reconstructing the metabolic pathway of various microorganisms including microalgae is also presented.
Collapse
Affiliation(s)
- Mohammad Pooya Naghshbandi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Meisam Tabatabaei
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran. .,Biofuel Research Team (BRTeam), Karaj, Iran.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Irfana Iqbal
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
37
|
The Potential for Convergence between Synthetic Biology and Bioelectronics. Cell Syst 2018; 7:231-244. [DOI: 10.1016/j.cels.2018.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/30/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023]
|
38
|
Improved DNA/protein delivery in microalgae – A simple and reliable method for the prediction of optimal electroporation settings. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Qian X, Zhang Y, Lun DS, Dismukes GC. Rerouting of Metabolism into Desired Cellular Products by Nutrient Stress: Fluxes Reveal the Selected Pathways in Cyanobacterial Photosynthesis. ACS Synth Biol 2018; 7:1465-1476. [PMID: 29617123 DOI: 10.1021/acssynbio.8b00116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Boosting cellular growth rates while redirecting metabolism to make desired products are the preeminent goals of gene engineering of photoautotrophs, yet so far these goals have been hardly achieved owing to lack of understanding of the functional pathways and their choke points. Here we apply a 13C mass isotopic method (INST-MFA) to quantify instantaneous fluxes of metabolites during photoautotrophic growth. INST-MFA determines the globally most accurate set of absolute fluxes for each metabolite from a finite set of measured 13C-isotopomer fluxes by minimizing the sum of squared residuals between experimental and predicted mass isotopomers. We show that the widely observed shift in biomass composition in cyanobacteria, demonstrated here with Synechococcus sp. PCC 7002, favoring glycogen synthesis during nitrogen starvation is caused by (1) increased flux through a bottleneck step in gluconeogenesis (3PG → GAP/DHAP), and (2) flux overflow through a previously unrecognized hybrid gluconeogenesis-pentose phosphate (hGPP) pathway. Our data suggest the slower growth rate and biomass accumulation under N starvation is due to a reduced carbon fixation rate and a reduced flux of carbon into amino acid precursors. Additionally, 13C flux from α-ketoglutarate to succinate is demonstrated to occur via succinic semialdehyde, an alternative to the conventional TCA cycle, in Synechococcus 7002 under photoautotrophic conditions. We found that pyruvate and oxaloacetate are synthesized mainly by malate dehydrogenase with minimal flux into acetyl coenzyme-A via pyruvate dehydrogenase. Nutrient stress induces major shifts in fluxes into new pathways that deviate from historical metabolic pathways derived from model bacteria.
Collapse
Affiliation(s)
- Xiao Qian
- Waksman Institute, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Yuan Zhang
- Waksman Institute, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Desmond S. Lun
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey 08102, United States
- Department of Computer Science, Rutgers University, Camden, New Jersey 08102, United States
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - G. Charles Dismukes
- Waksman Institute, Rutgers University, New Brunswick, New Jersey 08854, United States
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
40
|
Fei Q, Puri AW, Smith H, Dowe N, Pienkos PT. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:129. [PMID: 29755588 PMCID: PMC5934843 DOI: 10.1186/s13068-018-1128-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 04/23/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Due to the success of shale gas development in the US, the production cost of natural gas has been reduced significantly, which in turn has made methane (CH4), the major component of natural gas, a potential alternative substrate for bioconversion processes compared with other high-price raw material sources or edible feedstocks. Therefore, exploring effective ways to use CH4 for the production of biofuels is attractive. Biological fixation of CH4 by methanotrophic bacteria capable of using CH4 as their sole carbon and energy source has obtained great attention for biofuel production from this resource. RESULTS In this study, a fast-growing and lipid-rich methanotroph, Methylomicrobium buryatense 5GB1 and its glycogen-knock-out mutant (AP18) were investigated for the production of lipids derived from intracellular membranes, which are key precursors for the production of green diesel. The effects of culture conditions on cell growth and lipid production were investigated in high cell density cultivation with continuous feeding of CH4 and O2. The highest dry cell weight observed was 21.4 g/L and the maximum lipid productivity observed was 45.4 mg/L/h obtained in batch cultures, which corresponds to a 2-fold enhancement in cell density and 3-fold improvement in lipid production, compared with previous reported data from cultures of 5GB1. A 90% enhancement of lipid content was achieved by limiting the biosynthesis of glycogen in strain AP18. Increased CH4/O2 uptake and CO2 evaluation rates were observed in AP18 cultures suggesting that more carbon substrate and energy are needed for AP18 growth while producing lipids. The lipid produced by M. buryatense was estimated to have a cetane number of 75, which is 50% higher than biofuel standards requested by US and EU. CONCLUSIONS Cell growth and lipid production were significantly influenced by culture conditions for both 5GB1 and AP18. Enhanced lipid production in terms of titer, productivity, and content was achieved under high cell density culture conditions by blocking glycogen accumulation as a carbon sink in the strain AP18. Differences observed in CH4/O2 gas uptake and CO2 evolution rates as well as cell growth and glycogen accumulation between 5GB1 and AP18 suggest changes in the metabolic network between these strains. This bioconversion process provides a promising opportunity to transform CH4 into biofuel molecules and encourages further investigation to elucidate the remarkable CH4 biofixation mechanism used by these bacteria.
Collapse
Affiliation(s)
- Qiang Fei
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Aaron W. Puri
- Department of Chemical Engineering, University of Washington, Seattle, WA USA
| | - Holly Smith
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Nancy Dowe
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Philip. T. Pienkos
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO USA
| |
Collapse
|
41
|
Corcoran AA, Saunders MA, Hanley AP, Lee PA, Lopez S, Ryan R, Yohn CB. Iterative screening of an evolutionary engineered Desmodesmus generates robust field strains with pesticide tolerance. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Khan MI, Shin JH, Kim JD. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 2018; 17:36. [PMID: 29506528 PMCID: PMC5836383 DOI: 10.1186/s12934-018-0879-x] [Citation(s) in RCA: 681] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/17/2018] [Indexed: 12/18/2022] Open
Abstract
Microalgae have recently attracted considerable interest worldwide, due to their extensive application potential in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae are renewable, sustainable, and economical sources of biofuels, bioactive medicinal products, and food ingredients. Several microalgae species have been investigated for their potential as value-added products with remarkable pharmacological and biological qualities. As biofuels, they are a perfect substitute to liquid fossil fuels with respect to cost, renewability, and environmental concerns. Microalgae have a significant ability to convert atmospheric CO2 to useful products such as carbohydrates, lipids, and other bioactive metabolites. Although microalgae are feasible sources for bioenergy and biopharmaceuticals in general, some limitations and challenges remain, which must be overcome to upgrade the technology from pilot-phase to industrial level. The most challenging and crucial issues are enhancing microalgae growth rate and product synthesis, dewatering algae culture for biomass production, pretreating biomass, and optimizing the fermentation process in case of algal bioethanol production. The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Biotechnology, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749 South Korea
| | - Jin Hyuk Shin
- Department of Biotechnology, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749 South Korea
| | - Jong Deog Kim
- Department of Biotechnology, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749 South Korea
- Research Center on Anti-Obesity and Health Care, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749 South Korea
| |
Collapse
|
43
|
Dyo YM, Purton S. The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology (Reading) 2018; 164:113-121. [DOI: 10.1099/mic.0.000599] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yuliya M. Dyo
- Molecular Research of Microalgae Laboratory, M. A. Ajtkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Department of Biotechnology, Kazakh National Research Technology University, Almaty, Kazakhstan
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
44
|
Gan Q, Jiang J, Han X, Wang S, Lu Y. Engineering the Chloroplast Genome of Oleaginous Marine Microalga Nannochloropsis oceanica. FRONTIERS IN PLANT SCIENCE 2018; 9:439. [PMID: 29696028 PMCID: PMC5904192 DOI: 10.3389/fpls.2018.00439] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/21/2018] [Indexed: 05/21/2023]
Abstract
Plastid engineering offers an important tool to fill the gap between the technical and the enormous potential of microalgal photosynthetic cell factory. However, to date, few reports on plastid engineering in industrial microalgae have been documented. This is largely due to the small cell sizes and complex cell-wall structures which make these species intractable to current plastid transformation methods (i.e., biolistic transformation and polyethylene glycol-mediated transformation). Here, employing the industrial oleaginous microalga Nannochloropsis oceanica as a model, an electroporation-mediated chloroplast transformation approach was established. Fluorescent microscopy and laser confocal scanning microscopy confirmed the expression of the green fluorescence protein, driven by the endogenous plastid promoter and terminator. Zeocin-resistance selection led to an acquisition of homoplasmic strains of which a stable and site-specific recombination within the chloroplast genome was revealed by sequencing and DNA gel blotting. This demonstration of electroporation-mediated chloroplast transformation opens many doors for plastid genome editing in industrial microalgae, particularly species of which the chloroplasts are recalcitrant to chemical and microparticle bombardment transformation.
Collapse
Affiliation(s)
- Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Jiaoyun Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Xiao Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Shifan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
- *Correspondence: Yandu Lu
| |
Collapse
|
45
|
Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:185. [PMID: 29988523 PMCID: PMC6026345 DOI: 10.1186/s13068-018-1181-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/20/2018] [Indexed: 05/03/2023]
Abstract
In the wake of the uprising global energy crisis, microalgae have emerged as an alternate feedstock for biofuel production. In addition, microalgae bear immense potential as bio-cell factories in terms of producing key chemicals, recombinant proteins, enzymes, lipid, hydrogen and alcohol. Abstraction of such high-value products (algal biorefinery approach) facilitates to make microalgae-based renewable energy an economically viable option. Synthetic biology is an emerging field that harmoniously blends science and engineering to help design and construct novel biological systems, with an aim to achieve rationally formulated objectives. However, resources and tools used for such nuclear manipulation, construction of synthetic gene network and genome-scale reconstruction of microalgae are limited. Herein, we present recent developments in the upcoming field of microalgae employed as a model system for synthetic biology applications and highlight the importance of genome-scale reconstruction models and kinetic models, to maximize the metabolic output by understanding the intricacies of algal growth. This review also examines the role played by microalgae as biorefineries, microalgal culture conditions and various operating parameters that need to be optimized to yield biofuel that can be economically competitive with fossil fuels.
Collapse
Affiliation(s)
- Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Avik Banerjee
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Chiranjib Banerjee
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Chandan Guria
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Rameshwar Tiwari
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016 India
| | - Mehak Baweja
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
46
|
Xing J, Liu P, Zhao L, Huang F. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2017; 8:2154. [PMID: 29326747 PMCID: PMC5736878 DOI: 10.3389/fpls.2017.02154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 05/24/2023]
Abstract
The green alga Chlamydomonas reinhardtii is a key model organism for studying photosynthesis and oxidative stress in unicellular eukaryotes. Using a forward genetics approach, we have identified and characterized a mutant x32, which lacks a predicted protein named CGLD1 (Conserved in Green Lineage and Diatom 1) in GreenCut2, under normal and stress conditions. We show that loss of CGLD1 resulted in minimal photoautotrophic growth and PSII activity in the organism. We observed reduced amount of PSII complex and core subunits in the x32 mutant based on blue-native (BN)/PAGE and immunoblot analysis. Moreover, x32 exhibited increased sensitivity to high-light stress and altered tolerance to different reactive oxygenic species (ROS) stress treatments, i.e., decreased resistance to H2O2/or tert-Butyl hydroperoxide (t-BOOH) and increased tolerance to neutral red (NR) and rose bengal (RB) that induce the formation of singlet oxygen, respectively. Further analysis via quantitative real-time PCR (qRT-PCR) indicated that the increased singlet-oxygen tolerance of x32 was largely correlated with up-regulated gene expression of glutathione-S-transferases (GST). The phenotypical and physiological implications revealed from our experiments highlight the important roles of CGLD1 in maintaining structure and function of PSII as well as in protection of Chlamydomonas under photo-oxidative stress conditions.
Collapse
Affiliation(s)
- Jiale Xing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fang Huang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Al-Hawash AB, Zhang X, Ma F. Strategies of codon optimization for high-level heterologous protein expression in microbial expression systems. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Guldhe A, Kumari S, Ramanna L, Ramsundar P, Singh P, Rawat I, Bux F. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:299-315. [PMID: 28803154 DOI: 10.1016/j.jenvman.2017.08.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/28/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Microalgae are recognized as one of the most powerful biotechnology platforms for many value added products including biofuels, bioactive compounds, animal and aquaculture feed etc. However, large scale production of microalgal biomass poses challenges due to the requirements of large amounts of water and nutrients for cultivation. Using wastewater for microalgal cultivation has emerged as a potential cost effective strategy for large scale microalgal biomass production. This approach also offers an efficient means to remove nutrients and metals from wastewater making wastewater treatment sustainable and energy efficient. Therefore, much research has been conducted in the recent years on utilizing various wastewater streams for microalgae cultivation. This review identifies and discusses the opportunities and challenges of different wastewater streams for microalgal cultivation. Many alternative routes for microalgal cultivation have been proposed to tackle some of the challenges that occur during microalgal cultivation in wastewater such as nutrient deficiency, substrate inhibition, toxicity etc. Scope and challenges of microalgal biomass grown on wastewater for various applications are also discussed along with the biorefinery approach.
Collapse
Affiliation(s)
- Abhishek Guldhe
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Luveshan Ramanna
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Prathana Ramsundar
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Poonam Singh
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
49
|
Lim DKY, Schuhmann H, Thomas-Hall SR, Chan KCK, Wass TJ, Aguilera F, Adarme-Vega TC, Dal'Molin CGO, Thorpe GJ, Batley J, Edwards D, Schenk PM. RNA-Seq and metabolic flux analysis of Tetraselmis sp. M8 during nitrogen starvation reveals a two-stage lipid accumulation mechanism. BIORESOURCE TECHNOLOGY 2017; 244:1281-1293. [PMID: 28625352 DOI: 10.1016/j.biortech.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 05/18/2023]
Abstract
To map out key lipid-related pathways that lead to rapid triacylglyceride accumulation in oleaginous microalgae, RNA-Seq was performed with Tetraselmis sp. M8 at 24h after exhaustion of exogenous nitrogen to reveal molecular changes during early stationary phase. Further gene expression profiling by quantitative real-time PCR at 16-72h revealed a distinct shift in expression of the fatty acid/triacylglyceride biosynthesis and β-oxidation pathways, when cells transitioned from log-phase into early-stationary and stationary phase. Metabolic reconstruction modeling combined with real-time PCR and RNA-Seq gene expression data indicates that the increased lipid accumulation is a result of a decrease in lipid catabolism during the early-stationary phase combined with increased metabolic fluxes in lipid biosynthesis during the stationary phase. During these two stages, Tetraselmis shifts from reduced lipid consumption to active lipid production. This process appears to be independent from DGAT expression, a key gene for lipid accumulation in microalgae.
Collapse
Affiliation(s)
- David K Y Lim
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Holger Schuhmann
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Skye R Thomas-Hall
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Kenneth C K Chan
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia; School of Plant Biology, The University of Western Australia, Perth 6009, Australia
| | - Taylor J Wass
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Felipe Aguilera
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| | - T Catalina Adarme-Vega
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Cristiana G O Dal'Molin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Glen J Thorpe
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia; School of Plant Biology, The University of Western Australia, Perth 6009, Australia
| | - David Edwards
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia; School of Plant Biology, The University of Western Australia, Perth 6009, Australia
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
50
|
Kacar B, Hanson‐Smith V, Adam ZR, Boekelheide N. Constraining the timing of the Great Oxidation Event within the Rubisco phylogenetic tree. GEOBIOLOGY 2017; 15:628-640. [PMID: 28670785 PMCID: PMC5575542 DOI: 10.1111/gbi.12243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/09/2017] [Indexed: 05/04/2023]
Abstract
Ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO, or Rubisco) catalyzes a key reaction by which inorganic carbon is converted into organic carbon in the metabolism of many aerobic and anaerobic organisms. Across the broader Rubisco protein family, homologs exhibit diverse biochemical characteristics and metabolic functions, but the evolutionary origins of this diversity are unclear. Evidence of the timing of Rubisco family emergence and diversification of its different forms has been obscured by a meager paleontological record of early Earth biota, their subcellular physiology and metabolic components. Here, we use computational models to reconstruct a Rubisco family phylogenetic tree, ancestral amino acid sequences at branching points on the tree, and protein structures for several key ancestors. Analysis of historic substitutions with respect to their structural locations shows that there were distinct periods of amino acid substitution enrichment above background levels near and within its oxygen-sensitive active site and subunit interfaces over the divergence between Form III (associated with anoxia) and Form I (associated with oxia) groups in its evolutionary history. One possible interpretation is that these periods of substitutional enrichment are coincident with oxidative stress exerted by the rise of oxygenic photosynthesis in the Precambrian era. Our interpretation implies that the periods of Rubisco substitutional enrichment inferred near the transition from anaerobic Form III to aerobic Form I ancestral sequences predate the acquisition of Rubisco by fully derived cyanobacterial (i.e., dual photosystem-bearing, oxygen-evolving) clades. The partitioning of extant lineages at high clade levels within our Rubisco phylogeny indicates that horizontal transfer of Rubisco is a relatively infrequent event. Therefore, it is possible that the mutational enrichment periods between the Form III and Form I common ancestral sequences correspond to the adaptation of key oxygen-sensitive components of Rubisco prior to, or coincident with, the Great Oxidation Event.
Collapse
Affiliation(s)
- B. Kacar
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - V. Hanson‐Smith
- Department of Microbiology and ImmunologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Z. R. Adam
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
| | | |
Collapse
|