1
|
Shen T, Liu X. Unveiling the photophysical mechanistic mysteries of tetrazine-functionalized fluorogenic labels. Chem Sci 2025; 16:4595-4613. [PMID: 39906389 PMCID: PMC11789511 DOI: 10.1039/d4sc07018f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Tetrazine-based fluorogenic labels are widely utilized in medical and biological studies, exhibiting substantial fluorescence enhancement (FE) following tetrazine degradation through bio-orthogonal reactions. However, the underlying mechanisms driving this fluorogenic response remain only partially resolved, particularly regarding the diminished FE efficiency in the deep-red and near-infrared (NIR) regions. This knowledge gap has impeded efforts to optimize these labels for extended emission wavelengths and improved FE ratios. This review offers a photophysical perspective, discussing the fluorescence quenching pathways (i.e., energy flows and charge separation) that regulate the fluorogenic properties exhibited in various types of tetrazine labels. Moreover, this work examines the emerging role of intramolecular rotations in certain tetrazine-based structures and the integration of additional quencher units. The proposed alternative quenching channel offers the potential to surpass traditional wavelength constraints while achieving improved FE. By examining these photophysical mechanisms, this review aims to advance the understanding of tetrazine-functionalized fluorogenic labels and provide guiding principles for their future design and practical applications.
Collapse
Affiliation(s)
- Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Xiaogang Liu
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| |
Collapse
|
2
|
Yang C, Lu K, Li J, Wu H, Chen W. Rapid Construction of 18F-Triazolyl-tetrazines through the Click Reaction. J Org Chem 2024; 89:14673-14678. [PMID: 38875503 DOI: 10.1021/acs.joc.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Due to the fast reaction rate, 18F-labeled tetrazines have been widely applied in positron emission tomography (PET) imaging in cancer research and drug discovery. In this work, several functional 18F-triazolyl-tetrazines were rapidly obtained through an optimized copper-catalyzed alkyene-azide cycloaddition reaction system in >99% radiochemical conversions. Notably, the commonly used 18F-labeled azides were isolated through cartridges and directly used for cycloadditions, which greatly simplified the labeling procedure. The assembled triazolyl-tetrazines demonstrated high in vitro stability and reaction kinetics, exhibiting considerable potential for the development of PET agents.
Collapse
Affiliation(s)
- Cheng Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, Chengdu 610041, China
| | - Kai Lu
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, Chengdu 610041, China
| | - Haoxing Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, Chengdu 610041, China
| | - Wei Chen
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Fu Y, Simeth NA, Szymanski W, Feringa BL. Visible and near-infrared light-induced photoclick reactions. Nat Rev Chem 2024; 8:665-685. [PMID: 39112717 DOI: 10.1038/s41570-024-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Photoclick reactions combine the advantages offered by light-driven processes, that is, non-invasive and high spatiotemporal control, with classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photocrosslinking, protein labelling and bioimaging. Despite these advances, most photoclick reactions typically require near-ultraviolet (UV) and mid-UV light to proceed. UV light can trigger undesirable responses, including cellular apoptosis, and therefore, visible and near-infrared light-induced photoclick reaction systems are highly desirable. Shifting to a longer wavelength can also reduce degradation of the photoclick reagents and products. Several strategies have been used to induce a bathochromic shift in the wavelength of irradiation-initiating photoclick reactions. For instance, the extension of the conjugated π-system, triplet-triplet energy transfer, multi-photon excitation, upconversion technology, photocatalytic and photoinitiation approaches, and designs involving photocages have all been used to achieve this goal. Current design strategies, recent advances and the outlook for long wavelength-driven photoclick reactions are presented.
Collapse
Affiliation(s)
- Youxin Fu
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Göttingen, Germany.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Šlachtová V, Motornov V, Beier P, Vrabel M. Bioorthogonal Cycloadditions of C3-Trifluoromethylated 1,2,4-Triazines with trans-Cyclooctenes. Chemistry 2024; 30:e202400839. [PMID: 38739300 DOI: 10.1002/chem.202400839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
1,2,4-triazines are a valuable class of heterodienes that can be employed in inverse electron-demand Diels-Alder reactions. However, their broader application in bioorthogonal chemistry is limited due to their low reactivity. This article focuses on 3-(trifluoromethyl)-1,2,4-triazines, which can be efficiently prepared in a one-pot reaction from NH-1,2,3-triazoles. These triazines are highly reactive in reactions with strained cyclooctenes, giving second-order rate constants as high as 230 M-1 s-1. Despite their high reactivity, the compounds remain sufficiently stable under biologically relevant conditions. We show that some of the compounds are fluorogenic, a property of potential use in bioimaging. In addition, we demonstrate the successful application of the triazines in labeling model biomolecules. Our work shows that the reactivity of 1,2,4-triazines can be enhanced by the 3-CF3-substitution, which we consider an important step toward the wider use of this promising class of reagents.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Vladimir Motornov
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| |
Collapse
|
5
|
Tran JC, Kuffner CJ, Marzilli AM, Miller RE, Silfen ZE, McMahan JB, Sloas DC, Chen CS, Ngo JT. Fluorescein-Based SynNotch Adaptors for Regulating Gene Expression Responses to Diverse Extracellular Cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598538. [PMID: 38915575 PMCID: PMC11195177 DOI: 10.1101/2024.06.12.598538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
We introduce an adaptor-based strategy for regulating fluorescein-binding synthetic Notch (SynNotch) receptors using ligands based on conjugates of fluorescein isomers and analogs. To develop a versatile system, we evaluated the surface expression and activities of multiple constructs containing distinct extracellular fluorescein-binding domains. Using an optimized receptor, we devised ways to regulate signaling via fluorescein-based chemical transformations, including an approach based on a bio-orthogonal chemical ligation and a spatially controllable strategy via the photo-patterned uncaging of an o -nitrobenzyl-caged fluorescein conjugate. We further demonstrate that fluorescein-conjugated extracellular matrix (ECM)-binding peptides can regulate SynNotch activity depending on the folding state of collagen-based ECM networks. Treatment with these conjugates enabled cells to distinguish between folded versus denatured collagen proteins and enact dose-dependent gene expression responses depending on the nature of the signaling adaptors presented. To demonstrate the utility of these tools, we applied them to control the myogenic conversion of fibroblasts into myocytes with spatial and temporal precision and in response to denatured collagen-I, a biomarker of multiple pathological states. Overall, we introduce an optimized fluorescein-binding SynNotch as a versatile tool for regulating transcriptional responses to extracellular ligands based on the widely used and clinically-approved fluorescein dye.
Collapse
|
6
|
Mitry MMA, Dallas ML, Boateng SY, Greco F, Osborn HMI. Selective activation of prodrugs in breast cancer using metabolic glycoengineering and the tetrazine ligation bioorthogonal reaction. Bioorg Chem 2024; 147:107304. [PMID: 38643563 DOI: 10.1016/j.bioorg.2024.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Abstract
Increasing the selectivity of chemotherapies by converting them into prodrugs that can be activated at the tumour site decreases their side effects and allows discrimination between cancerous and non-cancerous cells. Herein, the use of metabolic glycoengineering (MGE) to selectively label MCF-7 breast cancer cells with tetrazine (Tz) activators for subsequent activation of prodrugs containing the trans-cyclooctene (TCO) moiety by a bioorthogonal reaction is demonstrated. Three novel Tz-modified monosaccharides, Ac4ManNTz 7, Ac4GalNTz 8, and Ac4SiaTz 16, were used for expression of the Tz activator within sialic-acid rich breast cancer cells' surface glycans through MGE. Tz expression on breast cancer cells (MCF-7) was evaluated versus the non-cancerous L929 fibroblasts showing a concentration-dependant effect and excellent selectivity with ≥35-fold Tz expression on the MCF-7 cells versus the non-cancerous L929 fibroblasts. Next, a novel TCO-N-mustard prodrug and a TCO-doxorubicin prodrug were analyzed in vitro on the Tz-bioengineered cells to probe our hypothesis that these could be activated via a bioorthogonal reaction. Selective prodrug activation and restoration of cytotoxicity were demonstrated for the MCF-7 breast cancer cells versus the non-cancerous L929 cells. Restoration of the parent drug's cytotoxicity was shown to be dependent on the level of Tz expression where the Ac4ManNTz 7 and Ac4GalNTz 8 derivatives (20 µM) lead to the highest Tz expression and full restoration of the parent drug's cytotoxicity. This work suggests the feasibility of combining MGE and tetrazine ligation for selective prodrug activation in breast cancer.
Collapse
Affiliation(s)
- Madonna M A Mitry
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD. UK; Dept. of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| | - Mark L Dallas
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD. UK.
| | - Samuel Y Boateng
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK.
| | - Francesca Greco
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD. UK.
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD. UK.
| |
Collapse
|
7
|
Peschke F, Taladriz‐Sender A, Andrews MJ, Watson AJB, Burley GA. Glutathione Mediates Control of Dual Differential Bio-orthogonal Labelling of Biomolecules. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202313063. [PMID: 38515866 PMCID: PMC10953330 DOI: 10.1002/ange.202313063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 03/23/2024]
Abstract
Traditional approaches to bio-orthogonal reaction discovery have focused on developing reagent pairs that react with each other faster than they are metabolically degraded. Glutathione (GSH) is typically responsible for the deactivation of most bio-orthogonal reagents. Here we demonstrate that GSH promotes a Cu-catalysed (3+2) cycloaddition reaction between an ynamine and an azide. We show that GSH acts as a redox modulator to control the Cu oxidation state in these cycloadditions. Rate enhancement of this reaction is specific for ynamine substrates and is tuneable by the Cu:GSH ratio. This unique GSH-mediated reactivity gradient is then utilised in the dual sequential bio-orthogonal labelling of peptides and oligonucleotides via two distinct chemoselective (3+2) cycloadditions.
Collapse
Affiliation(s)
- Frederik Peschke
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Andrea Taladriz‐Sender
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Matthew J. Andrews
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Glenn A. Burley
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| |
Collapse
|
8
|
Peschke F, Taladriz‐Sender A, Andrews MJ, Watson AJB, Burley GA. Glutathione Mediates Control of Dual Differential Bio-orthogonal Labelling of Biomolecules. Angew Chem Int Ed Engl 2023; 62:e202313063. [PMID: 37906440 PMCID: PMC10952886 DOI: 10.1002/anie.202313063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Traditional approaches to bio-orthogonal reaction discovery have focused on developing reagent pairs that react with each other faster than they are metabolically degraded. Glutathione (GSH) is typically responsible for the deactivation of most bio-orthogonal reagents. Here we demonstrate that GSH promotes a Cu-catalysed (3+2) cycloaddition reaction between an ynamine and an azide. We show that GSH acts as a redox modulator to control the Cu oxidation state in these cycloadditions. Rate enhancement of this reaction is specific for ynamine substrates and is tuneable by the Cu:GSH ratio. This unique GSH-mediated reactivity gradient is then utilised in the dual sequential bio-orthogonal labelling of peptides and oligonucleotides via two distinct chemoselective (3+2) cycloadditions.
Collapse
Affiliation(s)
- Frederik Peschke
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Andrea Taladriz‐Sender
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Matthew J. Andrews
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Glenn A. Burley
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| |
Collapse
|
9
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
10
|
Rojas-Luna R, Castillo-Rodríguez M, Ruiz JR, Jiménez-Sanchidrián C, Esquivel D, Romero-Salguero FJ. Ru- and Ir-complex decorated periodic mesoporous organosilicas as sensitizers for artificial photosynthesis. Dalton Trans 2022; 51:18708-18721. [PMID: 36448984 DOI: 10.1039/d2dt03147g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A versatile and facile strategy based on an inverse electron demand Diels-Alder reaction between 5-norbornen-2-yltriethoxysilane and a tetrazine derivative has been established for the synthesis of a new triethoxysilane precursor containing dipyridylpyridazine units. Such a precursor has been incorporated into the mesostructure of an ethylene-bridged periodic mesoporous organosilica (PMO) material through a one-pot synthesis via a co-condensation method. Upon attachment of Ru- and Ir-complexes to the pendant N-chelating heterocyclic ligands, the resulting decorated PMOs have acted as photosensitizers in artificial photosynthetic systems. The deposition of Pt on these PMOs has allowed us to obtain efficient photocatalytic materials for the hydrogen evolution reaction as a result of electron transfer from the light harvesting Ru- and Ir-complexes to the supported Pt nanoparticles through methyl viologen as an electron relay. They have exhibited total turnover number values of 573 and 846, respectively, under visible light irradiation. The role played by each component and the stability of the photocatalytic systems have been discussed. The present approach paves the way to the synthesis of different materials with coordination sites capable of forming surface complexes to be applied as sensitizers and catalysts.
Collapse
Affiliation(s)
- Raúl Rojas-Luna
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain.
| | - Miguel Castillo-Rodríguez
- Departamento de Física Aplicada, Radiología y Medicina Física, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - José R Ruiz
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain.
| | - César Jiménez-Sanchidrián
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain.
| | - Dolores Esquivel
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain.
| | - Francisco J Romero-Salguero
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain.
| |
Collapse
|
11
|
Andersen IV, García-Vázquez R, Battisti UM, Herth MM. Optimization of Direct Aromatic 18F-Labeling of Tetrazines. Molecules 2022; 27:molecules27134022. [PMID: 35807267 PMCID: PMC9268649 DOI: 10.3390/molecules27134022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Radiolabeling of tetrazines has gained increasing attention due to their important role in pretargeted imaging or therapy. The most commonly used radionuclide in PET imaging is fluorine-18. For this reason, we have recently developed a method which enables the direct aromatic 18F-fluorination of tetrazines using stannane precursors through copper-mediated fluorinations. Herein, we further optimized this labeling procedure. 3-(3-fluorophenyl)-1,2,4,5-tetrazine was chosen for this purpose because of its high reactivity and respective limited stability during the labeling process. By optimizing parameters such as elution conditions, precursor amount, catalyst, time or temperature, the radiochemical yield (RCY) could be increased by approximately 30%. These conditions were then applied to optimize the RCY of a recently successfully developed and promising pretargeting imaging agent. This agent could be isolated in a decay corrected RCY of 14 ± 3% and Am of 201 ± 30 GBq/µmol in a synthesis time of 70 min. Consequently, the RCY increased by 27%.
Collapse
Affiliation(s)
- Ida Vang Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
12
|
Battisti UM, García-Vázquez R, Svatunek D, Herrmann B, Löffler A, Mikula H, Herth MM. Synergistic Experimental and Computational Investigation of the Bioorthogonal Reactivity of Substituted Aryltetrazines. Bioconjug Chem 2022; 33:608-624. [PMID: 35290735 PMCID: PMC9026259 DOI: 10.1021/acs.bioconjchem.2c00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Tetrazines (Tz) have
been applied as bioorthogonal agents for various
biomedical applications, including pretargeted imaging approaches.
In radioimmunoimaging, pretargeting increases the target-to-background
ratio while simultaneously reducing the radiation burden. We have
recently reported a strategy to directly 18F-label highly
reactive tetrazines based on a 3-(3-fluorophenyl)-Tz core structure.
Herein, we report a kinetic study on this versatile scaffold. A library
of 40 different tetrazines was prepared, fully characterized, and
investigated with an emphasis on second-order rate constants for the
reaction with trans-cyclooctene (TCO). Our results
reveal the effects of various substitution patterns and moreover demonstrate
the importance of measuring reactivities in the solvent of interest,
as click rates in different solvents do not necessarily correlate
well. In particular, we report that tetrazines modified in the 2-position
of the phenyl substituent show high intrinsic reactivity toward TCO,
which is diminished in aqueous systems by unfavorable solvent effects.
The obtained results enable the prediction of the bioorthogonal reactivity
and thereby facilitate the development of the next generation of substituted
aryltetrazines for in vivo applications.
Collapse
Affiliation(s)
- Umberto M Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Barbara Herrmann
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Andreas Löffler
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
García-Vázquez R, Jørgensen JT, Bratteby KE, Shalgunov V, Hvass L, Herth MM, Kjær A, Battisti UM. Development of 18F-Labeled Bispyridyl Tetrazines for In Vivo Pretargeted PET Imaging. Pharmaceuticals (Basel) 2022; 15:ph15020245. [PMID: 35215356 PMCID: PMC8879724 DOI: 10.3390/ph15020245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Pretargeted PET imaging is an emerging and fast-developing method to monitor immuno-oncology strategies. Currently, tetrazine ligation is considered the most promising bioorthogonal reaction for pretargeting in vivo. Recently, we have developed a method to 18F-label ultrareactive tetrazines by copper-mediated fluorinations. However, bispyridyl tetrazines—one of the most promising structures for in vivo pretargeted applications—were inaccessible using this strategy. We believed that our successful efforts to 18F-label H-tetrazines using low basic labeling conditions could also be used to label bispyridyl tetrazines via aliphatic nucleophilic substitution. Here, we report the first direct 18F-labeling of bispyridyl tetrazines, their optimization for in vivo use, as well as their successful application in pretargeted PET imaging. This strategy resulted in the design of [18F]45, which could be labeled in a satisfactorily radiochemical yield (RCY = 16%), molar activity (Am = 57 GBq/µmol), and high radiochemical purity (RCP > 98%). The [18F]45 displayed a target-to-background ratio comparable to previously successfully applied tracers for pretargeted imaging. This study showed that bispyridyl tetrazines can be developed into pretargeted imaging agents. These structures allow an easy chemical modification of 18F-labeled tetrazines, paving the road toward highly functionalized pretargeting tools. Moreover, bispyridyl tetrazines led to near-instant drug release of iTCO-tetrazine-based ‘click-to-release’ reactions. Consequently, 18F-labeled bispyridyl tetrazines bear the possibility to quantify such release in vivo in the future.
Collapse
Affiliation(s)
- Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jesper Tranekjær Jørgensen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark; (J.T.J.); (L.H.)
| | - Klas Erik Bratteby
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 22242 Lund, Sweden
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Lars Hvass
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark; (J.T.J.); (L.H.)
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Correspondence: (M.M.H.); (A.K.); (U.M.B.)
| | - Andreas Kjær
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark; (J.T.J.); (L.H.)
- Correspondence: (M.M.H.); (A.K.); (U.M.B.)
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Correspondence: (M.M.H.); (A.K.); (U.M.B.)
| |
Collapse
|
14
|
Garst EH, Das T, Hang HC. Chemical approaches for investigating site-specific protein S-fatty acylation. Curr Opin Chem Biol 2021; 65:109-117. [PMID: 34333222 PMCID: PMC8671186 DOI: 10.1016/j.cbpa.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
Protein S-fatty acylation or S-palmitoylation is a reversible and regulated lipid post-translational modification (PTM) in eukaryotes. Loss-of-function mutagenesis studies have suggested important roles for protein S-fatty acylation in many fundamental biological pathways in development, neurobiology, and immunity that are also associated with human diseases. However, the hydrophobicity and reversibility of this PTM have made site-specific gain-of-function studies more challenging to investigate. In this review, we summarize recent chemical biology approaches and methods that have enabled site-specific gain-of-function studies of protein S-fatty acylation and the investigation of the mechanisms and significance of this PTM in eukaryotic biology.
Collapse
Affiliation(s)
- Emma H Garst
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States; Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
| | - Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States; Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States; Departments of Immunology and Microbiology and Chemistry, Scripps Research, La Jolla, CA 92037, United States.
| |
Collapse
|
15
|
Hapuarachchige S, Si G, Huang CT, Lesniak WG, Mease RC, Guo X, Gabrielson K, Artemov D. Dual-Modality PET-SPECT Image-Guided Pretargeting Delivery in HER2(+) Breast Cancer Models. Biomacromolecules 2021; 22:4606-4617. [PMID: 34704434 PMCID: PMC8578463 DOI: 10.1021/acs.biomac.1c00918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pretargeted drug delivery has been explored for decades as a promising approach in cancer therapy. An image-guided pretargeting strategy significantly enhances the intrinsic advantages of this approach since imaging the pretargeting step can be used for diagnostic purposes, while imaging of the drug delivery step can be utilized to evaluate drug distribution and assess therapeutic response. A trastuzumab (Tz)-based HER2 pretargeting component (Tz-TCO-[89Zr-DFO]) was developed by conjugating with trans-cyclooctene (TCO) bioorthogonal click chemistry functional groups and deferoxamine (DFO) to enable radiolabeling with a 89Zr PET tracer. The drug delivery component (HSA-DM1-Tt-[99mTc-HyNic]) was developed by conjugating human serum albumin (HSA) with mertansine (DM1), tetrazine (Tt) functional groups, and a HyNic chelator and radiolabeling with 99mTc. For ex vivo biodistribution studies, pretargeting and delivery components (without drug) were administered subsequently to mice bearing human HER2(+) breast cancer xenografts, and a high tumor uptake of Tz-TCO-[89Zr-DFO] (26.4% ID/g) and HSA-Tt-[99mTc-HyNic] (4.6% ID/g) was detected at 24 h postinjection. In vivo treatment studies were performed in the same HER2(+) breast cancer model using PET-SPECT image guidance. The increased tumor uptake of the pretargeting and drug delivery components was detected by PET-CT and SPECT-CT, respectively. The study showed a significant 92% reduction of the relative tumor volume in treated mice (RTV = 0.08 in 26 days), compared to the untreated control mice (RTV = 1.78 in 11 days) and to mice treated with only HSA-DM1-Tt-[99mTc-HyNic] (RTV = 1.88 in 16 days). Multimodality PET-SPECT image-guided and pretargeted drug delivery can be utilized to maximize efficacy, predict therapeutic response, and minimize systemic toxicity.
Collapse
Affiliation(s)
- Sudath Hapuarachchige
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, Maryland 21287, United States
| | - Ge Si
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Colin T Huang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Wojciech G Lesniak
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Ronnie C Mease
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, Maryland 21287, United States
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, United States
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, United States
| | - Dmitri Artemov
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, Maryland 21287, United States
| |
Collapse
|
16
|
Battisti UM, Bratteby K, Jørgensen JT, Hvass L, Shalgunov V, Mikula H, Kjær A, Herth MM. Development of the First Aliphatic 18F-Labeled Tetrazine Suitable for Pretargeted PET Imaging-Expanding the Bioorthogonal Tool Box. J Med Chem 2021; 64:15297-15312. [PMID: 34649424 DOI: 10.1021/acs.jmedchem.1c01326] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pretargeted imaging of nanomedicines have attracted considerable interest because it has the potential to increase imaging contrast while reducing radiation burden to healthy tissue. Currently, the tetrazine ligation is the fastest bioorthogonal reaction for this strategy and, consequently, the state-of-art choice for in vivo chemistry. We have recently identified key properties for tetrazines in pretargeting. We have also developed a method to 18F-label reactive tetrazines using an aliphatic nucleophilic substitution strategy. Here, we combined this knowledge and developed an 18F-labeled tetrazine for pretargeted imaging. In order to develop this ligand, a small SAR study was performed. The most promising compound was selected for labeling and subsequent positron-emission-tomography in vivo imaging. Radiolabeling was achieved in satisfactory yields, molar activities, and high radiochemical purities. [18F]15 displayed favorable pharmacokinetics and remarkable target-to-background ratios-as early as 1 h post injection. We believe that this agent could be a promising candidate for translation into clinical studies.
Collapse
Affiliation(s)
- Umberto M Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Klas Bratteby
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.,Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 22242 Lund, Sweden
| | - Jesper T Jørgensen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Lars Hvass
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Andreas Kjær
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Quiñones RE, Wu ZC, Boger DL. Reaction Scope of Methyl 1,2,3-Triazine-5-carboxylate with Amidines and the Impact of C4/C6 Substitution. J Org Chem 2021; 86:13465-13474. [PMID: 34499494 DOI: 10.1021/acs.joc.1c01553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A comprehensive study of the reaction scope of methyl 1,2,3-triazine-5-carboxylate (3a) with alkyl and aryl amidines is disclosed, reacting at room temperature at remarkable rates (<5 min, 0.1 M in CH3CN) nearly 10000-fold faster than that of unsubstituted 1,2,3-triazine and providing the product pyrimidines in high yields. C4 Methyl substitution of the 1,2,3-triazine (3b) had little effect on the rate of the reaction, whereas C4/C6 dimethyl substitution (3c) slowed the room-temperature reaction (<24 h, 0.25 M) but displayed an unaltered scope, providing the product pyrimidines in similarly high yields. Measured second-order rate constants of the reaction of 3a-c, the corresponding nitriles 3e and 3f, and 1,2,3-triazine itself (3d) with benzamidine and substituted derivatives quantitated the remarkable reactivity of 3a and 3e, verified the inverse electron demand nature of the reaction (Hammett ρ = -1.50 for substituted amidines, ρ = +7.9 for 5-substituted 1,2,3-triazine), and provided a quantitative measure of the impact of 4-methyl and 4,6-dimethyl substitution on the reactivity of the methyl 1,2,3-triazine-5-carboxylate and 5-cyano-1,2,3-triazine core heterocycles.
Collapse
|
18
|
Bilodeau DA, Margison KD, Serhan M, Pezacki JP. Bioorthogonal Reactions Utilizing Nitrones as Versatile Dipoles in Cycloaddition Reactions. Chem Rev 2021; 121:6699-6717. [PMID: 33464040 DOI: 10.1021/acs.chemrev.0c00832] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemical reactions have emerged as convenient and rapid methods for incorporating unnatural functionality into living systems. Different prototype reactions have been optimized for use in biological settings. Optimization of 3 + 2 dipolar cycloadditions involving nitrones has resulted in highly efficient reaction conditions for bioorthogonal chemistry. Through substitution at the nitrone carbon or nitrogen atom, stereoelectronic tuning of the reactivity of the dipole has assisted in optimizing reactivity. Nitrones have been shown to react rapidly with cyclooctynes with bimolecular rate constants approaching k2 = 102 M-1 s-1, which are among the fastest bioorthogonal reactions reported (McKay et al. Org. Biomol. Chem. 2012, 10, 3066-3070). Nitrones have also been shown to react with trans-cyclooctenes (TCO) in strain-promoted TCO-nitrone cycloadditions reactions. Copper catalyzed reactions involving alkynes and nitrones have also been optimized for applications in biology. This review provides a comprehensive accounting of the different bioorthogonal reactions that have been developed using nitrones as versatile reactants, and provides some recent examples of applications for probing biological systems.
Collapse
Affiliation(s)
- Didier A Bilodeau
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Kaitlyn D Margison
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Mariam Serhan
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
19
|
Garst EH, Lee H, Das T, Bhattacharya S, Percher A, Wiewiora R, Witte IP, Li Y, Peng T, Im W, Hang HC. Site-Specific Lipidation Enhances IFITM3 Membrane Interactions and Antiviral Activity. ACS Chem Biol 2021; 16:844-856. [PMID: 33887136 DOI: 10.1021/acschembio.1c00013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interferon-induced transmembrane proteins (IFITMs) are S-palmitoylated proteins in vertebrates that restrict a diverse range of viruses. S-palmitoylated IFITM3 in particular engages incoming virus particles, prevents their cytoplasmic entry, and accelerates their lysosomal clearance by host cells. However, how S-palmitoylation modulates the structure and biophysical characteristics of IFITM3 to promote its antiviral activity remains unclear. To investigate how site-specific S-palmitoylation controls IFITM3 antiviral activity, we employed computational, chemical, and biophysical approaches to demonstrate that site-specific lipidation of cysteine 72 enhances the antiviral activity of IFITM3 by modulating its conformation and interaction with lipid membranes. Collectively, our results demonstrate that site-specific S-palmitoylation of IFITM3 directly alters its biophysical properties and activity in cells to prevent virus infection.
Collapse
Affiliation(s)
- Emma H. Garst
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional Ph.D. Program in Chemical Biology, New York, New York 10065, United States
| | - Hwayoung Lee
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional Ph.D. Program in Chemical Biology, New York, New York 10065, United States
| | | | - Avital Percher
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Rafal Wiewiora
- Tri-Institutional Ph.D. Program in Chemical Biology, New York, New York 10065, United States
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Isaac P. Witte
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Yumeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wonpil Im
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Howard C. Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
- Departments of Immunology and Microbiology and Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
20
|
Dzijak R, Galeta J, Vázquez A, Kozák J, Matoušová M, Fulka H, Dračínský M, Vrabel M. Structurally Redesigned Bioorthogonal Reagents for Mitochondria-Specific Prodrug Activation. JACS AU 2021; 1:23-30. [PMID: 33554213 PMCID: PMC7851953 DOI: 10.1021/jacsau.0c00053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 06/05/2023]
Abstract
The development of abiotic chemical reactions that can be performed in an organelle-specific manner can provide new opportunities in drug delivery and cell and chemical biology. However, due to the complexity of the cellular environment, this remains a significant challenge. Here, we introduce structurally redesigned bioorthogonal tetrazine reagents that spontaneously accumulate in mitochondria of live mammalian cells. The attributes leading to their efficient accumulation in the organelle were optimized to include the right combination of lipophilicity and positive delocalized charge. The best performing mitochondriotropic tetrazines enable subcellular chemical release of TCO-caged compounds as we show using fluorogenic substrates and mitochondrial uncoupler niclosamide. Our work demonstrates that a shrewd redesign of common bioorthogonal reagents can lead to their transformation into organelle-specific probes, opening the possibility to activate prodrugs and manipulate biological processes at the subcellular level by using purely chemical tools.
Collapse
Affiliation(s)
- Rastislav Dzijak
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Juraj Galeta
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Arcadio Vázquez
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Jaroslav Kozák
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Marika Matoušová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Helena Fulka
- Department
of Cell Nucleus Plasticity, Institute of
Experimental Medicine of the Czech Academy of Sciences, Víden̆ská 1083, 14220 Prague, Czech Republic
| | - Martin Dračínský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Milan Vrabel
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| |
Collapse
|
21
|
Pinto‐Pacheco B, Carbery WP, Khan S, Turner DB, Buccella D. Fluorescence Quenching Effects of Tetrazines and Their Diels–Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Brismar Pinto‐Pacheco
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| | - William P. Carbery
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| | - Sameer Khan
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| | - Daniel B. Turner
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
- Current address: Micron School of Materials Science and Engineering Boise State University Boise ID 83725 USA
| | - Daniela Buccella
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
22
|
Pinto-Pacheco B, Carbery WP, Khan S, Turner DB, Buccella D. Fluorescence Quenching Effects of Tetrazines and Their Diels-Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency. Angew Chem Int Ed Engl 2020; 59:22140-22149. [PMID: 33245600 DOI: 10.1002/anie.202008757] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Inverse electron demand Diels-Alder reactions between s-tetrazines and strained dienophiles have numerous applications in fluorescent labeling of biomolecules. Herein, we investigate the effect of the dienophile on the fluorescence enhancement obtained upon reaction with a tetrazine-quenched fluorophore and study the possible mechanisms of fluorescence quenching by both the tetrazine and its reaction products. The dihydropyridazine obtained from reaction with a strained cyclooctene shows a residual fluorescence quenching effect, greater than that exerted by the pyridazine arising from reaction with the analogous alkyne. Linear and ultrabroadband two-dimensional electronic spectroscopy experiments reveal that resonance energy transfer is the mechanism responsible for the fluorescence quenching effect of tetrazines, whereas a mechanism involving more intimate electronic coupling, likely photoinduced electron transfer, is responsible for the quenching effect of the dihydropyridazine. These studies uncover parameters that can be tuned to maximize fluorogenic efficiency in bioconjugation reactions and reveal that strained alkynes are better reaction partners for achieving maximum contrast ratio.
Collapse
Affiliation(s)
- Brismar Pinto-Pacheco
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - William P Carbery
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Sameer Khan
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Daniel B Turner
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.,Current address: Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA
| | - Daniela Buccella
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
23
|
Nguyen SS, Prescher JA. Developing bioorthogonal probes to span a spectrum of reactivities. Nat Rev Chem 2020; 4:476-489. [PMID: 34291176 DOI: 10.1038/s41570-020-0205-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioorthogonal chemistries enable researchers to interrogate biomolecules in living systems. These reactions are highly selective and biocompatible and can be performed in many complex environments. However, like any organic transformation, there is no perfect bioorthogonal reaction. Choosing the "best fit" for a desired application is critical. Correspondingly, there must be a variety of chemistries-spanning a spectrum of rates and other features-to choose from. Over the past few years, significant strides have been made towards not only expanding the number of bioorthogonal chemistries, but also fine-tuning existing reactions for particular applications. In this Review, we highlight recent advances in bioorthogonal reaction development, focusing on how physical organic chemistry principles have guided probe design. The continued expansion of this toolset will provide more precisely tuned reagents for manipulating bonds in distinct environments.
Collapse
Affiliation(s)
- Sean S Nguyen
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Departments of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
24
|
Synthetic Sphingolipids with 1,2-Pyridazine Appendages Improve Antiproliferative Activity in Human Cancer Cell Lines. ACS Med Chem Lett 2020; 11:686-690. [PMID: 32435371 PMCID: PMC7236038 DOI: 10.1021/acsmedchemlett.9b00553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
A synthetic sphingolipid related to a ring-constrained hydroxymethyl pyrrolidine analog of FTY720 that was known to starve cancer cells to death was chemically modified to include a series of alkoxy-tethered 3,6-substituted 1,2-pyridazines. These derivatives exhibited excellent antiproliferative activity against eight human cancer cell lines from four different cancer types. A 2.5- to 9-fold reduction in IC50 in these cell lines was observed relative to the lead compound, which lacked the appended heterocycle.
Collapse
|
25
|
Agramunt J, Ginesi R, Pedroso E, Grandas A. Inverse Electron-Demand Diels–Alder Bioconjugation Reactions Using 7-Oxanorbornenes as Dienophiles. J Org Chem 2020; 85:6593-6604. [DOI: 10.1021/acs.joc.0c00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jordi Agramunt
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Rebecca Ginesi
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enrique Pedroso
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- IBUB, Facultat de Quı́mica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Anna Grandas
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- IBUB, Facultat de Quı́mica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
26
|
Shum J, Zhang P, Lee LC, Lo KK. Bioorthogonal Phosphorogenic Rhenium(I) Polypyridine Sydnone Complexes for Specific Lysosome Labeling. Chempluschem 2020; 85:1374-1378. [DOI: 10.1002/cplu.202000029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Justin Shum
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Pei‐Zhi Zhang
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Lawrence Cho‐Cheung Lee
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
- Center of Functional PhotonicsCity University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| |
Collapse
|
27
|
Krell K, Harijan D, Ganz D, Doll L, Wagenknecht HA. Postsynthetic Modifications of DNA and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions. Bioconjug Chem 2020; 31:990-1011. [DOI: 10.1021/acs.bioconjchem.0c00072] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katja Krell
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dennis Harijan
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dorothée Ganz
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Larissa Doll
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
28
|
Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals. Molecules 2019; 24:molecules24193567. [PMID: 31581645 PMCID: PMC6803924 DOI: 10.3390/molecules24193567] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
In recent years, several catalyst-free site-specific reactions have been investigated for the efficient conjugation of biomolecules, nanomaterials, and living cells. Representative functional group pairs for these reactions include the following: (1) azide and cyclooctyne for strain-promoted cycloaddition reaction, (2) tetrazine and trans-alkene for inverse-electron-demand-Diels–Alder reaction, and (3) electrophilic heterocycles and cysteine for rapid condensation/addition reaction. Due to their excellent specificities and high reaction rates, these conjugation methods have been utilized for the labeling of radioisotopes (e.g., radiohalogens, radiometals) to various target molecules. The radiolabeled products prepared by these methods have been applied to preclinical research, such as in vivo molecular imaging, pharmacokinetic studies, and radiation therapy of cancer cells. In this review, we explain the basics of these chemical reactions and introduce their recent applications in the field of radiopharmacy and chemical biology. In addition, we discuss the significance, current challenges, and prospects of using bioorthogonal conjugation reactions.
Collapse
|
29
|
Kumar P, Huang W, Shukhman D, Camarda FM, Laughlin ST. Stable cyclopropene-containing analogs of the amino acid neurotransmitter glutamate. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Pagel M. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry. J Pept Sci 2019; 25:e3141. [PMID: 30585397 DOI: 10.1002/psc.3141] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/05/2023]
Abstract
Click chemistry is applied to selectively modify, lable and ligate peptides for their use as therapeutics, in biomaterials or analytical investigations. The inverse electron demand Diels-Alder (IEDDA) reaction is a catalyst-free click reaction with pronounced chemoselectivity and fast reaction rates. Applications and achievements of the IEDDA reaction in peptide chemistry since 2008 are described in this review.
Collapse
Affiliation(s)
- Mareen Pagel
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Leipzig, Germany
| |
Collapse
|
31
|
Bode SA, Timmermans SBPE, Eising S, van Gemert SPW, Bonger KM, Löwik DWPM. Click to enter: activation of oligo-arginine cell-penetrating peptides by bioorthogonal tetrazine ligations. Chem Sci 2019; 10:701-705. [PMID: 30746105 PMCID: PMC6340402 DOI: 10.1039/c8sc04394a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022] Open
Abstract
Cell-penetrating peptides are able to transport a wide variety of cargo across cell membranes. Although promising, they are not often considered for therapeutic purposes as they lack controllable activity and cell selectivity. We have developed an activation strategy based on a split octa-arginine cell-penetrating peptide (CPP) that can be activated by means of bioorthogonal ligation. To this end we prepared two non-penetrating tetra-arginine halves, functionalized either with a tetrazine or with a complementary bicyclo[6.1.0]nonyne (BCN) group. We demonstrate that an active octa-arginine can be reconstituted in situ upon mixing the complementary split peptides. The resulting activated peptide is taken up as efficiently as the well-established cell-penetrating peptide octa-arginine. The activation of the oligo-arginines can also be achieved using trans-cyclooctene (TCO) as a ligation partner, while norbornene appears too kinetically slow for use in situ. We further show that this strategy can be applied successfully to transport a large protein into living cells. Our results validate a promising first step in achieving control over cell penetration and to use CPPs for therapeutic approaches.
Collapse
Affiliation(s)
- Saskia A Bode
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135, 6525 AJ Nijmegen , The Netherlands . ;
| | - Suzanne B P E Timmermans
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135, 6525 AJ Nijmegen , The Netherlands . ;
| | - Selma Eising
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135, 6525 AJ Nijmegen , The Netherlands . ;
| | - Sander P W van Gemert
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135, 6525 AJ Nijmegen , The Netherlands . ;
| | - Kimberly M Bonger
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135, 6525 AJ Nijmegen , The Netherlands . ;
| | - Dennis W P M Löwik
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135, 6525 AJ Nijmegen , The Netherlands . ;
| |
Collapse
|
32
|
Wzgarda-Raj K, Rybarczyk-Pirek AJ, Wojtulewski S, Palusiak M. Crystal structure of 3,6-bis-(pyridin-2-yl)-1,4-di-hydro-1,2,4,5-tetra-zine. Acta Crystallogr E Crystallogr Commun 2019; 75:86-88. [PMID: 30713740 PMCID: PMC6323887 DOI: 10.1107/s205698901801753x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 11/30/2022]
Abstract
The structure of the title compound, C12H10N6, at 100 K has monoclinic (P21/n) symmetry. Crystals were obtained as a yellow solid by reduction of 3,6-bis-(pyridin-2-yl)-1,2,4,5-tetra-zine. The structure displays inter-molecular hydrogen bonding of the N-H⋯N type, ordering mol-ecules into infinite ribbons extending along the [100] direction.
Collapse
Affiliation(s)
- Kinga Wzgarda-Raj
- Group of Theoretical and Structural Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236, Łódź, Poland
| | - Agnieszka J. Rybarczyk-Pirek
- Group of Theoretical and Structural Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236, Łódź, Poland
| | - Sławomir Wojtulewski
- Department of Theoretical Chemistry, University of Białystok, Ciołkowskiego, 1K, 15-245 Białystok, Poland
| | - Marcin Palusiak
- Group of Theoretical and Structural Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236, Łódź, Poland
| |
Collapse
|
33
|
Smith WJ, Wang G, Gaikwad H, Vu VP, Groman E, Bourne DWA, Simberg D. Accelerated Blood Clearance of Antibodies by Nanosized Click Antidotes. ACS NANO 2018; 12:12523-12532. [PMID: 30516974 PMCID: PMC6472973 DOI: 10.1021/acsnano.8b07003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Long blood half-life is one of the advantages of antibodies over small molecule drugs. At the same time, prolonged half-life is a problem for imaging applications or in the case of antibody-induced toxicities. There is a substantial need for antidotes that can quickly clear antibodies from systemic circulation and peripheral tissues. Engineered nanoparticles exhibit intrinsic affinity for clearance organs (mainly liver and spleen). trans-Cyclooctene (TCO) and methyltetrazine (MTZ) are versatile copper-free click chemistry components that are extensively being used for in vivo bioorthogonal couplings. To test the ability of nanoparticles to eliminate antibodies, we prepared a set of click-modified, clinically relevant antidotes based on several classes of drug carriers: phospholipid-PEG micelles, bovine serum albumin (BSA), and cross-linked dextran iron oxide (CLIO) nanoparticles. Mice were injected with IRDye 800CW-labeled, click-modified IgG followed by a click-modified antidote or PBS (control), and the levels of the IgG were monitored up to 72 h postinjection. Long-circulating lipid micelles produced a spike in IgG levels at 1 h, decreased IgG levels at 24 h, and did not decrease the area under the curve (AUC) and IgG accumulation in main organs. Long-circulating BSA decreased IgG levels at 1 and 24 h, decreased the AUC, but did not significantly decrease organ accumulation. Long-circulating CLIO nanoworms increased IgG levels at 1 h, decreased IgG levels at 24 h, did not decrease the AUC, and did not decrease the organ accumulation. On the other hand, short-circulating CLIO nanoparticles decreased IgG levels at 1 and 24 h, significantly decreasing the AUC and accumulation in the main organs. Multiple doses of CLIO and BSA were not able to completely eliminate the antibody from blood, despite the click reactivity of the residual IgG, likely due to exchange of IgG between blood and tissue compartments. Pharmacokinetic modeling suggests that short antidote half-life and fast click reaction rate should result in higher IgG depletion efficiency. Short-circulating click-modified nanocarriers are the most effective antidotes for elimination of antibodies from blood. This study sets a stage for future development of antidotes based on nanomedicine.
Collapse
Affiliation(s)
- Weston J. Smith
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Vivian P. Vu
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Ernest Groman
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - David W. A. Bourne
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Center for Translational Pharmacokinetics and Pharmacogenomics, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Corresponding Author: .
| |
Collapse
|
34
|
Eising S, Engwerda AHJ, Riedijk X, Bickelhaupt FM, Bonger KM. Highly Stable and Selective Tetrazines for the Coordination-Assisted Bioorthogonal Ligation with Vinylboronic Acids. Bioconjug Chem 2018; 29:3054-3059. [PMID: 30080405 PMCID: PMC6148442 DOI: 10.1021/acs.bioconjchem.8b00439] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Bioorthogonal
reactions are selective transformations that are
not affected by any biological functional group and are widely used
for chemical modification of biomolecules. Recently, we reported that
vinylboronic acids (VBAs) gave exceptionally high reaction rates in
the bioorthogonal inverse electron-demand Diels–Alder (iEDDA)
reaction with tetrazines bearing a boron-coordinating pyridyl moiety
compared to tetrazines lacking such a substituent. In this integrated
experimental and theoretical study, we show how the reaction rate
of the VBA-tetrazine ligation can be accelerated by shifting the equilibrium
from boronic acid to the boronate anion in the reaction mixture. Quantum
chemical activation strain analyses reveal that this rate enhancement
is a direct consequence of the excellent electron-donating capability
of the boronate anion in which the π HOMO is pushed to a higher
energy due to the net negative potential of this species. We have
explored the second-order rate constants of several tetrazines containing
potential VBA-coordinating hydroxyl substituents. We observed an increase
in rate constants of several orders of magnitude compared to the tetrazines
lacking a hydroxyl substituent. Furthermore, we find the hydroxyl-substituted
tetrazines to be more selective toward VBAs than toward the commonly
used bioorthogonal reactant norbornene, and more stable in aqueous
environment than the previously studied tetrazines containing a pyridyl
substituent.
Collapse
Affiliation(s)
| | | | | | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM) , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | | |
Collapse
|
35
|
Tsakama M, Ma X, He Y, Chen W, Dai X. A Simple Mannose-Coated Poly (p-Phenylene Ethynylene) for Qualitative Bacterial Capturing. Molecules 2018; 23:molecules23082056. [PMID: 30115873 PMCID: PMC6222808 DOI: 10.3390/molecules23082056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/02/2022] Open
Abstract
A mannose-functionalized poly (p-phenylene ethynylene) was rationally designed to achieve selective detection of bacteria. The polymer was constructed as a signaling unit and was modified by attaching aminoethyl mannose using the carboxylic acid group at the end of the linker. Incubation of Escherichia coli with the polymer yielded fluorescent bacteria aggregates through polyvalent interactions. The utility of the mannose functionalized polymer to detect E. coli expressing functional FimH mannose-specific lectin on their surface was also demonstrated. The sugar units displayed on the surface of the polymer retained their functional ability to interact with mannose-binding lectin. To determine the optimum binding time, we measured the fluorescence intensity of the polymer-bacteria suspension at intervals. Our results showed that binding in this system will reach an optimum level within 30 min of incubation. The polymer’s affinity for bacteria has been demonstrated and bacteria with a concentration of 103 CFU mL−1 can be detected by this system.
Collapse
Affiliation(s)
- Madalitso Tsakama
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaochi Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yonghuan He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Weihua Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| | - Xiaofeng Dai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
36
|
Lowe PT, Dall'Angelo S, Devine A, Zanda M, O'Hagan D. Enzymatic Fluorination of Biotin and Tetrazine Conjugates for Pretargeting Approaches to Positron Emission Tomography Imaging. Chembiochem 2018; 19:1969-1978. [PMID: 29966048 DOI: 10.1002/cbic.201800234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 12/15/2022]
Abstract
The use of radiolabelled antibodies and antibody-derived recombinant constructs has shown promise for both imaging and therapeutic use. In this context, the biotin-avidin/streptavidin pairing, along with the inverse-electron-demand Diels-Alder (iEDDA) reaction, have found application in pretargeting approaches for positron emission tomography (PET). This study reports the fluorinase-mediated transhalogenation [5'-chloro-5'-deoxyadenosine (ClDA) substrates to 5'-fluoro-5'-deoxyadenosine (FDA) products] of two antibody pretargeting tools, a FDA-PEG-tetrazine and a [18 F]FDA-PEG-biotin, and each is assessed either for its compatibility towards iEDDA ligation to trans-cyclooctene or for its affinity to avidin. A protocol to avoid radiolytically promoted oxidation of biotin during the synthesis of [18 F]FDA-PEG-biotin was developed. The study adds to the repertoire of conjugates for use in fluorinase-catalysed radiosynthesis for PET and shows that the fluorinase will accept a wide range of ClDA substrates tethered at C-2 of the adenine ring with a PEGylated cargo. The method is exceptional because the nucleophilic reaction with [18 F]fluoride takes place in water at neutral pH and at ambient temperature.
Collapse
Affiliation(s)
- Phillip T Lowe
- School of Chemistry and Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK
| | - Sergio Dall'Angelo
- John Mallard Scottish PET Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Andrew Devine
- School of Chemistry and Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK
| | - Matteo Zanda
- John Mallard Scottish PET Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - David O'Hagan
- School of Chemistry and Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
37
|
Wu Y, Hu J, Sun C, Cao Y, Li Y, Xie F, Zeng T, Zhou B, Du J, Tang Y. Nature-Inspired Bioorthogonal Reaction: Development of β-Caryophyllene as a Chemical Reporter in Tetrazine Ligation. Bioconjug Chem 2018; 29:2287-2295. [PMID: 29851464 DOI: 10.1021/acs.bioconjchem.8b00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A nature-inspired bioorthogonal reaction has been developed, hinging on an inverse-electron-demand Diels-Alder reaction of tetrazine with β-caryophyllene. Readily accessible from the cheap starting material through a scalable synthesis, the newly developed β-caryophyllene chemical reporter displays appealing reaction kinetics and excellent biocompatibility, which renders it applicable to both in vitro protein labeling and live cell imaging. Moreover, it can be used orthogonally to the strain-promoted alkyne-azide cycloaddition for dual protein labeling. This work not only provides an alternative to the existing bioorthogonal reaction toolbox, but also opens a new avenue to utilize naturally occurring scaffolds as bioorthogonal chemical reporters.
Collapse
Affiliation(s)
- Yunfei Wu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China.,Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School , Sichuan University , Chengdu 610041 , China
| | - Jiulong Hu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China.,State Key Laboratory of Membrane Biology, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Chen Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Yuanhe Li
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Fayang Xie
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Tianyin Zeng
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China.,Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School , Sichuan University , Chengdu 610041 , China
| |
Collapse
|
38
|
Eising S, Xin BT, Kleinpenning F, Heming JJA, Florea BI, Overkleeft HS, Bonger KM. Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene. Chembiochem 2018; 19:1648-1652. [DOI: 10.1002/cbic.201800275] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Selma Eising
- Department of Biomolecular Chemistry; Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Bo-Tao Xin
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Fleur Kleinpenning
- Department of Biomolecular Chemistry; Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Jurriaan J. A. Heming
- Department of Biomolecular Chemistry; Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Kimberly M. Bonger
- Department of Biomolecular Chemistry; Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
39
|
Madl CM, Heilshorn SC. Bioorthogonal Strategies for Engineering Extracellular Matrices. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1706046. [PMID: 31558890 PMCID: PMC6761700 DOI: 10.1002/adfm.201706046] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hydrogels are commonly used as engineered extracellular matrix (ECM) mimics in applications ranging from tissue engineering to in vitro disease models. Ideal mechanisms used to crosslink ECM-mimicking hydrogels do not interfere with the biology of the system. However, most common hydrogel crosslinking chemistries exhibit some form of cross-reactivity. The field of bio-orthogonal chemistry has arisen to address the need for highly specific and robust reactions in biological contexts. Accordingly, bio-orthogonal crosslinking strategies have been incorporated into hydrogel design, allowing for gentle and efficient encapsulation of cells in various hydrogel materials. Furthermore, the selective nature of bio-orthogonal chemistries can permit dynamic modification of hydrogel materials in the presence of live cells and other biomolecules to alter matrix mechanical properties and biochemistry on demand. In this review, we provide an overview of bio-orthogonal strategies used to prepare cell-encapsulating hydrogels and highlight the potential applications of bio-orthogonal chemistries in the design of dynamic engineered ECMs.
Collapse
Affiliation(s)
- Christopher M Madl
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA,
| |
Collapse
|
40
|
Bae J, Zhou Z, Theis T, Warren WS, Wang Q. 15N 4-1,2,4,5-tetrazines as potential molecular tags: Integrating bioorthogonal chemistry with hyperpolarization and unearthing para-N 2. SCIENCE ADVANCES 2018; 4:eaar2978. [PMID: 29536045 PMCID: PMC5844705 DOI: 10.1126/sciadv.aar2978] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/01/2018] [Indexed: 05/16/2023]
Abstract
Hyperpolarized magnetic resonance (HP-MR) is a powerful, sensitive, and noninvasive approach to visualize molecular structure, function, and dynamics in vitro and in vivo. Current applications of HP-MR mostly rely on hyperpolarization of target compounds in dedicated hyperpolarizers because biomolecules can typically not be hyperpolarized directly in vivo. The injected hyperpolarized probes often undergo multiple metabolic pathways in living systems, and it remains challenging to localize and identify specific targets with high chemical selectivity. To address these current limitations in HP-MR, we report a novel hyperpolarization tagging strategy that integrates bioorthogonal chemistry and hyperpolarization to achieve the specific hyperpolarization of targets. This strategy is demonstrated by studies of hyperpolarized 15N4-1,2,4,5-tetrazines, which undergo rapid and selective cycloaddition with cyclooctyne to provide hyperpolarized 15N2-containing cycloaddition products and hyperpolarized 15N2 gas. This work not only suggests great potential of 15N4-1,2,4,5-tetrazines as molecular tags in HP-MR imaging (HP-MRI) but also supports the production of hyperpolarized para-15N2 gas, a biologically and medically innocuous gas with great potential for HP-MRI. This bioorthogonal reaction-based hyperpolarization tagging strategy enables a new class of in vitro and in vivo applications.
Collapse
Affiliation(s)
- Junu Bae
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Zijian Zhou
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Thomas Theis
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Department of Physics, Duke University, Durham, NC 27708, USA
- Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
41
|
Eising S, van der Linden NGA, Kleinpenning F, Bonger KM. Vinylboronic Acids as Efficient Bioorthogonal Reactants for Tetrazine Labeling in Living Cells. Bioconjug Chem 2018; 29:982-986. [PMID: 29438611 PMCID: PMC5942871 DOI: 10.1021/acs.bioconjchem.7b00796] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Bioorthogonal chemistry
can be used for the selective modification
of biomolecules without interfering with any other functionality present
in the cell. The tetrazine ligation is very suitable as a bioorthogonal
reaction because of its selectivity and high reaction rates with several
alkenes and alkynes. Recently, we described vinylboronic acids (VBAs)
as novel hydrophilic bioorthogonal moieties that react efficiently
with dipyridyl-s-tetrazines and used them for protein
modification in cell lysate. It is not clear, however, whether VBAs
are suitable for labeling experiments in living cells because of the
possible coordination with, for example, vicinal carbohydrate diols.
Here, we evaluated VBAs as bioorthogonal reactants for labeling of
proteins in living cells using an irreversible inhibitor of the proteasome
and compared the reactivity to that of an inhibitor containing norbornene,
a widely used reactant for the tetrazine ligation. No large differences
were observed between the VBA and norbornene probes in a two-step
labeling approach with a cell-penetrable fluorescent tetrazine, indicating
that the VBA gives little or no side reactions with diols and can
be used efficiently for protein labeling in living cells.
Collapse
Affiliation(s)
- Selma Eising
- Department of Biomolecular Chemistry, Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands
| | - Nicole G A van der Linden
- Department of Biomolecular Chemistry, Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands
| | - Fleur Kleinpenning
- Department of Biomolecular Chemistry, Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands
| | - Kimberly M Bonger
- Department of Biomolecular Chemistry, Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands
| |
Collapse
|
42
|
Agostini F, Völler J, Koksch B, Acevedo‐Rocha CG, Kubyshkin V, Budisa N. Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology. Angew Chem Int Ed Engl 2017; 56:9680-9703. [DOI: 10.1002/anie.201610129] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/13/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Federica Agostini
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jan‐Stefan Völler
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | | | - Vladimir Kubyshkin
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Nediljko Budisa
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| |
Collapse
|
43
|
Paresi CJ, Liu Q, Li YM. Benzimidazole covalent probes and the gastric H(+)/K(+)-ATPase as a model system for protein labeling in a copper-free setting. MOLECULAR BIOSYSTEMS 2017; 12:1772-80. [PMID: 26952080 DOI: 10.1039/c6mb00024j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Affinity probes are useful tools for determining molecular targets and elucidating mechanism of action for novel, bioactive compounds. In the case of covalent inhibitors, activity based probes are particularly valuable for ensuring acceptable selectivity margins. However, there is a variety of bioorthogonal chemistry reactions available for modifying compounds of interest with clickable tags. Here, we describe a direct comparison of tetrazine ligation and strain promoted azide-alkyne cycloaddition using benzimidazole based probes to bind their known target, the gastric proton pump, ATP4A. This study validates the use of chemical probes for target identification and illustrates the superior efficiency of tetrazine ligation for copper-free click systems. In addition, we have identified several novel binding partners of benzimidazole probes: Isoform 2 of deleted in malignant brain tumors 1 protein (DMBT1) and three uncharacterized proteins.
Collapse
Affiliation(s)
- Chelsea J Paresi
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. and Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | - Qi Liu
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. and Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| |
Collapse
|
44
|
Biokatalyse mit nicht‐natürlichen Aminosäuren: Enzymologie trifft Xenobiologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Quiñones RE, Glinkerman CM, Zhu K, Boger DL. Direct Synthesis of β-Aminoenals through Reaction of 1,2,3-Triazine with Secondary Amines. Org Lett 2017; 19:3568-3571. [PMID: 28657329 DOI: 10.1021/acs.orglett.7b01543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simple and direct nucleophilic addition of secondary amines, including imidazole, to 1,2,3-triazine under mild reaction conditions (THF, 25-65 °C, 12-48 h), requiring no additives, cleanly provides β-aminoenals 4 in good yields (21 examples, 31-79%). The reaction proceeds by amine nucleophilic addition to C4 of the 1,2,3-triazine, in situ loss of N2, and subsequent imine hydrolysis to provide 4.
Collapse
Affiliation(s)
- Ryan E Quiñones
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Christopher M Glinkerman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kaicheng Zhu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
46
|
Peewasan K, Wagenknecht HA. 1,2,4-Triazine-Modified 2'-Deoxyuridine Triphosphate for Efficient Bioorthogonal Fluorescent Labeling of DNA. Chembiochem 2017; 18:1473-1476. [PMID: 28485853 DOI: 10.1002/cbic.201700185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Indexed: 12/25/2022]
Abstract
In order to establish the Diels-Alder reaction with inverse electron demand for postsynthetic DNA modification, a 1,2,4-triazine-modified 2'-deoxyuridine triphosphate was synthesized. The bioorthogonally reactive 1,2,4-triazine group was attached at the 5-position of 2'-deoxyuridine by a flexible alkyl linker to facilitate its acceptance by DNA polymerases. The screening of four DNA polymerases showed successful primer extensions, using a mixture of dATP, dGTP, dCTP, and the modified 2'-deoxyuridine triphosphate, by using KOD XL or Vent polymerase. The triazine moiety was stable under the conditions of primer extension, which was evidenced by labeling with a BCN-modified rhodamine at room temperature in yields of up to 82 %. Two or three modified bases could be incorporated in quantitative yields when the modification sites were separated by three base pairs. These results establish the 1,2,4-triazene group as a bioorthogonally reactive moiety in DNA, thereby replacing the problematic 1,2,4,5-tetrazine for postsynthetic labeling by the Diels-Alder reaction with inverse electron demand.
Collapse
Affiliation(s)
- Krisana Peewasan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
47
|
Siegl SJ, Dzijak R, Vázquez A, Pohl R, Vrabel M. The discovery of pyridinium 1,2,4-triazines with enhanced performance in bioconjugation reactions. Chem Sci 2017; 8:3593-3598. [PMID: 30155204 PMCID: PMC6092722 DOI: 10.1039/c6sc05442k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/01/2017] [Indexed: 01/06/2023] Open
Abstract
1,2,4-Triazines have recently been identified as versatile dienes participating in the inverse electron-demand Diels-Alder reaction with strained dienophiles. However, their widespread utility in bioconjugation reactions is still limited. Herein, we report a systematic study on the reactivity of various 1,2,4-triazines with trans-cyclooctenes showing that the structure of both the triazine and the dienophile significantly affect the reaction rate. Our kinetic study led to the discovery of novel cationic 1,2,4-triazines with superior properties for bioconjugation reactions. We have developed an efficient method that enables their late-stage functionalization and allows for easy access to various useful heterobifunctional scaffolds. In addition, these charged dienes form unprecedented fluorescent products upon reaction with trans-cyclooctenes and can be used for fluorogenic labeling of subcellular compartments in live cells.
Collapse
Affiliation(s)
- Sebastian J Siegl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 , Prague , Czech Republic .
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 , Prague , Czech Republic .
| | - Arcadio Vázquez
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 , Prague , Czech Republic .
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 , Prague , Czech Republic .
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 , Prague , Czech Republic .
| |
Collapse
|
48
|
Dold JEGA, Pfotzer J, Späte AK, Wittmann V. Dienophile-Modified Mannosamine Derivatives for Metabolic Labeling of Sialic Acids: A Comparative Study. Chembiochem 2017; 18:1242-1250. [DOI: 10.1002/cbic.201700002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Jeremias E. G. A. Dold
- University of Konstanz; Department of Chemistry and; Konstanz Research School Chemical Biology; KoRS-CB); 78457 Konstanz Germany
| | - Jessica Pfotzer
- University of Konstanz; Department of Chemistry and; Konstanz Research School Chemical Biology; KoRS-CB); 78457 Konstanz Germany
| | - Anne-Katrin Späte
- University of Konstanz; Department of Chemistry and; Konstanz Research School Chemical Biology; KoRS-CB); 78457 Konstanz Germany
| | - Valentin Wittmann
- University of Konstanz; Department of Chemistry and; Konstanz Research School Chemical Biology; KoRS-CB); 78457 Konstanz Germany
| |
Collapse
|
49
|
Eggert F, Kulikov K, Domnick C, Leifels P, Kath-Schorr S. Iluminated by foreign letters - Strategies for site-specific cyclopropene modification of large functional RNAs via in vitro transcription. Methods 2017; 120:17-27. [PMID: 28454775 DOI: 10.1016/j.ymeth.2017.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022] Open
Abstract
The synthesis of sequence-specifically modified long RNA molecules, which cannot entirely be prepared via solid phase synthesis methods is experimentally challenging. We are using a new approach based on an expanded genetic alphabet preparing site-specifically modified RNA molecules via standard in vitro transcription. In this report, the site-specific labeling of functional RNAs, in particular ribozymes and a long non-coding RNA with cyclopropene moieties, is presented. We provide detailed instructions for RNA labeling via in vitro transcription and include required analytical methods to verify production and identity of the transcript. We further present post-transcriptional inverse electron demand Diels-Alder cycloaddition reactions on the cyclopropene-modified sequences and discuss applications of the genetic alphabet expansion transcription for in vitro preparation of labeled functional RNAs with complex foldings. In detail, the glmS and CPEB3 ribozymes were site-specifically decorated with methyl cyclopropene moieties using the unnatural TPT3CP triphosphate and were proven to be still functional. In addition, the structurally complex A region of the Xist lncRNA (401nt) was site-specifically modified with methyl cyclopropene and detected by fluorescence after cycloaddition reaction with a tetrazine-BODIPY conjugate.
Collapse
Affiliation(s)
- Frank Eggert
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Katharina Kulikov
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Christof Domnick
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Philipp Leifels
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Stephanie Kath-Schorr
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
50
|
Li Y, Miomandre F, Clavier G, Galmiche L, Alain-Rizzo V, Audebert P. Inverse Electron Demand Diels−Alder Reactivity and Electrochemistry of New Tetrazine Derivatives. ChemElectroChem 2017. [DOI: 10.1002/celc.201600498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuan Li
- PPSM, CNRS UMR 8531; Ecole Normale Supérieure de Cachan; Université Paris-Saclay; 61 Avenue du Président Wilson 94235 Cachan France
| | - Fabien Miomandre
- PPSM, CNRS UMR 8531; Ecole Normale Supérieure de Cachan; Université Paris-Saclay; 61 Avenue du Président Wilson 94235 Cachan France
| | - Gilles Clavier
- PPSM, CNRS UMR 8531; Ecole Normale Supérieure de Cachan; Université Paris-Saclay; 61 Avenue du Président Wilson 94235 Cachan France
| | - Laurent Galmiche
- PPSM, CNRS UMR 8531; Ecole Normale Supérieure de Cachan; Université Paris-Saclay; 61 Avenue du Président Wilson 94235 Cachan France
| | - Valérie Alain-Rizzo
- PPSM, CNRS UMR 8531; Ecole Normale Supérieure de Cachan; Université Paris-Saclay; 61 Avenue du Président Wilson 94235 Cachan France
| | - Pierre Audebert
- PPSM, CNRS UMR 8531; Ecole Normale Supérieure de Cachan; Université Paris-Saclay; 61 Avenue du Président Wilson 94235 Cachan France
| |
Collapse
|