1
|
Agu KC, Banahene N, Santamaria C, Kim CY, Cabral J, Biegas KJ, Papson C, Kruskamp AD, Siegrist MS, Swarts BM. A Photoactivatable Free Mycolic Acid Probe to Investigate Mycobacteria-Host Interactions. ACS Infect Dis 2025; 11:1233-1245. [PMID: 40228107 DOI: 10.1021/acsinfecdis.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Mycolic acids are long-chain, α-branched, β-hydroxylated fatty acid lipids that populate the outer mycomembrane of mycobacteria, including the pathogen Mycobacterium tuberculosis. Mycolic acids predominantly occur in the form of glycolipids, but nonglycosylated free mycolic acids (fMA), which are generated during mycomembrane remodeling, are major constituents of the M. tuberculosis biofilm extracellular matrix and promote host immune evasion during M. tuberculosis infection. However, our understanding of these processes is nascent, and there is limited information about the fMA-protein interactions involved. To facilitate such studies, we synthesized a fMA analogue probe (x-Alk-MA) containing a photo-cross-linking diazirine and a clickable alkyne to enable live-cell capture and analysis of protein interactors. The synthetic strategy featured asymmetric hydrogenation to establish the β-hydroxy group, diastereoselective alkylation to establish the α-branch, and late-stage modification to install the functional tags. In macrophages, x-Alk-MA recapitulated the cytokine response of native MA and selectively photolabeled TREM2, a host cell receptor for fMAs that suppresses macrophage activation and has been implicated in M. tuberculosis immune evasion. The synthetic strategy, chemical probes, and photolabeling methods disclosed herein should facilitate future studies aimed at understanding the roles of fMA in mycobacterial physiology and pathogenesis.
Collapse
Affiliation(s)
- Kingsley C Agu
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Carolina Santamaria
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Christi Y Kim
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jessica Cabral
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Casey Papson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Andrew D Kruskamp
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - M Sloan Siegrist
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| |
Collapse
|
2
|
Yan L, Sun Y, Ding K, Peng T. Bioorthogonal chemical reporters for profiling retinoic acid-modified and retinoic acid-interacting proteins. Bioorg Med Chem 2025; 119:118065. [PMID: 39808893 DOI: 10.1016/j.bmc.2025.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Vitamin A and its primary active derivative, all-trans retinoic acid (RA), are endogenous signaling molecules essential for numerous biological processes, including cell proliferation, differentiation, and immune modulation. Owing to its differentiation-inducing effect, RA was the first differentiating agent approved for the clinical treatment of acute myeloid leukemia. While the classical mechanisms of RA signaling involve nuclear receptors, such as retinoic acid receptors (RARs), emerging evidence suggests that RA also engages in non-covalent and covalent interactions with a broader range of proteins. However, tools for thoroughly characterizing these interactions have been lacking, and a comprehensive understanding of the landscape of RA-modified and RA-interacting proteins remains limited. Here, we report the development of two RA-based chemical reporters, RA-yne and RA-diazyne, to profile RA-modified and RA-interacting proteins, respectively, in live cells. RA-yne features a clickable alkyne group for metabolic labeling of RA-modified proteins, while RA-diazyne incorporates a photoactivatable diazirine and an alkyne handle for crosslinking and capturing RA-interacting proteins. Using quantitative proteomics, we demonstrate the high-throughput identification of these proteins, revealing that non-covalent interactions are more prevalent than covalent modifications. Our global profiling also uncovers a large number of RA-interacting proteins mainly enriched in pathways related to mitochondrial processes, ER homeostasis, and lipid metabolism. Overall, this work introduces new RA-derived chemical reporters, expands the resource for studying RA biology, and enhances our understanding of RA-associated pathways in health and disease.
Collapse
Affiliation(s)
- Long Yan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanan Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ke Ding
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Sayed A, Eswara K, Teles K, Boudellioua A, Fischle W. Nuclear lipids in chromatin regulation: Biological roles, experimental approaches and existing challenges. Biol Cell 2025; 117:e2400103. [PMID: 39648467 PMCID: PMC11758486 DOI: 10.1111/boc.202400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Lipids are crucial for various cellular functions. Besides the storage of energy equivalents, these include forming membrane bilayers and serving as signaling molecules. While significant progress has been made in the comprehension of the molecular and cellular biology of lipids, their functions in the cell nucleus remain poorly understood. The main role of the eukaryotic cell nucleus is to provide an environment for the storage and regulation of chromatin which is a complex of DNA, histones, and associated proteins. Recent studies suggest that nuclear lipids play a role in chromatin regulation and epigenetics. Here, we discuss various experimental methods in lipid-chromatin research, including biophysical, structural, and cell biology approaches, pointing out their strengths and weaknesses. We take the view that nuclear lipids have a far more widespread impact on chromatin than is currently acknowledged. This gap in comprehension is mostly due to existing experimental challenges in the study of lipid-chromatin biology. Several new, interdisciplinary approaches are discussed that could aid in elucidating the roles of nuclear lipids in chromatin regulation and gene expression.
Collapse
Affiliation(s)
- Ahmed Sayed
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
- Chemistry DepartmentFaculty of ScienceAssiut UniversityAssiutEgypt
| | - Karthik Eswara
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Kaian Teles
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Ahlem Boudellioua
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Wolfgang Fischle
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| |
Collapse
|
4
|
Kim JC, Kim Y, Cho S, Park HS. Noncanonical Amino Acid Incorporation in Animals and Animal Cells. Chem Rev 2024; 124:12463-12497. [PMID: 39541258 DOI: 10.1021/acs.chemrev.3c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Noncanonical amino acids (ncAAs) are synthetic building blocks that, when incorporated into proteins, confer novel functions and enable precise control over biological processes. These small yet powerful tools offer unprecedented opportunities to investigate and manipulate various complex life forms. In particular, ncAA incorporation technology has garnered significant attention in the study of animals and their constituent cells, which serve as invaluable model organisms for gaining insights into human physiology, genetics, and diseases. This review will provide a comprehensive discussion on the applications of ncAA incorporation technology in animals and animal cells, covering past achievements, current developments, and future perspectives.
Collapse
Affiliation(s)
- Joo-Chan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - YouJin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Suho Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Kundu S, Rohokale R, Lin C, Chen S, Biswas S, Guo Z. Bifunctional glycosphingolipid (GSL) probes to investigate GSL-interacting proteins in cell membranes. J Lipid Res 2024; 65:100570. [PMID: 38795858 PMCID: PMC11261293 DOI: 10.1016/j.jlr.2024.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/28/2024] Open
Abstract
Glycosphingolipids (GSLs) are abundant glycolipids on cells and essential for cell recognition, adhesion, signal transduction, and so on. However, their lipid anchors are not long enough to cross the membrane bilayer. To transduce transmembrane signals, GSLs must interact with other membrane components, whereas such interactions are difficult to investigate. To overcome this difficulty, bifunctional derivatives of II3-β-N-acetyl-D-galactosamine-GA2 (GalNAc-GA2) and β-N-acetyl-D-glucosamine-ceramide (GlcNAc-Cer) were synthesized as probes to explore GSL-interacting membrane proteins in live cells. Both probes contain photoreactive diazirine in the lipid moiety, which can crosslink with proximal membrane proteins upon photoactivation, and clickable alkyne in the glycan to facilitate affinity tag addition for crosslinked protein pull-down and characterization. The synthesis is highlighted by the efficient assembly of simple glycolipid precursors followed by on-site lipid remodeling. These probes were employed to profile GSL-interacting membrane proteins in HEK293 cells. The GalNAc-GA2 probe revealed 312 distinct proteins, with GlcNAc-Cer probe-crosslinked proteins as controls, suggesting the potential influence of the glycan on GSL functions. Many of the proteins identified with the GalNAc-GA2 probe are associated with GSLs, and some have been validated as being specific to this probe. The versatile probe design and experimental protocols are anticipated to be widely applicable to GSL research.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA; Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Shayak Biswas
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Zhang J, Zhou Y, Lei J, Liu X, Zhang N, Wu L, Li Y. Retention time prediction and MRM validation reinforce the biomarker identification of LC-MS based phospholipidomics. Analyst 2024; 149:515-527. [PMID: 38078496 DOI: 10.1039/d3an01735d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Dysfunctional lipid metabolism plays a crucial role in the development and progression of various diseases. Accurate measurement of lipidomes can help uncover the complex interactions between genes, proteins, and lipids in health and diseases. The prediction of retention time (RT) has become increasingly important in both targeted and untargeted metabolomics. However, the potential impact of RT prediction on targeted LC-MS based lipidomics is still not fully understood. Herein, we propose a simplified workflow for predicting RT in phospholipidomics. Our approach involves utilizing the fatty acyl chain length or carbon-carbon double bond (DB) number in combination with multiple reaction monitoring (MRM) validation. We found that our model's predictive capacity for RT was comparable to that of a publicly accessible program (QSRR Automator). Additionally, MRM validation helped in further mitigating the interference in signal recognition. Using this developed workflow, we conducted phospholipidomics of sorafenib resistant hepatocellular carcinoma (HCC) cell lines, namely MHCC97H and Hep3B. Our findings revealed an abundance of monounsaturated fatty acyl (MUFA) or polyunsaturated fatty acyl (PUFA) phospholipids in these cell lines after developing drug resistance. In both cell lines, a total of 29 lipids were found to be co-upregulated and 5 lipids were co-downregulated. Further validation was conducted on seven of the upregulated lipids using an independent dataset, which demonstrates the potential for translation of the established workflow or the lipid biomarkers.
Collapse
Affiliation(s)
- Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Yu Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Xudong Liu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Nan Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China.
| |
Collapse
|
7
|
Yu W, Baskin JM. Photoaffinity labeling approaches to elucidate lipid-protein interactions. Curr Opin Chem Biol 2022; 69:102173. [PMID: 35724595 DOI: 10.1016/j.cbpa.2022.102173] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
Lipid-protein interactions serve as the basis for many of the diverse roles of lipids. However, these noncovalent binding events are often weak, transient, or dependent upon environmental cues. Photoaffinity labeling can preserve these interactions under native conditions, enabling their biochemical profiling. Typically, photoaffinity labeling probes contain a diazirine photocrosslinker and a click chemistry handle for enrichment and downstream analysis. In this review, we summarize recent advances in the understanding the mechanisms of diazirine photocrosslinking, and we provide an overview of recent applications of photoaffinity labeling to reveal the interactions of diverse types of lipids with specific members of the proteome.
Collapse
Affiliation(s)
- Weizhi Yu
- Department of Chemistry and Chemical Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA.
| |
Collapse
|
8
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
9
|
Zhang Z, Liao D, Ma Y, Jia B, Yuan Y. Orthogonality of Redesigned
tRNA
Molecules with Three Stop Codons. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhao‐Yang Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China
| | - Dan‐Ni Liao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China
| | - Yu‐Xin Ma
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China
| | - Bin Jia
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China
| | - Ying‐Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China
| |
Collapse
|
10
|
Burton NR, Kim P, Backus KM. Photoaffinity labelling strategies for mapping the small molecule-protein interactome. Org Biomol Chem 2021; 19:7792-7809. [PMID: 34549230 PMCID: PMC8489259 DOI: 10.1039/d1ob01353j] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nearly all FDA approved drugs and bioactive small molecules exert their effects by binding to and modulating proteins. Consequently, understanding how small molecules interact with proteins at an molecular level is a central challenge of modern chemical biology and drug development. Complementary to structure-guided approaches, chemoproteomics has emerged as a method capable of high-throughput identification of proteins covalently bound by small molecules. To profile noncovalent interactions, established chemoproteomic workflows typically incorporate photoreactive moieties into small molecule probes, which enable trapping of small molecule-protein interactions (SMPIs). This strategy, termed photoaffinity labelling (PAL), has been utilized to profile an array of small molecule interactions, including for drugs, lipids, metabolites, and cofactors. Herein we describe the discovery of photocrosslinking chemistries, including a comparison of the strengths and limitations of implementation of each chemotype in chemoproteomic workflows. In addition, we highlight key examples where photoaffinity labelling has enabled target deconvolution and interaction site mapping.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA.
| | - Phillip Kim
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Keriann M Backus
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
11
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
Qiu C, Cheng Z, Lv C, Wang R, Yu F. Development of bioorthogonal SERS imaging probe in biological and biomedical applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Rathod J, Yen HC, Liang B, Tseng YY, Chen CS, Wu WS. YPIBP: A repository for phosphoinositide-binding proteins in yeast. Comput Struct Biotechnol J 2021; 19:3692-3707. [PMID: 34285772 PMCID: PMC8261538 DOI: 10.1016/j.csbj.2021.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Phosphoinositides (PIs) are a family of eight lipids consisting of phosphatidylinositol (PtdIns) and its seven phosphorylated forms. PIs have important regulatory functions in the cell including lipid signaling, protein transport, and membrane trafficking. Yeast has been recognized as a eukaryotic model system to study lipid-protein interactions. Hundreds of yeast PI-binding proteins have been identified, but this research knowledge remains scattered. Besides, the complete PI-binding spectrum and potential PI-binding domains have not been interlinked. No comprehensive databases are available to support the lipid-protein interaction research on phosphoinositides. Here we constructed the first knowledgebase of Yeast Phosphoinositide-Binding Proteins (YPIBP), a repository consisting of 679 PI-binding proteins collected from high-throughput proteome-array and lipid-array studies, QuickGO, and a rigorous literature mining. The YPIBP also contains protein domain information in categories of lipid-binding domains, lipid-related domains and other domains. The YPIBP provides search and browse modes along with two enrichment analyses (PI-binding enrichment analysis and domain enrichment analysis). An interactive visualization is given to summarize the PI-domain-protein interactome. Finally, three case studies were given to demonstrate the utility of YPIBP. The YPIBP knowledgebase consolidates the present knowledge and provides new insights of the PI-binding proteins by bringing comprehensive and in-depth interaction network of the PI-binding proteins. YPIBP is available at http://cosbi7.ee.ncku.edu.tw/YPIBP/.
Collapse
Key Words
- ANTH, AP180 N-terminal Homology
- BAR, Bin-Amphiphysin-Rvs
- CAFA, Critical Assessment of Functional Annotation
- CRAL-TRIO, cellular retinaldehyde-binding protein (CRALBP) and TRIO guanine exchange factor
- Cvt, Cytoplasm-to-vacuole targeting
- ENTH, Epsin N-terminal Homology
- FDR, False Discovery Rate
- FYVE, Fab 1 (yeast orthologue of PIKfyve), YOTB, Vac 1 (vesicle transport protein), and EEA1
- GO, Gene Ontology
- ITC, Isothermal Titration Calorimetry
- LBD, Lipid-Binding Domain
- LMPD, LIPID MAPS Proteome Database
- LMSD, LIPID MAPS Structure Database
- LRD, Lipid-Related Domain
- Lipid-binding domain
- OMIM, Online Mendelian Inheritance in Man
- OSBP, Oxysterol-Binding Protein
- PH, Pleckstrin Homology
- PI(3,4)P2, phosphatidylinositol-3,4-bisphosphate
- PI(3,4,5)P3, phosphatidylinositol-3,4,5-trisphosphate
- PI(3,5)P2, phosphatidylinositol-3,5-bisphosphate
- PI(4,5)P2, phosphatidylinositol-4,5-bisphosphate
- PI-binding protein
- PI3P, phosphatidylinositol-3-phosphate
- PI4P, phosphatidylinositol-4-phosphate
- PI5P, phosphatidylinositol-5-phosphate
- PIs, Phosphoinositides
- PMID, PubMed ID
- PX, Phox Homology
- Phosphatidylinositol (PtdIns)
- Phosphoinositides (PIs)
- PtdIns, Phosphatidylinositol
- QCM, Quartz Crystal Microbalance
- S. cerevisiae
- SNX, Sorting Nexin
- SPR, Surface Plasmon Resonance
- YPIBP, Yeast Phosphoinositide-Binding Proteins
- Yeast
Collapse
Affiliation(s)
- Jagat Rathod
- Department of Earth Sciences, College of Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Chen Yen
- Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan 701, Taiwan
| | - Biqing Liang
- Department of Earth Sciences, College of Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yan-Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
14
|
Chen C, Peng T. Protocol for Site-Specific Photo-Crosslinking Proteomics to Identify Protein-Protein Interactions in Mammalian Cells. STAR Protoc 2020; 1:100109. [PMID: 33377005 PMCID: PMC7756934 DOI: 10.1016/j.xpro.2020.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein-protein interactions (PPIs) play essential roles in almost all aspects of cellular processes. However, PPIs remain challenging to study due to their substoichiometry, low affinity, dynamic nature, and context dependence. Here, we present a protocol for the capture and identification of PPIs in live mammalian cells, which relies on site-specific photo-crosslinking in live cells, affinity purification, and quantitative proteomics. The protocol facilitates efficient and reliable identification of the interacting proteins of a given protein of interest in live cells. For complete details on the use and execution of this protocol, please refer to Wu et al. (2020).
Collapse
Affiliation(s)
- Chengjie Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Corresponding author
| |
Collapse
|
15
|
Herianto S, Rathod J, Shah P, Chen YZ, Wu WS, Liang B, Chen CS. Systematic Analysis of Phosphatidylinositol-5-phosphate-Interacting Proteins Using Yeast Proteome Microarrays. Anal Chem 2020; 93:868-877. [PMID: 33302626 DOI: 10.1021/acs.analchem.0c03463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We used yeast proteome microarrays (∼5800 purified proteins) to conduct a high-throughput and systematic screening of PI5P-interacting proteins with PI5P-tagged fluorescent liposomal nanovesicles. Lissamine rhodamine B-dipalmitoyl phosphatidylethanol was incorporated into the liposome bilayer to provide the nanovesicles with fluorescence without any encapsulants, which not only made the liposome fabrication much easier without the need for purification but also improved the chip-probing quality. A special chip assay was washed very gently without the traditional spin-dry step. Forty-five PI5P-interacting proteins were identified in triplicate with this special chip assay. Subsequently, we used flow cytometry to validate these interactions, and a total of 41 PI5P-interacting proteins were confirmed. Enrichment analysis revealed that these proteins have significant functions associated with ribosome biogenesis, rRNA processing, ribosome binding, GTP binding, and hydrolase activity. Their component enrichment is located in the nucleolus. The InterPro domain analysis indicated that PI5P-interacting proteins are enriched in the P-loop containing nucleoside triphosphate hydrolases domain (P-loop). Additionally, using the MEME program, we identified a consensus motif (IVGPAGTGKSTLF) that contains the Walker A sequence, a well-known nucleotide-binding motif. Furthermore, using a quartz crystal microbalance, both the consensus motif and Walker A motif showed strong affinities to PI5P-containing liposomes but not to PI5P-deprived liposomes or PI-containing liposomes. Additionally, the glycine (G6) and lysine (K7) residues of the Walker A motif (-GPAGTG6K7S-) were found to be critical to the PI5P-binding ability. This study not only identified an additional set of PI5P-interacting proteins but also revealed the strong PI5P-binding affinity (Kd = 1.81 × 10-7 M) of the Walker A motif beyond the motif's nucleotide-binding characteristic.
Collapse
Affiliation(s)
- Samuel Herianto
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences, College of Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Pramod Shah
- Department of Biomedical Sciences and Engineering, College of Health Sciences and Technology, National Central University, Jhongli 300, Taiwan
| | - You-Zuo Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan 701, Taiwan
| | - Biqing Liang
- Department of Earth Sciences, College of Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
16
|
Bagheri Y, Ali AA, You M. Current Methods for Detecting Cell Membrane Transient Interactions. Front Chem 2020; 8:603259. [PMID: 33365301 PMCID: PMC7750205 DOI: 10.3389/fchem.2020.603259] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/16/2020] [Indexed: 12/28/2022] Open
Abstract
Short-lived cell membrane complexes play a key role in regulating cell signaling and communication. Many of these complexes are formed based on low-affinity and transient interactions among various lipids and proteins. New techniques have emerged to study these previously overlooked membrane transient interactions. Exciting functions of these transient interactions have been discovered in cellular events such as immune signaling, host-pathogen interactions, and diseases such as cancer. In this review, we have summarized current experimental methods that allow us to detect and analyze short-lived cell membrane protein-protein, lipid-protein, and lipid-lipid interactions. These methods can provide useful information about the strengths, kinetics, and/or spatial patterns of membrane transient interactions. However, each method also has its own limitations. We hope this review can be used as a guideline to help the audience to choose proper approaches for studying membrane transient interactions in different membrane trafficking and cell signaling events.
Collapse
Affiliation(s)
| | | | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
17
|
Kavunja HW, Biegas KJ, Banahene N, Stewart JA, Piligian BF, Groenevelt JM, Sein CE, Morita YS, Niederweis M, Siegrist MS, Swarts BM. Photoactivatable Glycolipid Probes for Identifying Mycolate-Protein Interactions in Live Mycobacteria. J Am Chem Soc 2020; 142:7725-7731. [PMID: 32293873 PMCID: PMC7949286 DOI: 10.1021/jacs.0c01065] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacteria have a distinctive glycolipid-rich outer membrane, the mycomembrane, which is a critical target for tuberculosis drug development. However, proteins that associate with the mycomembrane, or that are involved in its metabolism and host interactions, are not well-characterized. To facilitate the study of mycomembrane-related proteins, we developed photoactivatable trehalose monomycolate analogues that metabolically incorporate into the mycomembrane in live mycobacteria, enabling in vivo photo-cross-linking and click-chemistry-mediated analysis of mycolate-interacting proteins. When deployed in Mycobacterium smegmatis with quantitative proteomics, this strategy enriched over 100 proteins, including the mycomembrane porin (MspA), several proteins with known mycomembrane synthesis or remodeling functions (CmrA, MmpL3, Ag85, Tdmh), and numerous candidate mycolate-interacting proteins. Our approach is highly versatile, as it (i) enlists click chemistry for flexible protein functionalization; (ii) in principle can be applied to any mycobacterial species to identify endogenous bacterial proteins or host proteins that interact with mycolates; and (iii) can potentially be expanded to investigate protein interactions with other mycobacterial lipids. This tool is expected to help elucidate fundamental physiological and pathological processes related to the mycomembrane and may reveal novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Herbert W Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Jessica A Stewart
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Brent F Piligian
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Jessica M Groenevelt
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Caralyn E Sein
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| |
Collapse
|
18
|
Tsukidate T, Li Q, Hang HC. Targeted and proteome-wide analysis of metabolite-protein interactions. Curr Opin Chem Biol 2020; 54:19-27. [PMID: 31790852 PMCID: PMC7131882 DOI: 10.1016/j.cbpa.2019.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
Understanding the molecular mechanisms of endogenous and environmental metabolites is crucial for basic biology and drug discovery. With the genome, proteome, and metabolome of many organisms being readily available, researchers now have the opportunity to dissect how key metabolites regulate complex cellular pathways in vivo. Nonetheless, characterizing the specific and functional protein targets of key metabolites associated with specific cellular phenotypes remains a major challenge. Innovations in chemical biology are now poised to address this fundamental limitation in physiology and disease. In this review, we highlight recent advances in chemoproteomics for targeted and proteome-wide analysis of metabolite-protein interactions that have enabled the discovery of unpredicted metabolite-protein interactions and facilitated the development of new small molecule therapeutics.
Collapse
Affiliation(s)
- Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, 10065, United States
| | - Qiang Li
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, 10065, United States
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, 10065, United States.
| |
Collapse
|
19
|
Jose GP, Gopan S, Bhattacharyya S, Pucadyil TJ. A facile, sensitive and quantitative membrane-binding assay for proteins. Traffic 2019; 21:297-305. [PMID: 31846132 DOI: 10.1111/tra.12719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/07/2023]
Abstract
Soluble proteins that bind membranes function in numerous cellular pathways yet facile, sensitive and quantitative methods that complement and improve sensitivity of widely used liposomes-based assays remain unavailable. Here, we describe the utility of a photoactivable fluorescent lipid as a generic reporter of protein-membrane interactions. When incorporated into liposomes and exposed to ultraviolet (UV), proteins bound to liposomes become crosslinked with the fluorescent lipid and can be readily detected and quantitated by in-gel fluorescence analysis. This modification obviates the requirement for high-speed centrifugation spins common to most liposome-binding assays. We refer to this assay as Proximity-based Labeling of Membrane-Associated Proteins (PLiMAP).
Collapse
Affiliation(s)
- Gregor P Jose
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Shilpa Gopan
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Soumya Bhattacharyya
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Thomas J Pucadyil
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
20
|
Luzarowski M, Skirycz A. Emerging strategies for the identification of protein-metabolite interactions. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4605-4618. [PMID: 31087097 PMCID: PMC6760282 DOI: 10.1093/jxb/erz228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/10/2019] [Indexed: 05/31/2023]
Abstract
Interactions between biological molecules enable life. The significance of a cell-wide understanding of molecular complexes is thus obvious. In comparison to protein-protein interactions, protein-metabolite interactions remain under-studied. However, this has been gradually changing due to technological progress. Here, we focus on the interactions between ligands and receptors, the triggers of signalling events. While the number of small molecules with proven or proposed signalling roles is rapidly growing, most of their protein receptors remain unknown. Conversely, there are numerous signalling proteins with predicted ligand-binding domains for which the identities of the metabolite counterparts remain elusive. Here, we discuss the current biochemical strategies for identifying protein-metabolite interactions and how they can be used to characterize known metabolite regulators and identify novel ones.
Collapse
Affiliation(s)
- Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | |
Collapse
|
21
|
Bechtella L, Kirschbaum C, Cosset M, Clodic G, Matheron L, Bolbach G, Sagan S, Walrant A, Sachon E. Benzophenone Photoreactivity in a Lipid Bilayer To Probe Peptide/Membrane Interactions: Simple System, Complex Information. Anal Chem 2019; 91:9102-9110. [DOI: 10.1021/acs.analchem.9b01584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Leïla Bechtella
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Carla Kirschbaum
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Sorbonne Université, Institut de Biologie Paris Seine, Plateforme de spectrométrie de masse et protéomique, 75005 Paris, France
| | - Marine Cosset
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Gilles Clodic
- Sorbonne Université, Institut de Biologie Paris Seine, Plateforme de spectrométrie de masse et protéomique, 75005 Paris, France
| | - Lucrèce Matheron
- Sorbonne Université, Institut de Biologie Paris Seine, Plateforme de spectrométrie de masse et protéomique, 75005 Paris, France
| | - Gérard Bolbach
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Sorbonne Université, Institut de Biologie Paris Seine, Plateforme de spectrométrie de masse et protéomique, 75005 Paris, France
| | - Sandrine Sagan
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Astrid Walrant
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Emmanuelle Sachon
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Sorbonne Université, Institut de Biologie Paris Seine, Plateforme de spectrométrie de masse et protéomique, 75005 Paris, France
| |
Collapse
|
22
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
23
|
Fink J, Seibel J. Click reactions with functional sphingolipids. Biol Chem 2019; 399:1157-1168. [PMID: 29908120 DOI: 10.1515/hsz-2018-0169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/15/2018] [Indexed: 12/17/2022]
Abstract
Sphingolipids and glycosphingolipids can regulate cell recognition and signalling. Ceramide and sphingosine-1-phosphate are major players in the sphingolipid pathways and are involved in the initiation and regulation of signalling, apoptosis, stress responses and infection. Specific chemically synthesised sphingolipid derivatives containing small functionalities like azide or alkyne can mimic the biological properties of natural lipid species, which turns them into useful tools for the investigation of the highly complex sphingolipid metabolism by rapid and selective 'click chemistry' using sensitive tags like fluorophores. Subsequent analysis by various fluorescence microscopy techniques or mass spectrometry allows the identification and quantification of the corresponding sphingolipid metabolites as well as the research of associated enzymes. Here we present an overview of recent advances in the synthesis of ceramide and sphingosine analogues for bioorthogonal click reactions to study biosynthetic pathways and localization of sphingolipids for the development of novel therapeutics against lipid-dependent diseases.
Collapse
Affiliation(s)
- Julian Fink
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Würzburg, Germany
| | - Jürgen Seibel
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
24
|
Wang YC, Westcott NP, Griffin ME, Hang HC. Peptidoglycan Metabolite Photoaffinity Reporters Reveal Direct Binding to Intracellular Pattern Recognition Receptors and Arf GTPases. ACS Chem Biol 2019; 14:405-414. [PMID: 30735346 DOI: 10.1021/acschembio.8b01038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The peptidoglycan fragments γ-d-glutamyl- meso-diaminopimelic acid (iE-DAP) and muramyl-dipeptide (MDP) are microbial-specific metabolites that activate intracellular pattern recognition receptors and stimulate immune signaling pathways. While extensive structure-activity studies have demonstrated that these bacterial cell wall metabolites trigger NOD1- and NOD2-dependent signaling, their direct binding to these innate immune receptors or other proteins in mammalian cells has not been established. To characterize these fundamental microbial metabolite-host interactions, we synthesized a series of peptidoglycan metabolite photoaffinity reporters and evaluated their cross-linking to NOD1 and NOD2 in mammalian cells. We show that active iE-DAP and MDP photoaffinity reporters selectively cross-linked NOD1 and NOD2, respectively, and not their inactive mutants. We also discovered MDP reporter cross-linking to Arf GTPases, which interacted most prominently with GTP-bound Arf6 and coimmunoprecipitated with NOD2 upon MDP stimulation. Notably, MDP binding to NOD2 and Arf6 was abrogated with loss-of-function NOD2 mutants associated with Crohn's disease. Our studies demonstrate peptidoglycan metabolite photoaffinity reporters can capture their cognate immune receptors in cells and reveal unpredicted ligand-induced interactions with other cellular cofactors. These photoaffinity reporters should afford useful tools to discover and characterize other peptidoglycan metabolite-interacting proteins.
Collapse
Affiliation(s)
- Yen-Chih Wang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Nathan P. Westcott
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Matthew E. Griffin
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Howard C. Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
25
|
Vasudevan A, Argiriadi MA, Baranczak A, Friedman MM, Gavrilyuk J, Hobson AD, Hulce JJ, Osman S, Wilson NS. Covalent binders in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:1-62. [PMID: 30879472 DOI: 10.1016/bs.pmch.2018.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent modulation of protein function can have multiple utilities including therapeutics, and probes to interrogate biology. While this field is still viewed with scepticism due to the potential for (idiosyncratic) toxicities, significant strides have been made in terms of understanding how to tune electrophilicity to selectively target specific residues. Progress has also been made in harnessing the potential of covalent binders to uncover novel biology and to provide an enhanced utility as payloads for Antibody Drug Conjugates. This perspective covers the tenets and applications of covalent binders.
Collapse
Affiliation(s)
| | | | | | | | - Julia Gavrilyuk
- AbbVie Stemcentrx, LLC, South San Francisco, CA, United States
| | | | | | - Sami Osman
- AbbVie Bioresearch Center, Worcester, MA, United States
| | | |
Collapse
|
26
|
Soldevila-Barreda JJ, Metzler-Nolte N. Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs. Chem Rev 2019; 119:829-869. [PMID: 30618246 DOI: 10.1021/acs.chemrev.8b00493] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platinum-containing drugs (e.g., cisplatin) are among the most frequently used chemotherapeutic agents. Their tremendous success has spurred research and development of other metal-based drugs, with notable achievements. Generally, the vast majority of metal-based drug candidates in clinical and developmental stages are stoichiometric agents, i.e., each metal complex reacts only once with their biological target. Additionally, many of these metal complexes are involved in side reactions, which not only reduce the effective amount of the drug but may also cause toxicity. On a separate note, transition metal complexes and nanoparticles have a well-established history of being potent catalysts for selective molecular transformations, with examples such as the Mo- and Ru-based catalysts for metathesis reactions (Nobel Prize in 2005) or palladium catalysts for C-C bond forming reactions such as Heck, Negishi, or Suzuki reactions (Nobel Prize in 2010). Also, notably, no direct biological equivalent of these transformations exists in a biological environment such as bacteria or mammalian cells. It is, therefore, only logical that recent interest has focused on developing transition-metal based catalytic systems that are capable of performing transformations inside cells, with the aim of inducing medicinally relevant cellular changes. Because unlike in stoichiometric reactions, a catalytically active compound may turn over many substrate molecules, only very small amounts of such a catalytic metallodrug are required to achieve a desired pharmacologic effect, and therefore, toxicity and side reactions are reduced. Furthermore, performing catalytic reactions in biological systems also opens the door for new methodologies to study the behavior of biomolecules in their natural state, e.g., via in situ labeling or by increasing/depleting their concentration at will. There is, of course, an art to the choice of catalysts and reactions which have to be compatible with biological conditions, namely an aqueous, oxygen-containing environment. In this review, we aim to describe new developments that bring together the far-distant worlds of transition-metal based catalysis and metal-based drugs, in what is termed "catalytic metallodrugs". Here we will focus on transformations that have been performed on small biomolecules (such as shifting equilibria like in the NAD+/NADH or GSH/GSSG couples), on non-natural molecules such as dyes for imaging purposes, or on biomacromolecules such as proteins. Neither reactions involving release (e.g., CO) or transformation of small molecules (e.g., 1O2 production), degradation of biomolecules such as proteins, RNA or DNA nor light-induced medicinal chemistry (e.g., photodynamic therapy) are covered, even if metal complexes are centrally involved in those. In each section, we describe the (inorganic) chemistry involved, as well as selected examples of biological applications in the hope that this snapshot of a new but quickly developing field will indeed inspire novel research and unprecedented interactions across disciplinary boundaries.
Collapse
Affiliation(s)
- Joan Josep Soldevila-Barreda
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr University Bochum , Universitätsstrasse 150 , 44780-D Bochum , Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr University Bochum , Universitätsstrasse 150 , 44780-D Bochum , Germany
| |
Collapse
|
27
|
Opportunities for Lipid-Based Probes in the Field of Immunology. Curr Top Microbiol Immunol 2018; 420:283-319. [PMID: 30242513 DOI: 10.1007/82_2018_127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Lipids perform a wide range of functions inside the cell, ranging from structural building block of membranes and energy storage to cell signaling. The mode of action of many signaling lipids has remained elusive due to their low abundance, high lipophilicity, and inherent instability. Various chemical biology approaches, such as photoaffinity or activity-based protein profiling methods, have been employed to shed light on the biological role of lipids and the lipid-protein interaction profile. In this review, we will summarize the recent developments in the field of chemical probes to study lipid biology, especially in immunology, and indicate potential avenues for future research.
Collapse
|
28
|
Click chemistry in sphingolipid research. Chem Phys Lipids 2018; 215:71-83. [DOI: 10.1016/j.chemphyslip.2018.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 01/17/2023]
|
29
|
Structural Lipids Enable the Formation of Functional Oligomers of the Eukaryotic Purine Symporter UapA. Cell Chem Biol 2018; 25:840-848.e4. [PMID: 29681524 PMCID: PMC6058078 DOI: 10.1016/j.chembiol.2018.03.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022]
Abstract
The role of membrane lipids in modulating eukaryotic transporter assembly and function remains unclear. We investigated the effect of membrane lipids in the structure and transport activity of the purine transporter UapA from Aspergillus nidulans. We found that UapA exists mainly as a dimer and that two lipid molecules bind per UapA dimer. We identified three phospholipid classes that co-purified with UapA: phosphatidylcholine, phosphatidylethanolamine (PE), and phosphatidylinositol (PI). UapA delipidation caused dissociation of the dimer into monomers. Subsequent addition of PI or PE rescued the UapA dimer and allowed recovery of bound lipids, suggesting a central role of these lipids in stabilizing the dimer. Molecular dynamics simulations predicted a lipid binding site near the UapA dimer interface. Mutational analyses established that lipid binding at this site is essential for formation of functional UapA dimers. We propose that structural lipids have a central role in the formation of functional, dimeric UapA. Mass spectrometry reveals specific lipid binding to the eukaryotic transporter UapA Interfacial lipids stabilize the functional UapA dimer MD simulations reveal the lipid binding sites Mutagenesis of a lipid binding site disrupts UapA dimerization and function in vivo
Collapse
|
30
|
Abstract
Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.
Collapse
Affiliation(s)
- Elisabeth M Storck
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Cagakan Özbalci
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Ulrike S Eggert
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom; .,Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| |
Collapse
|
31
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
32
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
33
|
Zhang J, Ma Z, Kurgan L. Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains. Brief Bioinform 2017; 20:1250-1268. [DOI: 10.1093/bib/bbx168] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/15/2017] [Indexed: 11/13/2022] Open
Abstract
Abstract
Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein–DNA or protein–RNA binding, only a few have a wider scope that covers both protein–protein and protein–nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences.
Collapse
|
34
|
Diether M, Sauer U. Towards detecting regulatory protein–metabolite interactions. Curr Opin Microbiol 2017; 39:16-23. [DOI: 10.1016/j.mib.2017.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/20/2023]
|
35
|
Wang D, Du S, Cazenave-Gassiot A, Ge J, Lee JS, Wenk MR, Yao SQ. Global Mapping of Protein-Lipid Interactions by Using Modified Choline-Containing Phospholipids Metabolically Synthesized in Live Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyang Wang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | | | - Jingyan Ge
- Institute of Bioengineering; Zhejiang University of Technology; China
| | - Jun-Seok Lee
- Department of Biological Chemistry; University of Science & Technology; South Korea
| | - Markus R. Wenk
- Department of Biological Sciences; National University of Singapore; Singapore
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
36
|
Wang D, Du S, Cazenave-Gassiot A, Ge J, Lee JS, Wenk MR, Yao SQ. Global Mapping of Protein-Lipid Interactions by Using Modified Choline-Containing Phospholipids Metabolically Synthesized in Live Cells. Angew Chem Int Ed Engl 2017; 56:5829-5833. [DOI: 10.1002/anie.201702509] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Danyang Wang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | | | - Jingyan Ge
- Institute of Bioengineering; Zhejiang University of Technology; China
| | - Jun-Seok Lee
- Department of Biological Chemistry; University of Science & Technology; South Korea
| | - Markus R. Wenk
- Department of Biological Sciences; National University of Singapore; Singapore
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
37
|
Dormán G, Nakamura H, Pulsipher A, Prestwich GD. The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chem Rev 2016; 116:15284-15398. [PMID: 27983805 DOI: 10.1021/acs.chemrev.6b00342] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread applications of benzophenone (BP) photochemistry in biological chemistry, bioorganic chemistry, and material science have been prominent in both academic and industrial research. BP photophores have unique photochemical properties: upon n-π* excitation at 365 nm, a biradicaloid triplet state is formed reversibly, which can abstract a hydrogen atom from accessible C-H bonds; the radicals subsequently recombine, creating a stable covalent C-C bond. This light-directed covalent attachment process is exploited in many different ways: (i) binding/contact site mapping of ligand (or protein)-protein interactions; (ii) identification of molecular targets and interactome mapping; (iii) proteome profiling; (iv) bioconjugation and site-directed modification of biopolymers; (v) surface grafting and immobilization. BP photochemistry also has many practical advantages, including low reactivity toward water, stability in ambient light, and the convenient excitation at 365 nm. In addition, several BP-containing building blocks and reagents are commercially available. In this review, we explore the "forbidden" (transitions) and excitation-activated world of photoinduced covalent attachment of BP photophores by touring a colorful palette of recent examples. In this exploration, we will see the pros and cons of using BP photophores, and we hope that both novice and expert photolabelers will enjoy and be inspired by the breadth and depth of possibilities.
Collapse
Affiliation(s)
- György Dormán
- Targetex llc , Dunakeszi H-2120, Hungary.,Faculty of Pharmacy, University of Szeged , Szeged H-6720, Hungary
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Yokohama 226-8503, Japan
| | - Abigail Pulsipher
- GlycoMira Therapeutics, Inc. , Salt Lake City, Utah 84108, United States.,Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| | - Glenn D Prestwich
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| |
Collapse
|
38
|
Ando J, Asanuma M, Dodo K, Yamakoshi H, Kawata S, Fujita K, Sodeoka M. Alkyne-Tag SERS Screening and Identification of Small-Molecule-Binding Sites in Protein. J Am Chem Soc 2016; 138:13901-13910. [DOI: 10.1021/jacs.6b06003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jun Ando
- AMED-CREST, Japan Agency for Medical Research and Development, Saitama 351-0198, Japan
- Sodeoka
Live Cell Chemistry Project, ERATO, Japan Science and Technology Agency, Saitama 351-0198, Japan
- Synthetic
Organic Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
- Department
of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Miwako Asanuma
- AMED-CREST, Japan Agency for Medical Research and Development, Saitama 351-0198, Japan
- Sodeoka
Live Cell Chemistry Project, ERATO, Japan Science and Technology Agency, Saitama 351-0198, Japan
- Synthetic
Organic Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Kosuke Dodo
- AMED-CREST, Japan Agency for Medical Research and Development, Saitama 351-0198, Japan
- Sodeoka
Live Cell Chemistry Project, ERATO, Japan Science and Technology Agency, Saitama 351-0198, Japan
- Synthetic
Organic Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Hiroyuki Yamakoshi
- Sodeoka
Live Cell Chemistry Project, ERATO, Japan Science and Technology Agency, Saitama 351-0198, Japan
- Synthetic
Organic Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Satoshi Kawata
- Department
of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- AMED-CREST, Japan Agency for Medical Research and Development, Saitama 351-0198, Japan
- Sodeoka
Live Cell Chemistry Project, ERATO, Japan Science and Technology Agency, Saitama 351-0198, Japan
- Department
of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Mikiko Sodeoka
- AMED-CREST, Japan Agency for Medical Research and Development, Saitama 351-0198, Japan
- Sodeoka
Live Cell Chemistry Project, ERATO, Japan Science and Technology Agency, Saitama 351-0198, Japan
- Synthetic
Organic Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
| |
Collapse
|
39
|
Transition-Metal-Catalyzed Bioorthogonal Cycloaddition Reactions. Top Curr Chem (Cham) 2015; 374:2. [DOI: 10.1007/s41061-015-0001-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/11/2015] [Indexed: 01/20/2023]
|
40
|
Peng T, Thinon E, Hang HC. Proteomic analysis of fatty-acylated proteins. Curr Opin Chem Biol 2015; 30:77-86. [PMID: 26656971 DOI: 10.1016/j.cbpa.2015.11.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/11/2022]
Abstract
Protein fatty-acylation in eukaryotes has been associated with many fundamental biological processes. However, the diversity, abundance and regulatory mechanisms of protein fatty-acylation in vivo remain to be explored. Herein, we review the proteomic analysis of fatty-acylated proteins, with a focus on N-myristoylation and S-palmitoylation. We then highlight major challenges and emerging methods for direct site identification, quantitation, and lipid structure characterization to understand the functions and regulatory mechanisms of fatty-acylated proteins in physiology and disease.
Collapse
Affiliation(s)
- Tao Peng
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States
| | - Emmanuelle Thinon
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States; The Crick Institute, 215 Euston Road, London NW1 2BE, United Kingdom
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States.
| |
Collapse
|
41
|
|
42
|
Peng T, Hang HC. Bifunctional fatty acid chemical reporter for analyzing S-palmitoylated membrane protein-protein interactions in mammalian cells. J Am Chem Soc 2015; 137:556-9. [PMID: 25575299 PMCID: PMC4303541 DOI: 10.1021/ja502109n] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studying the functions of S-palmitoylated proteins in cells can be challenging due to the membrane targeting property and dynamic nature of protein S-palmitoylation. New strategies are therefore needed to specifically capture S-palmitoylated protein complexes in cellular membranes for dissecting their functions in vivo. Here we present a bifunctional fatty acid chemical reporter, x-alk-16, which contains an alkyne and a diazirine, for metabolic labeling of S-palmitoylated proteins and photo-cross-linking of their involved protein complexes in mammalian cells. We demonstrate that x-alk-16 can be metabolically incorporated into known S-palmitoylated proteins such as H-Ras and IFITM3, a potent antiviral protein, and induce covalent cross-linking of IFITM3 oligomerization as well as its specific interactions with other membrane proteins upon in-cell photoactivation. Moreover, integration of x-alk-16-induced photo-cross-linking with label-free quantitative proteomics allows identification of new IFITM3 interacting proteins.
Collapse
Affiliation(s)
- Tao Peng
- Laboratory of Chemical Biology and Bacterial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Howard C. Hang
- Laboratory of Chemical Biology and Bacterial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
43
|
Fujita A, Kohler JJ. Photocrosslinking Sugars for Capturing Glycan-dependent Interactions (Jpn. Ed.). TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1439.1j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Akiko Fujita
- Department of Biochemistry, University of Texas Southwestern Medical Center
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center
| |
Collapse
|
44
|
Fujita A, Kohler JJ. Photocrosslinking Sugars for Capturing Glycan-dependent Interactions. TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1439.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Akiko Fujita
- Department of Biochemistry, University of Texas Southwestern Medical Center
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center
| |
Collapse
|