1
|
Marks JR, Lailvaux SP. The Integrative Life History of Maternal Effects. Integr Comp Biol 2024; 64:1623-1632. [PMID: 39020247 PMCID: PMC11659676 DOI: 10.1093/icb/icae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Context-dependent allocation of resources drives trade-offs among fitness-related traits and other phenotypes to which those traits are linked. In addition, the amount and type of acquired resources can also affect the phenotypes of other organisms through indirect genetic effects, as exemplified by the maternal provisioning of offspring. Despite a large literature on maternal effects, we lack a comprehensive understanding of the extent to which mothers might affect the phenotypes of their offspring, as well as the various mechanisms by which they do so, particularly with regard to many functional traits that are key determinants of survival and reproduction. Our goals in this paper are to review the various approaches to measuring and understanding maternal effects and to highlight some promising avenues for integration of maternal effects with some other key areas of evolutionary ecology. We focus especially on nutritional geometry; maternal age; and traits proximate to fitness such as whole-organism performance. Finally, we discuss the logistic and practical limits of quantifying these effects in many animal systems and emphasize the value of integrative approaches in understanding the mechanisms underlying maternal influence on offspring phenotypes.
Collapse
Affiliation(s)
- Jamie R Marks
- Department of Integrative Biology, Kellogg Biological Station, Michigan State University, 3700 E. Gull Lake Rd., Hickory Corners, MI 49060, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
2
|
Hikawa N, Kashio S, Miura M. Mating-induced increase of kynurenine in Drosophila ovary enhances starvation resistance of progeny. J Biol Chem 2024; 300:105663. [PMID: 38246353 PMCID: PMC10882137 DOI: 10.1016/j.jbc.2024.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The maternal nutritional environment can impact progeny development, stress tolerance, and longevity. Such phenotypic variation of offspring resulting from the maternal environment is often referred to as the 'maternal effect' and is observed across taxa, including in humans. While some mechanisms behind maternal effects have been revealed, such as histone modification, many studies rely on drastic genetic or nutritional manipulation in describing these mechanisms. Here we aimed to reveal how the maternal environment is regulated under physiological conditions to affect the progeny. Specifically, we detailed metabolic regulation in oocytes in response to mating using Drosophila melanogaster fruit flies. Using liquid chromatography-mass spectrometry, we found that upon mating, the ovary metabolites shifted, predominantly toward increasing amino acids and the tryptophan/kynurenine (Kyn) pathway. This mating-induced increase in ovary Kyn was driven by increased Kyn production in the fat body, a functional counterpart of the mammalian liver and white adipose tissue and the source of Kyn storage for the ovary after mating. Furthermore, we show that maternal Kyn repression decreased the starvation resistance of progeny and that administering exogenous Kyn to the maternal generation enhanced the starvation resistance of female progeny. Taken together, these findings point to a previously unidentified role of fat body Kyn distribution during reproduction on progeny survival.
Collapse
Affiliation(s)
- Naoto Hikawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Lazarević J, Milanović S, Šešlija Jovanović D, Janković-Tomanić M. Temperature- and Diet-Induced Plasticity of Growth and Digestive Enzymes Activity in Spongy Moth Larvae. Biomolecules 2023; 13:biom13050821. [PMID: 37238690 DOI: 10.3390/biom13050821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Temperature and food quality are the most important environmental factors determining the performance of herbivorous insects. The objective of our study was to evaluate the responses of the spongy moth (formerly known as the gypsy moth) [Lymantria dispar L. (Lepidoptera: Erebidae)] to simultaneous variation in these two factors. From hatching to the fourth instar, larvae were exposed to three temperatures (19 °C, 23 °C, and 28 °C) and fed four artificial diets that differed in protein (P) and carbohydrate (C) content. Within each temperature regime, the effects of the nutrient content (P+C) and ratio (P:C) on development duration, larval mass, growth rate, and activities of digestive proteases, carbohydrases, and lipase were examined. It was found that temperature and food quality had a significant effect on the fitness-related traits and digestive physiology of the larvae. The greatest mass and highest growth rate were obtained at 28 °C on a high-protein low-carbohydrate diet. A homeostatic increase in activity was observed for total protease, trypsin, and amylase in response to low substrate levels in the diet. A significant modulation of overall enzyme activities in response to 28 °C was detected only with a low diet quality. A decrease in the nutrient content and P:C ratio only affected the coordination of enzyme activities at 28 °C, as indicated by the significantly altered correlation matrices. Multiple linear regression analysis showed that variation in fitness traits in response to different rearing conditions could be explained by variation in digestion. Our results contribute to the understanding of the role of digestive enzymes in post-ingestive nutrient balancing.
Collapse
Affiliation(s)
- Jelica Lazarević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Slobodan Milanović
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemĕdĕlská 3, 613 00 Brno, Czech Republic
| | - Darka Šešlija Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Milena Janković-Tomanić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
4
|
Effects of Parental Dietary Restriction on Offspring Fitness in Drosophila melanogaster. Nutrients 2023; 15:nu15051273. [PMID: 36904272 PMCID: PMC10005678 DOI: 10.3390/nu15051273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Dietary restriction (DR) is a well-established strategy to increase lifespan and stress resistance in many eukaryotic species. In addition, individuals fed a restricted diet typically reduce or completely shut down reproduction compared to individuals fed a full diet. Although the parental environment can lead to changes epigenetically in offspring gene expression, little is known about the role of the parental (F0) diet on the fitness of their offspring (F1). This study investigated the lifespan, stress resistance, development, body weight, fecundity, and feeding rate in offspring from parental flies exposed to a full or restricted diet. The offspring flies of the parental DR showed increases in body weight, resistance to various stressors, and lifespan, but the development and fecundity were unaffected. Interestingly, parental DR reduced the feeding rate of their offspring. This study suggests that the effect of DR can extend beyond the exposed individual to their offspring, and it should be considered in both theoretical and empirical studies of senescence.
Collapse
|
5
|
Towarnicki SG, Youngson NA, Corley SM, St. John JC, Melvin RG, Turner N, Morris MJ, Ballard JWO. Ancestral dietary change alters the development of Drosophila larvae through MAPK signalling. Fly (Austin) 2022; 16:299-311. [PMID: 35765944 PMCID: PMC9354765 DOI: 10.1080/19336934.2022.2088032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Studies in a broad range of animal species have revealed phenotypes that are caused by ancestral life experiences, including stress and diet. Ancestral dietary macronutrient composition and quantity (over- and under-nutrition) have been shown to alter descendent growth, metabolism and behaviour. Molecules have been identified in gametes that are changed by ancestral diet and are required for transgenerational effects. However, there is less understanding of the developmental pathways altered by inherited molecules during the period between fertilization and adulthood. To investigate this non-genetic inheritance, we exposed great grand-parental and grand-parental generations to defined protein to carbohydrate (P:C) dietary ratios. Descendent developmental timing was consistently faster in the period between the embryonic and pupal stages when ancestors had a higher P:C ratio diet. Transcriptional analysis revealed extensive and long-lasting changes to the MAPK signalling pathway, which controls growth rate through the regulation of ribosomal RNA transcription. Pharmacological inhibition of both MAPK and rRNA pathways recapitulated the ancestral diet-induced developmental changes. This work provides insight into non-genetic inheritance between fertilization and adulthood.
Collapse
Affiliation(s)
- Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Neil A. Youngson
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia,The Institute of Hepatology, The Foundation for Liver Research, London, UK
| | - Susan M. Corley
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Jus C. St. John
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Richard G. Melvin
- Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia
| | - Nigel Turner
- The Institute of Hepatology, The Foundation for Liver Research, London, UK
| | - Margaret J. Morris
- The Institute of Hepatology, The Foundation for Liver Research, London, UK
| | - J. William O. Ballard
- Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia,Department of Ecology, Environment and Evolution, School of Life Sciences, Victoria 3086, La Trobe University, Melbourne, VIC, Australia,CONTACT J. William O. Ballard Department of Environment and Genetics, SABE, La Trobe University, Bundoora, VIC3086, Australia
| |
Collapse
|
6
|
Strilbytska O, Semaniuk U, Bubalo V, Storey KB, Lushchak O. Dietary Choice Reshapes Metabolism in Drosophila by Affecting Consumption of Macronutrients. Biomolecules 2022; 12:biom12091201. [PMID: 36139040 PMCID: PMC9496580 DOI: 10.3390/biom12091201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The precise regulation of metabolism and feeding behavior is important for preventing the development of metabolic diseases. Here we examine the effects on Drosophila metabolism of dietary choice. These changes are predicted to be dependent on both the quantity and quality of the chosen diet. Using a geometric framework for both no-choice and two-choice conditions, we found that feeding decisions led to higher glucose and trehalose levels but lower triglycerides pools. The feeding regimens had similar strategies for macronutrient balancing, and both maximized hemolymph glucose and glycogen content under low protein intake. In addition, the flies showed significant differences in the way they regulated trehalose and triglyceride levels in response to carbohydrate and protein consumption between choice and no-choice nutrition. Under choice conditions, trehalose and triglyceride levels were maximized at the lowest protein and carbohydrate consumption. Thus, we suggest that these changes in carbohydrate and lipid metabolism are caused by differences in the macronutrients consumed by flies. Food choice elicits rapid metabolic changes to maintain energy homeostasis. These results contribute to our understanding of how metabolism is regulated by the revealed nutrient variation in response to food decisions.
Collapse
Affiliation(s)
- Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Street, 76018 Ivano-Frankivsk, Ukraine
| | - Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Street, 76018 Ivano-Frankivsk, Ukraine
| | - Volodymyr Bubalo
- Laboratory of Experimental Toxicology and Mutagenesis, L.I. Medved’s Research Center of Preventive Toxicology, Food and Chemical Safety, MHU, 03680 Kyiv, Ukraine
| | - Kenneth B. Storey
- Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Street, 76018 Ivano-Frankivsk, Ukraine
- Research and Development University, 13a Shota Rustaveli Street, 76018 Ivano-Frankivsk, Ukraine
- Correspondence:
| |
Collapse
|
7
|
Strilbytska OM, Semaniuk UV, Burdyliuk NI, Lushchak OV. Protein content in the parental diet affects cold tolerance and antioxidant system state in the offspring Drosophila. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.01.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Strilbytska OM, Stefanyshyn NP, Semaniuk UV, Lushchak OV. Yeast concentration in the diet defines Drosophila metabolism of both parental and offspring generations. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.06.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Strilbytska O, Zayachkivska A, Strutynska T, Semaniuk U, Vaiserman A, Lushchak O. Dietary protein defines stress resistance, oxidative damages and antioxidant defense system in Drosophila melanogaster. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.05.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
10
|
Le Bourg E. Neglecting larval rearing conditions in Drosophila melanogaster can negatively impact research on ageing. Biogerontology 2021; 22:369-373. [PMID: 33725227 DOI: 10.1007/s10522-021-09917-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022]
Abstract
The developmental conditions of Drosophila melanogaster flies can modify the phenotypic traits of adults. However, the control of these conditions is neglected by some authors in their articles and the readers are unaware, for instance, whether flies developed in crowded cultures or fed on a new or used medium. Controlling developmental conditions allows to know precisely the viability of flies, their duration of development and sex-ratio, which can be warning signals of bad rearing conditions. As developmental conditions can modify the results of experiments on the effects of ageing it is necessary to strictly control them.
Collapse
Affiliation(s)
- Eric Le Bourg
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI Toulouse), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
11
|
The seesaw of diet restriction and lifespan: lessons from Drosophila studies. Biogerontology 2021; 22:253-259. [PMID: 33575931 DOI: 10.1007/s10522-021-09912-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/27/2021] [Indexed: 01/19/2023]
Abstract
Diet restriction (DR) studies undergo the implementation of reduced single or multiple component/s of the fly food without causing malnutrition. The question of how and why DR modifies the fate of lifespan in fruit flies Drosophila melanogaster has prompted us to emphasize by attending the control food composition first. Certain concentrations of DR food do not always confer an extended lifespan, rather it enables the flies to achieve their normal lifespan, which was probably reduced by the control food per se (having toxic effect caused due to the excess levels of dietary components). However, the current paradigm of DR studies has elicited its benefits and losses via trade-offs in the organismal traits and have highlighted the need for a common diet, but have not claimed the tested diets as balanced. So, the DR effect on lifespan and other fitness traits cannot be justified only based on varying control food across labs and hence, the approach of DR studies has to be revisited and a balanced diet has to be formulated. The current article discusses the need for a balanced diet, the traits to be considered before designing a diet, and certain problems in the existing synthetic medium. Therefore, based on the control food composition, the validity of lifespan extension conferred by these nutrient restricted diets need to be accounted for.
Collapse
|
12
|
Lourido F, Quenti D, Salgado-Canales D, Tobar N. Domeless receptor loss in fat body tissue reverts insulin resistance induced by a high-sugar diet in Drosophila melanogaster. Sci Rep 2021; 11:3263. [PMID: 33547367 PMCID: PMC7864986 DOI: 10.1038/s41598-021-82944-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance is a hallmark of type 2 diabetes resulting from the confluence of several factors, including genetic susceptibility, inflammation, and diet. Under this pathophysiological condition, the dysfunction of the adipose tissue triggered by the excess caloric supply promotes the loss of sensitivity to insulin at the local and peripheral level, a process in which different signaling pathways are involved that are part of the metabolic response to the diet. Besides, the dysregulation of insulin signaling is strongly associated with inflammatory processes in which the JAK/STAT pathway plays a central role. To better understand the role of JAK/STAT signaling in the development of insulin resistance, we used a simple organism, Drosophila melanogaster, as a type 2 diabetes model generated by the consumption of a high-sugar diet. In this model, we studied the effects of inhibiting the expression of the JAK/STAT pathway receptor Domeless, in fat body, on adipose metabolism and glycemic control. Our results show that the Domeless receptor loss in fat body cells reverses both hyperglycemia and the increase in the expression of the insulin resistance marker Nlaz, observed in larvae fed a high sugar diet. This effect is consistent with a significant reduction in Dilp2 mRNA expression and an increase in body weight compared to wild-type flies fed high sugar diets. Additionally, the loss of Domeless reduced the accumulation of triglycerides in the fat body cells of larvae fed HSD and also significantly increased the lifespan of adult flies. Taken together, our results show that the loss of Domeless in the fat body reverses at least in part the dysmetabolism induced by a high sugar diet in a Drosophila type 2 diabetes model.
Collapse
Affiliation(s)
- Fernanda Lourido
- Cellular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano, 5524, Macul, Santiago, Chile
| | - Daniela Quenti
- Cellular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano, 5524, Macul, Santiago, Chile
| | - Daniela Salgado-Canales
- Cellular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano, 5524, Macul, Santiago, Chile
| | - Nicolás Tobar
- Cellular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano, 5524, Macul, Santiago, Chile.
| |
Collapse
|
13
|
Portela JL, Bianchini MC, Roos DH, de Ávila DS, Puntel RL. Caffeic acid and caffeine attenuate toxicity associated with malonic or methylmalonic acid exposure in Drosophila melanogaster. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:227-240. [DOI: 10.1007/s00210-020-01974-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
|