1
|
Dechkittithum S, Techawongstien K, Phothakwanpracha J, Boonsanit P, Pairohakul S. Physiological Effects of Salinity on the Osmotic Properties and Oxidative Stress Responses of the Razor Clam Solen regularis in Don Hoi Lot, Thailand. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:302-313. [PMID: 39690728 DOI: 10.1002/jez.2887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
Estuaries are diverse coastal ecosystems that act as transitional zones between freshwater and seawater. The Don Hoi Lot tidal flat, located in the upper Gulf of Thailand, is one of Thailand's most important estuarine ecosystems. Nonetheless, the Don Hoi Lot area faces increasing environmental pressures due to human activities and natural changes. One of the most prominent species well-known in this area is the razor clam Solen regularis. This study investigated the effects of salinity fluctuations on the osmotic properties and antioxidant enzyme activities of the five tissues: foot, mantle, adductor muscle, gill, and digestive gland from the razor clam S. regularis collected from the Don Hoi Lot tidal flat. Razor clams were exposed to a range of salinity levels (0-35 PSU) for 7 days. The results indicated that the hemolymph osmolality of S. regularis increased with increasing salinity, demonstrating an osmoconforming pattern. Salinity changes significantly affected the activities of antioxidant enzymes (SOD, CAT, and GPX) in various tissues. In most tissues, SOD and CAT activities increased at higher salinities (30-35 PSU), while GPX activity generally increased across all tissues with increasing salinity. GST activity was not significantly affected by salinity changes. These findings suggest that S. regularis can activate antioxidant defense systems to reduce oxidative stress caused by salinity fluctuations. This study provides valuable insights into the physiological responses of S. regularis to environmental salinity changes, which can inform conservation efforts for this ecologically important species in estuarine ecosystems.
Collapse
Affiliation(s)
- Sappasith Dechkittithum
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kannapoj Techawongstien
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Phurich Boonsanit
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supanut Pairohakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Leite C, Russo T, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. Effects of the Interaction of Salinity and Rare Earth Elements on the Health of Mytilus galloprovincialis: The Case of Praseodymium and Europium. J Xenobiot 2024; 14:2015-2038. [PMID: 39728416 DOI: 10.3390/jox14040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The growing use of products containing rare earth elements (REEs) may lead to higher environmental emissions of these elements, which can potentially enter aquatic systems. Praseodymium (Pr) and europium (Eu) are widely used REEs with various applications. However, their ecotoxicological impacts remain largely unexplored, with poorly understood risks to wildlife. Moreover, organisms also face environmental stressors like salinity fluctuations, and the nature of the interaction between salinity variations and contaminants is not yet clear. Therefore, this study aimed to evaluate the influence of salinity shifts on the impacts of Pr and Eu on adult mussels and the sperm of the species Mytilus galloprovincialis after 28 days and 30 min of exposure, respectively. To do so, biochemical and histopathological alterations were evaluated in adults, while biochemical and physiological changes were analysed in sperm. Additionally, the Integrated Biological Index (IBR) was calculated to understand the overall impact of each treatment. The results showed that adult mussels were most affected when exposed to the combination of high salinity and each element, which altered the behaviour of defence mechanisms causing redox imbalance and cellular damage. On the other hand, sperm demonstrated sensitivity to specific REE-salinity combinations, particularly Pr at lower salinity and Eu at higher salinity. These specific treatments elicited changes in sperm motility and velocity: Pr 20 led to a higher production of O2- and a decrease in velocity, while Eu 40 resulted in reduced motility and an increase in irregular movement. At both lower and higher salinity levels, exposure to Eu caused similar sensitivities in adults and sperm, reflected by comparable IBR scores. In contrast, Pr exposure induced greater alterations in sperm than in adult mussels at lower salinity, whereas the reverse was observed at higher salinity. These findings suggest that reproductive success and population dynamics could be modulated by interactions between salinity levels and REE pollution, highlighting the need for further investigation into how REEs and environmental factors interact. This study offers valuable insights to inform policymakers about the potential risks of REE contamination, emphasising the importance of implementing environmental regulations and developing strategies to mitigate the impact of these pollutants.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Queirós V, Leite C, Azeiteiro UM, Belloso MC, Soares AMVM, Santos JL, Alonso E, Barata C, Freitas R. Salinity influence on Mytilus galloprovincialis exposed to antineoplastic agents: a transcriptomic, biochemical, and histopathological approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125135. [PMID: 39426480 DOI: 10.1016/j.envpol.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Nowadays, aquatic species face a variety of environmental risks associated with pharmaceutical consumption. More specifically, the increased number of cancer patients has been accompanied by an increased consumption of antineoplastic drugs, such as ifosfamide (IF) and cyclophosphamide (CP). These drugs have been found in aquatic ecosystems, raising concerns about their impact, especially on estuarine species, as marine waters are the final recipients of continental effluents. Simultaneously, predicted climatic changes, such as salinity shifts, may threaten organisms. Considering this, the present research aims to investigate the combined effects of IF and CP, and salinity shifts. For this, a transcriptomic, biochemical, and histopathological assessment was made using the bivalve species Mytilus galloprovincialis exposed for 28 days to IF and CP (500 ng/L), individually, at different salinity levels (20, 30, and 40). IF and CP up-regulated metabolism-related gene cyp3a1, with CP also affecting abcc gene, showing minimal salinity impact and highlighting the importance of these metabolic routes in mussels. Salinity shifts affected the transcription of genes related to apoptosis and cell cycle growth, such as p53, as well as the aerobic metabolism, the antioxidant and biotransformation mechanisms. These findings indicate mussels' high metabolic adaptability to osmotic stress. Under CP exposure and low salinity, mussels exhibited increased cellular damage and histopathological effects in digestive gland tubules, revealing detrimental effects towards M. galloprovincialis, and suggesting that a metabolic slowdown and activation of antioxidant mechanisms helped prevent oxidative damage at the control and high salinities. Overall, results reinforce the need for antineoplastics ecotoxicological risk assessment, especially under foreseen climate change scenarios.
Collapse
Affiliation(s)
- Vanessa Queirós
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carla Leite
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Casado Belloso
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
4
|
Ahmed A, Rahman MS. Histological, biochemical and immunohistochemical assessments of Roundup®, atrazine, and 2,4-D mixtures on tissue architecture, body fluid conditions, nitrotyrosine protein and Na +/K +-ATPase expressions in the American oyster, Crassostera virginica. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109951. [PMID: 38844188 DOI: 10.1016/j.cbpc.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Pesticides are widely used to control weeds and pests in agricultural settings but harm non-target aquatic organisms. In this study, our objective was to evaluate the effect of short-term exposure (one week) to environmentally relevant concentrations of pesticides mixture (low concentration: 0.4 μg/l atrazine, 0.5 μg/l Roundup®, and 0.5 μg/l 2,4-D; high concentration: 0.8 μg/l atrazine, 1 μg/l Roundup®, and 1 μg/l 2,4-D) on tissue architecture, body fluid conditions, and 3-nitrotyrosine protein (NTP) and Na+/K+-ATPase, expressions in tissues of American oyster (Crassostrea virginica) under controlled laboratory conditions. Histological analysis demonstrated the atrophy in the gills and digestive glands of oysters exposed to pesticides mixture. Periodic acid-Schiff (PAS) staining showed the number of hemocytes in connective tissue increased in low- and high-concentration pesticides exposure groups. However, pesticides treatment significantly (P < 0.05) decreased the amount of mucous secretion in the gills and digestive glands of oysters. The extrapallial fluid (i.e., body fluid) protein concentrations and glucose levels were dropped significantly (P < 0.05) in oysters exposed to high-concentration pesticides exposure groups. Moreover, immunohistochemical analysis showed significant upregulations of NTP and Na+/K+-ATPase expressions in the gills and digestive glands in pesticides exposure groups. Our results suggest that exposure to environmentally relevant pesticides mixture causes morphological changes in tissues and alters body fluid conditions and NTP and Na+/K+-ATPase expressions in tissues, which may lead to impaired physiological functions in oysters.
Collapse
Affiliation(s)
- Asif Ahmed
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
5
|
Falconí K, Zapata-Vívenes É, Lodeiros C. Inorganic osmolytes and enzymatic biomarkers from the manabi oyster (Crassostrea cf. corteziensis) in response to saline stress. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106409. [PMID: 38461608 DOI: 10.1016/j.marenvres.2024.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Abrupt drops in salinity that occur in tropical estuaries during the equatorial rainy season led to hyposaline conditions which may reduce the populational density of oysters. To assess the effect of saline stress on physiological and metabolic responses of the Manabi oyster (Crassostrea cf. corteziensis) was exposed to 35, 30, 20,10 and 5‰ concentrations during 96 h. Inorganic osmolytes, pH, salinity, haemocyanin and protein concentration in the plasma as well as the number of oysters with closed valves were recorded. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and catalase (CAT) activity were analysed. Inorganic osmolytes and internal salinity were elevated in oysters exposed to 35, 10 and 5‰. A significant number of oysters with valve closure was observed in 10 and 5‰, which coincided with a decline in physiological pH and changes in haemocyanin concentrations. AST activity and AST/ALT ratio were reduced under 35, 10 and 5‰, and CAT increased in oysters exposed to 35‰; but protein concentration, LDH and ALP did not show significant variations. Metabolic adjustment and behavior of the Manabi oyster could explain tolerance and survival (at least for a short term) to hyposaline stress in tropical estuarine ecosystems.
Collapse
Affiliation(s)
- Karla Falconí
- Programa de Maestría en Acuicultura, Instituto de Postgrado, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador.
| | - Édgar Zapata-Vívenes
- Grupo de Investigación, Biología y Cultivo de Moluscos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Acuicultura y Ciencias del Mar, Universidad Técnica de Manabí, Ecuador.
| | - César Lodeiros
- Grupo de Investigación, Biología y Cultivo de Moluscos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Acuicultura y Ciencias del Mar, Universidad Técnica de Manabí, Ecuador.
| |
Collapse
|
6
|
Shang Y, Wang X, Shi Y, Huang W, Sokolova I, Chang X, Chen D, Wei S, Khan FU, Hu M, Wang Y. Ocean acidificationf affects the bioenergetics of marine mussels as revealed by high-coverage quantitative metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160090. [PMID: 36379341 DOI: 10.1016/j.scitotenv.2022.160090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/14/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Ocean acidification has become a major ecological and environmental problem in the world, whereas the impact mechanism of ocean acidification in marine bivalves is not fully understood. Cellular energy allocation (CEA) approach and high-coverage metabolomic techniques were used to investigate the acidification effects on the energy metabolism of mussels. The thick shell mussels Mytilus coruscus were exposed to seawater pH 8.1 (control) and pH 7.7 (acidification) for 14 days and allowed to recover at pH 8.1 for 7 days. The levels of carbohydrates, lipids and proteins significantly decreased in the digestive glands of the mussels exposed to acidification. The 14-day acidification exposure increased the energy demands of mussels, resulting in increased electron transport system (ETS) activity and decreased cellular energy allocation (CEA). Significant carry-over effects were observed on all cellular energy parameters except the concentration of carbohydrates and cellular energy demand (Ec) after 7 days of recovery. Metabolomic analysis showed that acidification affected the phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and glycine, serine and threonine metabolism. Correlation analysis showed that mussel cell energy parameters (carbohydrates, lipids, proteins, CEA) were negatively/positively correlated with certain differentially abundant metabolites. Overall, the integrated biochemical and metabolomics analyses demonstrated the negative effects of acidification on energy metabolism at the cellular level and implicated the alteration of biosynthesis and metabolism of amino acids as a mechanism of metabolic perturbation caused by acidification in mussels.
Collapse
Affiliation(s)
- Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xinghuo Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuntian Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Ocean Space Resource Management Technology, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Xueqing Chang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Deying Chen
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Fisheries & Aquaculture Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| |
Collapse
|
7
|
Piwoni-Piórewicz A, Strekopytov S, Humphreys-Williams E, Najorka J, Szymczycha B, Kukliński P. Polymorphism of CaCO 3 and the variability of elemental composition of the calcareous skeletons secreted by invertebrates along the salinity gradient of the Baltic Sea. GEOBIOLOGY 2022; 20:575-596. [PMID: 35610771 DOI: 10.1111/gbi.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Biomineralization is of great importance in ecosystem functioning and for the use of carbonate skeleton as environmental proxies. Skeletal formation is controlled to different degrees by environmental parameters and biological mechanisms. While salinity is one of the most important factors affecting ecological processes and ocean physiochemistry, the goal of this investigation was to identify how salinity influences the mineral type and the concentrations of chemical elements in the whole skeleton of invertebrates from the Baltic Sea. In this model system, the surface salinity decreases from marine values (27.2) to almost fresh water (6.1). The selected organisms, mussels (Mytilus spp.), bryozoans (Einhornia crustulenta, Cribrilina cryptooecium, Cryptosula pallasiana, Electra pilosa, Escharella immersa), barnacles (Amphibalanus improvisus, Semibalanus balanoides), and polychaetes (Spirorbis tridentatus), precipitated skeleton composed of calcite and aragonite, most likely as a result of various interacting environmental and biological factors. The concentrations of all elements in bulk skeleton were highly variable between species from the same location, underlining the role of the biological mechanisms in skeletal formation. The concentration of Ca, Mg, Sr, and Na increased in the bulk skeleton of stenohaline organisms with increasing salinity, while in the bulk skeleton of euryhaline species, only the concentration of Na increased with increasing salinity. The concentrations of Mn, Ba, Cu, Pb, Y, V, Cd, and U in the skeleton of euryhaline species generally decreased at higher salinities, most likely reflecting the lower bioavailability of elements at higher salinity. However, the concentrations of elements in the skeleton of stenohaline organisms were highly variable with no clear salinity impact. This study suggests that, although the composition of skeleton of calcifying organisms along the salinity gradient of the Baltic Sea is to a large extent affected by biological mechanisms, it also reflects the responses to environmental conditions.
Collapse
Affiliation(s)
- Anna Piwoni-Piórewicz
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | | | | | - Jens Najorka
- Imaging and Analysis Centre, Natural History Museum, London, UK
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Piotr Kukliński
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
8
|
Carducci F, Biscotti MA, Mosca A, Greco S, Gerdol M, Memmola F, Barucca M, Canapa A. The Mantle Transcriptome of Chamelea gallina (Mollusca: Bivalvia) and Shell Biomineralization. Animals (Basel) 2022; 12:ani12091196. [PMID: 35565623 PMCID: PMC9100110 DOI: 10.3390/ani12091196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Chamelea gallina is a bivalve mollusc that represents one of the most important fishery resources in the Mediterranean basin. In this species, the thickness and sturdiness of the shell valves are two important characteristics as they are decisive for protection against predators and survival of specimens rejected in the sea because caught under commercial size. The aim of this work is to investigate the ability of this species to modulate the expression of genes encoding proteins involved in shell biomineralization process in response to abiotic and biotic factors. Our findings, obtained through a multidisciplinary approach, highlighted a different shell mineralization behaviour in C. gallina clams collected in sampling sites characterized by different salinity and food availability. Moreover, this study provided the first comprehensive transcriptome from mantle, the tissue responsible for shell formation. Therefore, these results contribute to increase knowledge on this process and might help in adopting ad hoc management plans for this fishery resource. Abstract The striped venus Chamelea gallina is a bivalve mollusc that represents one of the most important fishery resources of the Adriatic Sea. In this work, we investigated for the first time the ability of this species to modulate the expression of genes encoding proteins involved in biomineralization process in response to biotic and abiotic factors. We provided the first comprehensive transcriptome from the mantle tissue of clams collected in two sampling sites located along the Italian Adriatic coast and characterized by different environmental features. Moreover, the assessment of environmental parameters, scanning electron microscopy (SEM), and X-ray diffraction (XRD) measurements on valves were conducted to better contextualize RNA sequencing (RNA-Seq) data. Functional annotation of differentially expressed genes (DEGs) and SEM observations highlighted a different shell mineralization behaviour in C. gallina clams collected from two selected sites characterized by diverse environmental parameters.
Collapse
Affiliation(s)
- Federica Carducci
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (A.M.); (F.M.); (M.B.); (A.C.)
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (A.M.); (F.M.); (M.B.); (A.C.)
- Correspondence:
| | - Alessandro Mosca
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (A.M.); (F.M.); (M.B.); (A.C.)
| | - Samuele Greco
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via L. Giorgieri 5, 34127 Trieste, Italy; (S.G.); (M.G.)
| | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via L. Giorgieri 5, 34127 Trieste, Italy; (S.G.); (M.G.)
| | - Francesco Memmola
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (A.M.); (F.M.); (M.B.); (A.C.)
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (A.M.); (F.M.); (M.B.); (A.C.)
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (A.M.); (F.M.); (M.B.); (A.C.)
| |
Collapse
|
9
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Freitas R. Salinity-dependent impacts on the effects of antiepileptic and antihistaminic drugs in Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150369. [PMID: 34571231 DOI: 10.1016/j.scitotenv.2021.150369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
In coastal systems, pollutants as pharmaceutical drugs exert changes from the molecular to the organism level in marine bivalves. Besides pollutants, coastal systems are prone to changes in environmental parameters, as the alteration of salinity values because of Climate Change. Together, these stressors (pharmaceutical drugs and salinity changes) can exert different threats than each stressor acting individually; for example, salinity can change the physical-chemical properties of the drugs and/or the sensitivity of the organisms to them. However, limited information is available on this subject, with variable results, and for this reason, this study aimed to evaluate the impacts of salinity changes (15, 25 and 35) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), in the edible clam Ruditapes philippinarum. After 28 days of exposure, drugs concentrations, bioconcentration factors and biochemical parameters, related to clam's metabolic capacity and oxidative stress were evaluated. The results showed that clams under low salinity suffered more changes in metabolic, antioxidant and biotransformation activities, in comparison with the remaining salinities under study. However, limited impacts were observed when comparing drug effects at low salinity. Indeed, it seemed that CTZ and CBZ + CTZ, under high salinity (salinity 35) were the worst exposure conditions for the clams, since they caused higher levels of cellular damage. It stands out that salinity changes altered the impact of pharmaceutical drugs on marine bivalves.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Dos Santos CCM, Ferreira JA, Dos Santos CRM, Amado LL. Seasonal modulation of oxidative stress biomarkers in mangrove oyster (Crassostrea gasar) from an Amazon estuary. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110953. [PMID: 33823274 DOI: 10.1016/j.cbpa.2021.110953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/15/2022]
Abstract
Estuaries are the final destination of many pollutants derived from anthropogenic activity. Therefore, it is difficult to find this kind of ecosystem in a pristine condition. In this context, biomonitoring studies that characterize the organism's conditions against the environment' s natural variation are essential for future impact analysis due to anthropic activity. The present study aims to characterize the natural modulation of biochemical biomarkers in oysters Crassostrea gasar. The research was conducted in Japerica Bay, an estuary region located in the Eastern Amazon (Pará, Brazil), which has remained in pristine condition for many years. The samplings were carried out throughout one year during the rainy-dry transition period (June/2013), dry period (September/2013), dry-rainy transition period (November / 2013), and rainy period (February / 2014) in the lower and upper estuary. The activity of glutathione-S-transferase (GST) and total antioxidant capacity (ACAP) were evaluated as biomarkers of exposure and lipid peroxidation (LPO) as an effect biomarker. In gills, GST decreased during the rainy season in both sites and increased during the salinity peak (dry-rainy transition period) for the upper estuary's organisms. In this organ, the lowest levels of LPO occurred during the dry season for both points. There was an induction of ACAP in muscle during the rainy-dry transition period compared to the dry and dry-rainy transition periods for the lower estuary's organisms, and there were no differences for GST suggesting low tissue sensitivity. There was an increase in LPO during the rainy season compared to the rainy-dry transition period for the lower estuaries animals. Biomarkers in gills suggest a metabolic challenge to the rainy season and stability during the dry season. The species shows high viability of use in biomonitoring programs. However, these seasonality-induced alterations in biomarkers responses must be taken into account to interpret the results.
Collapse
Affiliation(s)
- Carla Carolina Miranda Dos Santos
- Programa de Pós-Graduação em Ecologia Aquática e Pesca, Universidade Federal do Pará, Belém, PA, Brazil; Laboratório de Ecotoxicologia (ICB) e Laboratório de Pesquisa em Monitoramento Ambiental Marinho (LAPMAR), Universidade Federal do Pará, Belém, PA, Av. Augusto Corrêa, 01, Guamá, 66075110, Belém, Pará, Brazil
| | - Johnata Azevedo Ferreira
- Laboratório de Ecotoxicologia (ICB) e Laboratório de Pesquisa em Monitoramento Ambiental Marinho (LAPMAR), Universidade Federal do Pará, Belém, PA, Av. Augusto Corrêa, 01, Guamá, 66075110, Belém, Pará, Brazil
| | | | - Lílian Lund Amado
- Programa de Pós-Graduação em Ecologia Aquática e Pesca, Universidade Federal do Pará, Belém, PA, Brazil; Laboratório de Ecotoxicologia (ICB) e Laboratório de Pesquisa em Monitoramento Ambiental Marinho (LAPMAR), Universidade Federal do Pará, Belém, PA, Av. Augusto Corrêa, 01, Guamá, 66075110, Belém, Pará, Brazil.
| |
Collapse
|
11
|
Matoo OB, Lannig G, Bock C, Sokolova IM. Temperature but not ocean acidification affects energy metabolism and enzyme activities in the blue mussel, Mytilus edulis. Ecol Evol 2021; 11:3366-3379. [PMID: 33841790 PMCID: PMC8019023 DOI: 10.1002/ece3.7289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
In mosaic marine habitats, such as intertidal zones, ocean acidification (OA) is exacerbated by high variability of pH, temperature, and biological CO2 production. The nonlinear interactions among these drivers can be context-specific and their effect on organisms in these habitats remains largely unknown, warranting further investigation.We were particularly interested in Mytilus edulis (the blue mussel) from intertidal zones of the Gulf of Maine (GOM), USA, for this study. GOM is a hot spot of global climate change (average sea surface temperature (SST) increasing by >0.2°C/year) with >60% decline in mussel population over the past 40 years.Here, we utilize bioenergetic underpinnings to identify limits of stress tolerance in M. edulis from GOM exposed to warming and OA. We have measured whole-organism oxygen consumption rates and metabolic biomarkers in mussels exposed to control and elevated temperatures (10 vs. 15°C, respectively) and current and moderately elevated P CO2 levels (~400 vs. 800 µatm, respectively).Our study demonstrates that adult M. edulis from GOM are metabolically resilient to the moderate OA scenario but responsive to warming as seen in changes in metabolic rate, energy reserves (total lipids), metabolite profiles (glucose and osmolyte dimethyl amine), and enzyme activities (carbonic anhydrase and calcium ATPase).Our results are in agreement with recent literature that OA scenarios for the next 100-300 years do not affect this species, possibly as a consequence of maintaining its in vivo acid-base balance.
Collapse
Affiliation(s)
- Omera B. Matoo
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Gisela Lannig
- Helmholtz Centre for Polar and Marine ResearchAlfred Wegener InstituteBremerhavenGermany
| | - Christian Bock
- Helmholtz Centre for Polar and Marine ResearchAlfred Wegener InstituteBremerhavenGermany
| | - Inna M. Sokolova
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
- Department of Marine BiologyInstitute of Biological SciencesUniversität RostockRostockGermany
| |
Collapse
|
12
|
Sokolova I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J Exp Biol 2021; 224:224/Suppl_1/jeb236802. [PMID: 33627464 DOI: 10.1242/jeb.236802] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy metabolism (encompassing energy assimilation, conversion and utilization) plays a central role in all life processes and serves as a link between the organismal physiology, behavior and ecology. Metabolic rates define the physiological and life-history performance of an organism, have direct implications for Darwinian fitness, and affect ecologically relevant traits such as the trophic relationships, productivity and ecosystem engineering functions. Natural environmental variability and anthropogenic changes expose aquatic ectotherms to multiple stressors that can strongly affect their energy metabolism and thereby modify the energy fluxes within an organism and in the ecosystem. This Review focuses on the role of bioenergetic disturbances and metabolic adjustments in responses to multiple stressors (especially the general cellular stress response), provides examples of the effects of multiple stressors on energy intake, assimilation, conversion and expenditure, and discusses the conceptual and quantitative approaches to identify and mechanistically explain the energy trade-offs in multiple stressor scenarios, and link the cellular and organismal bioenergetics with fitness, productivity and/or ecological functions of aquatic ectotherms.
Collapse
Affiliation(s)
- Inna Sokolova
- Marine Biology Department, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany .,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
13
|
Marshall DJ, Taha H, Brahim A, Abdelhady AA. Supratidal existence drives phenotypic divergence, but not speciation, in tropical rocky-shore snails. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The mechanisms underlying the evolutionary adaptation of animals that transcend the ecological barrier separating the intertidal and supratidal zones of rocky shores are poorly understood. Different wetting frequencies in these zones in tropical regions (daily vs. seasonally, respectively) impose different physical stressors, which should drive phenotypic variation and ultimately speciation in the animals that inhabit them. We studied morphological, physiological and genetic variation in a tropical high-shore gastropod that transcends these zones [Echinolittorina malaccana (Philippi, 1847)]. Variation in melanization, shell features and evaporative water loss was linked to regular seawater wetting, frequent activity and feeding, and solar exposure in intertidal snails, and to inactivity and prolonged aestivation in the shade during continuous air exposure in supratidal snails. Despite selective pressure for phenotypic divergence, and reproductive isolation of the populations in either zone, their mitochondrial COI gene sequences confirmed that they represent a single species. Speciation in our study case is probably constrained by the limitation on activity, mating and reproduction of supratidal snails, such that their populations can only be sustained through intertidal pelagic larval recruitment. Comparisons with other studies suggest that supratidal speciation and specialization for life in this zone probably require moderation of the abiotic (desiccative) conditions, to facilitate greater activity and interaction of animals during air exposure.
Collapse
Affiliation(s)
- David J Marshall
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Brunei Darussalam
| | - Hussein Taha
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Brunei Darussalam
| | - Amalina Brahim
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Brunei Darussalam
| | | |
Collapse
|