1
|
Madbouly NA, Kamal SM, El-Amir AM. Chronic artificial light exposure in daytime and reversed light: Dark cycle inhibit anti-apoptotic cytokines and defect Bcl-2 in peripheral lymphoid tissues during acute systemic inflammatory response to lipopolysaccharide. Int Immunopharmacol 2025; 145:113768. [PMID: 39672023 DOI: 10.1016/j.intimp.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
AIMS The disturbed light: dark (LD) cycle has been associated with critical complications, including obesity, diabetes and cancer. In the present study, we investigated the chronic effects of artificial light at daytime (AL) and light at night (RAL) after intraperitoneal (i.p.) injection of saline and 0.5 mg/kg lipopolysaccharide (LPS) in male Wistar rats. METHODS Liver and kidney parameters, fasting blood glucose (FBG), melatonin level, immunohistochemical examinations of B-cell lymphoma-2 (Bcl-2) in spleen and mesenteric lymph and serum antiapoptotic cytokines [interleukin (IL-) 2, 7 and 1]. KEY FINDINGS After 16 weeks of a daily disturbed LD cycle, RAL increased body weight, upgraded FBG and altered liver and kidney functions with surprisingly increased daytime plasma melatonin. AL + LPS and RAL + LPS rats suffered significantly higher oxidative-nitrosative stress compared to NL + LPS. Oxidative-nitrosative stress was associated with multi-organ inflammation in hepatic, renal, pancreatic, splenic and mesenteric lymph node tissues due to LPS-induced endotoxemia. Anti-apoptotic Bcl-2 activity in peripheral lymphoid organs (spleen and mesenteric lymph node) was lowered due to AL and RAL regimens. At the same pattern, lowering of antiapoptotic serum levels of IL-2, IL-7 and IL-15 indicate alteration of cell cycle and the shifted ability of cells to undergo apoptosis due to abnormal light pollution. SIGNIFICANCE Here, the increased lymphocyte apoptosis in lymphoid tissues due to disturbed LD cycle defects the host defense, dysregulates the inflammatory immune response and dysregulates the immune tolerance during acute systemic inflammation due to LPS.
Collapse
|
2
|
Titon SCM, Neto PGG, Titon B, de Figueiredo AC, Markus RP, Gomes FR, Assis VR. Immune-pineal-ocular Axis in Amphibians: Unveiling A Novel Connection. Integr Comp Biol 2024; 64:1309-1319. [PMID: 38658196 DOI: 10.1093/icb/icae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Melatonin is a hormone known as an endogenous temporal marker signaling the dark phase of the day. Although the eyes seem to be the main site of melatonin production in amphibians, little information is available about the natural variation in ocular melatonin levels and its modulation following immune stimulation. We investigated the daily variation of plasma and ocular melatonin levels in bullfrogs (Lithobates catesbeianus) and their modulation following an immune stimulation with lipopolysaccharide (LPS) in yellow cururu toads (Rhinella icterica). For the daily variation, bullfrogs were bled and then euthanized for eye collection every 3 h over 24 h to determine plasma and ocular melatonin levels. We found a positive correlation between ocular and plasma melatonin levels, with maximum values at night (22 h) for both plasma and the eyes. For immune stimulation, yellow cururu toads received an intraperitoneal injection of LPS or saline solution during the day (10 h) or at night (22 h). Two hours after injection, toads were bled and euthanized for eye collection to obtain plasma and ocular melatonin levels. In addition, the liver and bone marrow were collected to investigate local melatonin modulation. Our results demonstrate that retinal light-controlled rhythmic melatonin production is suppressed while liver and bone marrow melatonin levels increase during the inflammatory assemblage in anurans. Interestingly, the LPS injection decreased only ocular melatonin levels, reinforcing the central role of the eyes (i.e., retina) as an essential organ of melatonin production, and a similar role to the pineal gland during the inflammatory response in amphibians. Together, these results point to a possible immune-pineal-ocular axis in amphibians, yet to be fully described in this group.
Collapse
Affiliation(s)
- Stefanny C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Patrício G Garcia Neto
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Braz Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Aymam C de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Regina P Markus
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - Vania R Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 101, São Paulo, SP 05508-090, Brasil
- College of Public Health, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Ki KC, Lewis EL, Wu E, Oliaro FJ, Aubry LM, Knapp CR, Kapheim KM, DeNardo D, French SS. High sugar diet alters immune function and the gut microbiome in juvenile green iguanas (Iguana iguana). J Exp Biol 2024; 227:jeb246981. [PMID: 38804667 DOI: 10.1242/jeb.246981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
The present work aimed to study whether a high sugar diet can alter immune responses and the gut microbiome in green iguanas. Thirty-six iguanas were split into four treatment groups using a 2×2 design. Iguanas received either a sugar-supplemented diet or a control diet, and either a lipopolysaccharide (LPS) injection or a phosphate-buffered saline (PBS) injection. Iguanas were given their respective diet treatment through the entire study (∼3 months) and received a primary immune challenge 1 and 2 months into the experiment. Blood samples and cloacal swabs were taken at various points in the experiment and used to measure changes in the immune system (bacterial killing ability, lysis and agglutination scores, LPS-specific IgY concentrations), and alterations in the gut microbiome. We found that a sugar diet reduces bacterial killing ability following an LPS challenge, and sugar and the immune challenge temporarily alters gut microbiome composition while reducing alpha diversity. Although sugar did not directly reduce lysis and agglutination following the immune challenge, the change in these scores over a 24-h period following an immune challenge was more drastic (it decreased) relative to the control diet group. Moreover, sugar increased constitutive agglutination outside of the immune challenges (i.e. pre-challenge levels). In this study, we provide evidence that a high sugar diet affects the immune system of green iguanas (in a disruptive manner) and alters the gut microbiome.
Collapse
Affiliation(s)
- Kwanho C Ki
- Department of Biology, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
- Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
| | - Erin L Lewis
- Department of Biology, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
- Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
| | - Elizabeth Wu
- Psychology Department, Arizona State University, 950 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Francis J Oliaro
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL 60605, USA
| | - Lise M Aubry
- Department of Fish, Wildlife and Conservation, Colorado State University, 1474 Campus Delivery, Fort Collins, CO 80523-1474, USA
| | - Charles R Knapp
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL 60605, USA
| | - Karen M Kapheim
- Department of Biology, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
| | - Dale DeNardo
- School of Life Science, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Susannah S French
- Department of Biology, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
- Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|
4
|
Viola MF, Herrera M. LG, Cruz-Neto AP. Combined effects of ambient temperature and food availability on induced innate immune response of a fruit-eating bat (Carollia perspicillata). PLoS One 2024; 19:e0301083. [PMID: 38787875 PMCID: PMC11125493 DOI: 10.1371/journal.pone.0301083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/09/2024] [Indexed: 05/26/2024] Open
Abstract
Resilience of mammals to anthropogenic climate and land-use changes is associated with the maintenance of adequate responses of several fitness-related traits such as those related to immune functions. Isolated and combined effects of decreased food availability and increased ambient temperature can lead to immunosuppression and greater susceptibility to disease. Our study tested the general hypothesis that decreased food availability, increased ambient temperature and the combined effect of both factors would affect selected physiological and behavioral components associated with the innate immune system of fruit-eating bats (Carollia perspicillata). Physiological (fever, leukocytosis and neutrophil/lymphocyte ratio) and behavioral (food intake) components of the acute phase response, as well as bacterial killing ability of the plasma were assessed after immune challenge with lipopolysaccharide (LPS: 10 mg/kg) in experimental groups kept at different short-term conditions of food availability (ad libitum diet or 50% food-deprived) and ambient temperature (27 and 33°C). Our results indicate that magnitude of increase in body temperature was not affected by food availability, ambient temperature or the interaction of both factors, but the time to reach the highest increase took longer in LPS-injected bats that were kept under food restriction. The magnitude of increased neutrophil/lymphocyte ratio was affected by the interaction between food availability and ambient temperature, but food intake, total white blood cell count and bacterial killing ability were not affected by any factor or interaction. Overall, our results suggest that bacterial killing ability and most components of acute phase response examined are not affected by short-term changes in food availability and ambient temperature within the range evaluated in this study, and that the increase of the neutrophil/lymphocyte ratio when bats are exposed to low food availability and high ambient temperature might represent an enhancement of cellular response to deal with infection.
Collapse
Affiliation(s)
- Matheus F. Viola
- Laboratório de Fisiologia Animal (LaFA), Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
| | - L. Gerardo Herrera M.
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio, Jalisco, México
| | - Ariovaldo P. Cruz-Neto
- Laboratório de Fisiologia Animal (LaFA), Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
| |
Collapse
|
5
|
Madelaire CB, Silva DP, Titon SCM, Lamadrid-Feris F, Floreste FR, Titon Jr B, Gomes FR. Contrasting effects of transdermal and implant corticosterone treatments in the American bullfrog wound healing. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220119. [PMID: 37305919 PMCID: PMC10258662 DOI: 10.1098/rstb.2022.0119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/13/2023] [Indexed: 06/13/2023] Open
Abstract
Glucocorticoid (GC) release is triggered by adverse stimuli that activate the hypothalamus-pituitary-adrenal/interrenal axis. Glucocorticoids may enhance or suppress immune functions depending on the level of elevation. In this study, we investigated the effects of transient and chronic increase of corticosterone (CORT) on the wound healing of the American bullfrog. Frogs were submitted to a daily transdermal hormonal application that acutely elevated CORT plasma levels, or vehicle as a control. Other frogs were surgically implanted with a silastic tube filled with CORT that resulted in chronic elevation of CORT plasma levels or received empty implants as a control. A dermal biopsy was performed to create a wound and was photographed every 3 days. Individuals treated with transdermal CORT started healing faster than their control 32 days after the biopsy. Frogs that received CORT implants tended to heal slower than control subjects. Plasma bacterial killing ability was not affected by treatment, which reinforces the constitutive nature of this innate immune trait. By the end of the experiment, frogs from the acute CORT treatment had smaller wounds compared with those receiving the CORT-filled implants, highlighting the differential effects of acute (immunoenhancing) and chronic (immunosuppressive) elevation of CORT plasma levels. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Carla B. Madelaire
- Department of Physiology, University of Sao Paulo, Sao Paulo 05508-900, Brazil
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance Science, Escondido, CA 92027, USA
| | - Diego P. Silva
- Department of Physiology, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | | | | | - Felipe R. Floreste
- Department of Physiology, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Braz Titon Jr
- Department of Physiology, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Fernando R. Gomes
- Department of Physiology, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| |
Collapse
|
6
|
Floreste FR, Titon B, Titon SCM, Muxel SM, Gomes FR, Assis VR. Time Course of Splenic Cytokine mRNA and Hormones during a Lipopolysaccharide-Induced Inflammation in Toads. Integr Comp Biol 2022; 62:1618-1628. [PMID: 35362514 DOI: 10.1093/icb/icac013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 01/05/2023] Open
Abstract
Inflammation comprises alterations in glucocorticoids (in amphibians, corticosterone-CORT) and melatonin (MEL) levels, two hormones with immunomodulatory effects on cytokine production in several vertebrates. Cytokines mediate inflammation progress differently depending on their function. While some are secreted during the acute phase of the immune response, others prevail during the resolution phase. Major efforts have been made to understand the interaction of endocrine mediators and cytokine production in endotherms, but little is known for ectotherms so far. Characterizing the stages of inflammation and their interplay with endocrine mediators is crucial for an assertive and integrative approach to amphibian physiology and ecoimmunology. Herein, we investigated CORT and MEL plasma levels as well as splenic cytokine (IL-1β, IL-6, and IL-10) mRNA levels during the progression of the inflammatory response in toads (Rhinella diptycha) in four time-points (1, 3, 6, and 18 h) after an immune challenge with lipopolysaccharide (LPS) using independent samples. Toads were responsive to LPS, with all hormones and cytokines affected by LPS. IL-1β and IL-6 were up-regulated after 1 h, but IL-1β decreased right after 3 h, while IL-6 sustained up-regulation throughout all time-points. IL-10 had not been detected until 6 h post-LPS-stimulation, when it showed up-regulation, along with a CORT increase at the same time-point. After 18 h, CORT levels were still high, and IL-1β was up-regulated again, along with up-regulated IL-6 and an IL-10 decrease. We also found positive correlations between IL-1β with IL-6 for LPS and saline groups. LPS-treated individuals showed an overall decrease in MEL plasma levels compared to saline counterparts. Our results showcase the early endocrine and molecular events of the amphibian immune response. We also report activation of the hypothalamus-pituitary-interrenal (HPI) axis during inflammation and increasing evidence for an immune-pineal axis to be described in amphibians.
Collapse
Affiliation(s)
- Felipe R Floreste
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, SP 05508090, Brazil
| | - Braz Titon
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, SP 05508090, Brazil
| | - Stefanny C M Titon
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, SP 05508090, Brazil
| | - Sandra M Muxel
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, SP 05508090, Brazil
| | - Fernando R Gomes
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, SP 05508090, Brazil
| | - Vania R Assis
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, SP 05508090, Brazil
| |
Collapse
|
7
|
Cyrino JC, de Figueiredo AC, Córdoba-Moreno MO, Gomes FR, Titon SCM. Day Versus Night Melatonin and Corticosterone Modulation by LPS in Distinct Tissues of Toads (Rhinella Icterica). Integr Comp Biol 2022; 62:1606-1617. [PMID: 35568500 DOI: 10.1093/icb/icac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/30/2022] [Indexed: 01/05/2023] Open
Abstract
Pathogen-associated molecular patterns modulate melatonin (MEL) production in the pineal and extra-pineal sites and corticosterone (CORT) synthesis in the adrenal/interrenal and other tissues. Both MEL and CORT play essential and complex immunomodulatory roles, controlling the inflammatory response. Given that most of what we know about these interactions is derived from mammalian studies, discovering how MEL and CORT are modulated following an immune challenge in anurans would increase understanding of how conserved these immune-endocrine interactions are in vertebrates. Herein, we investigated the modulation of MEL and CORT in plasma vs. local tissues of toads (Rhinella icterica) in response to an immune challenge with lipopolysaccharide (LPS; 2 mg/kg) at day and night. Blood samples were taken 2 hours after injection (noon and midnight), and individuals were killed for tissue collection (bone marrow, lungs, liver, and intestine). MEL and CORT were determined in plasma and tissue homogenates. LPS treatment increased MEL concentration in bone marrow during the day. Intestine MEL levels were higher at night than during the day, particularly in LPS-injected toads. Bone marrow and lungs showed the highest MEL levels among tissues. Plasma MEL levels were not affected by either the treatment or the phase. Plasma CORT levels increased in LPS-treated individuals, with an accentuated increase at night. Otherwise, CORT concentration in the tissues was not affected by LPS exposure. Modulation of MEL levels in bone marrow suggests this tissue may participate in the toad's inflammatory response assembly. Moreover, MEL and CORT levels were different in tissues, pointing to an independent modulation of hormonal concentration. Our results suggest an important role of immune challenge in modulating MEL and CORT, bringing essential insights into the hormone-immune interactions during anuran's inflammatory response.
Collapse
Affiliation(s)
- João Cunha Cyrino
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Aymam Cobo de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Marlina Olyissa Córdoba-Moreno
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | | |
Collapse
|
8
|
Brown GP, Shine R. Do Microbiota in the Soil Affect Embryonic Development and Immunocompetence in Hatchling Reptiles? Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.780456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reptile eggs develop in intimate association with microbiota in the soil, raising the possibility that embryogenesis may be affected by shifts in soil microbiota caused by anthropogenic disturbance, translocation of eggs for conservation purposes, or laboratory incubation in sterile media. To test this idea we incubated eggs of keelback snakes (Tropidonophis mairii, Colubridae) in untreated versus autoclaved soil, and injected lipopolysaccharide (LPS) into the egg to induce an immune response in the embryo. Neither treatment modified hatching success, water uptake, incubation period, or white-blood-cell profiles, but both treatments affected hatchling size. Eggs incubated on autoclaved soil produced smaller hatchlings than did eggs on untreated soil, suggesting that heat and/or pressure treatment decrease the soil’s suitability for incubation. Injection of LPS reduced hatchling size, suggesting that the presence of pathogen cues disrupts embryogenesis, possibly by initiating immune reactions unassociated with white-blood-cell profiles. Smaller neonates had higher ratios of heterophils to leucocytes, consistent with higher stress in smaller snakes, or body-size effects on investment into different types of immune cells. Microbiota in the incubation medium thus can affect viability-relevant phenotypic traits of hatchling reptiles. We need further studies to explore the complex mechanisms and impacts of environmental conditions on reptilian embryogenesis.
Collapse
|
9
|
C de Figueiredo A, A K Nogueira L, C M Titon S, R Gomes F, E de Carvalho J. Immune and hormonal regulation of the Boa constrictor (Serpentes; Boidae) in response to feeding. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111119. [PMID: 34793953 DOI: 10.1016/j.cbpa.2021.111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Feeding upregulates immune function and the systemic and local (gastrointestinal tract) concentrations of some immunoregulatory hormones, as corticosterone (CORT) and melatonin (MEL), in mammals and anurans. However, little is known about the immune and hormonal regulation in response to feeding in other ectothermic vertebrates, especially snakes, in which the postprandial metabolic changes are pronounced. Here, we investigated the effects feeding have on hormonal and innate immune responses in the snake, Boa constrictor. We divided juvenile males into two groups: fasting and fed with mice (30% of body mass). We measured the rates of oxygen consumption, plasma CORT levels, heterophil/lymphocyte ratio (HL ratio), plasma bacterial killing ability (BKA), and stomach and intestine MEL in fasting snakes and 48 h after meal intake. We observed increased rates of oxygen consumption, plasma CORT levels, and HL ratio, along with a tendency of decreased stomach and intestine MEL in fed snakes compared to fasting ones. BKA was not affected by feeding. Overall, we found that feeding modulates metabolic rates, CORT levels, and immune cell distribution in boas. Increased baseline CORT may be important to mobilize energy to support the metabolic increment during the postprandial period. Increased HL ratio might be an immunoregulatory effect of increased CORT, which has been shown in different physiological situations such as in response to immune challenge. Our results suggest that feeding activates the hypothalamic-pituitary-adrenal axis and modulates immune cell redistribution, possibly contributing to fighting potential injuries and infections derived from predation and from pathogens present in ingested food.
Collapse
Affiliation(s)
- Aymam C de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil.
| | - Letícia A K Nogueira
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, CEP 09972-270, Diadema, SP, Brazil
| | - Stefanny C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil
| | - José E de Carvalho
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, CEP 09972-270, Diadema, SP, Brazil
| |
Collapse
|
10
|
de Figueiredo AC, Titon SCM, Cyrino JC, Nogueira LAK, Gomes FR. Immune and hormonal modulation in the postprandial period of bullfrogs (Lithobates catesbeianus). J Exp Biol 2021; 224:272629. [PMID: 34704595 DOI: 10.1242/jeb.243153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
Mammals show immune up-regulation and increased plasma and local (gastrointestinal tract) concentrations of some immunoregulatory hormones, such as corticosterone and melatonin, after feeding. However, little is known about the endocrine and immune modulation in the postprandial period of ectothermic animals. This study investigated the effects of feeding on endocrine and immune responses in the bullfrog (Lithobates catesbeianus). Frogs were fasted for 10 days and divided into two groups: fasted and fed with fish feed (5% of body mass). Blood and gastrointestinal tract tissues (stomach and intestine) were collected at 6, 24, 48, 96 and 168 h to measure neutrophil/lymphocyte ratio, plasma bacterial killing ability, phagocytosis of blood leukocytes, plasma corticosterone and melatonin, and stomach and intestine melatonin. Feeding increased plasma corticosterone at 24 h and decreased it at 168 h, and increased neutrophil/lymphocyte ratio at 6, 24 and 96 h. We also observed decreased bacterial killing ability 48 h after feeding. Stomach melatonin increased after 17 days of fasting. We show that feeding activates the hypothalamic-pituitary-interrenal axis and promotes transient immunosuppression, without stimulating an inflammatory response. Increased corticosterone may mobilize energy to support digestive processes and melatonin may protect the stomach during fasting. We conclude that feeding modulates secretion of immunoregulatory hormones, initially increasing plasma corticosterone levels, followed by a decrease at the end of meal digestion, and causes systemic immune cell redistribution, increasing neutrophil/lymphocyte ratio for almost the entire period of meal digestion in bullfrogs. Also, fasting modulates secretion of melatonin in the stomach.
Collapse
Affiliation(s)
- Aymam C de Figueiredo
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, São Paulo, SP, Brazil
| | - Stefanny C M Titon
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, São Paulo, SP, Brazil
| | - João C Cyrino
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, São Paulo, SP, Brazil
| | - Letícia A K Nogueira
- Institute of Environmental, Chemical, and Pharmaceutical Sciences, Universidade Federal de São Paulo, Campus Diadema- CEP 09972-270, Diadema, Brazil
| | - Fernando R Gomes
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Bastos PRO, Titon SCM, Titon Junior B, Gomes FR, Markus RP, Ferreira ZS. Daily and LPS-induced variation of endocrine mediators in cururu toads ( Rhinella icterica). Chronobiol Int 2021; 39:89-96. [PMID: 34503388 DOI: 10.1080/07420528.2021.1974470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased plasma glucocorticoids (corticosterone - CORT, in amphibians) and melatonin (MEL) are associated with the daily activity phase and with environmental darkness, respectively. Besides, CORT and MEL also play pivotal immunomodulatory roles in several vertebrates. Herein we described the daily profile of plasma MEL and CORT for Rhinella icterica toads in captivity. Thereafter, we investigated the effects of lipopolysaccharide (LPS)-induced systemic inflammation on the production of CORT and MEL in the R. icterica. Captive toads showed CORT and MEL diurnal variation typical of nocturnal species, with increased values for CORT at ZT12 (18 h) and MEL peak at ZT18 (24 h). LPS-induced hormonal changes included increased plasma CORT and decreased ocular and plasma MEL when compared to those from toads treated with saline 2 h post-injection. Our results demonstrated the presence of a diurnal CORT and MEL variation in toads. We also showed the crosstalk between CORT and MEL during the toad's systemic inflammation in response to an immune challenge with LPS. Additionally, our results demonstrated that anuran eyes' MEL production might be regulated during the inflammatory processes.
Collapse
Affiliation(s)
| | | | - Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Regina P Markus
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Zulma S Ferreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
12
|
Titon Junior B, Titon SCM, Assis VR, Barsotti AMG, Vasconcelos-Teixeira R, Fernandes PACM, Gomes FR. LPS-induced immunomodulation and hormonal variation over time in toads. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:541-551. [PMID: 34018702 DOI: 10.1002/jez.2474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/04/2021] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
The inflammatory response is a complex process that relies on interactions among multiple endocrine and immune modulators. Studies incorporating time-related and integrative endocrine and immune responses to an immune challenge might shed light on the characterization of the phases of the inflammatory response in anurans. The present study investigated time-related changes (1, 3, 6, and 18 h post-challenge) in plasma corticosterone (CORT), melatonin (MEL) and testosterone (T) levels, phagocytosis percentage (PP), plasma bacterial killing ability (BKA), and neutrophil to lymphocyte ratio (NLR) following a lipopolysaccharide (LPS) immune challenge in Rhinella diptycha toads. Our results showed the response to LPS injection was characterized by increased CORT, PP, BKA, and NLR, with a concomitant decrease in plasma MEL and T. Increased CORT was more pronounced at 6 and 18 h, while increased NLR was observed only 18 h post-LPS injection. Meanwhile, plasma MEL and T decreased independently of the time post-LPS injection. Additionally, toads in better body condition showed higher BKA and PP in the LPS-treated group, regardless of the time postinjection. Our results show that toads (R. diptycha) were sensitive to the LPS challenge, mounting an inflammatory response, which started quickly (after 1 h) and developed over time and was influenced by body condition. These results demonstrate a time-related hormonal and immune variation as a consistent pattern of activation of the immune system, as well as of hypothalamic-pituitary-adrenal/interrenal and immune-pineal axes following an immune challenge more deeply studied in mammals, suggesting the evolutionary conservation of the regulatory mechanisms for tetrapod vertebrates.
Collapse
Affiliation(s)
- Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | | | | | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Lopes PC, French SS, Woodhams DC, Binning SA. Sickness behaviors across vertebrate taxa: proximate and ultimate mechanisms. J Exp Biol 2021; 224:260576. [PMID: 33942101 DOI: 10.1242/jeb.225847] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is nothing like a pandemic to get the world thinking about how infectious diseases affect individual behavior. In this respect, sick animals can behave in ways that are dramatically different from healthy animals: altered social interactions and changes to patterns of eating and drinking are all hallmarks of sickness. As a result, behavioral changes associated with inflammatory responses (i.e. sickness behaviors) have important implications for disease spread by affecting contacts with others and with common resources, including water and/or sleeping sites. In this Review, we summarize the behavioral modifications, including changes to thermoregulatory behaviors, known to occur in vertebrates during infection, with an emphasis on non-mammalian taxa, which have historically received less attention. We then outline and discuss our current understanding of the changes in physiology associated with the production of these behaviors and highlight areas where more research is needed, including an exploration of individual and sex differences in the acute phase response and a greater understanding of the ecophysiological implications of sickness behaviors for disease at the population level.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Susannah S French
- Department of Biology and The Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H3C 3J7
| |
Collapse
|