1
|
Mamun MAA, Bakunts AG, Chernorudskiy AL. Targeted degradation of extracellular proteins: state of the art and diversity of degrader designs. J Hematol Oncol 2025; 18:52. [PMID: 40307925 PMCID: PMC12044797 DOI: 10.1186/s13045-025-01703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Selective elimination of proteins associated with the pathogenesis of diseases is an emerging therapeutic modality with distinct advantages over traditional inhibitor-based approaches. This strategy, called targeted protein degradation (TPD), is based on hijacking the cellular proteolytic machinery using chimeric degrader molecules that physically link the target protein of interest with the degradation effectors. The TPD era began with the development of PROteolysis TAtrgeting Chimeras (PROTACs) in 2001, with various methods and applications currently available. Classical PROTAC molecules are heterobifunctional chimeras linking target proteins with E3 ubiquitin ligases. This induced interaction leads to the ubiquitylation of the target protein, which is needed for its recognition and subsequent degradation by the cellular proteasomes. However, this technology is limited to intracellular proteins since the effectors involved (E3 ubiquitin ligases and proteasomes) are located in the cytosol. The related methods for selective destruction of proteins present in the extracellular space have only emerged recently and are collectively termed extracellular TPD (eTPD). The prototypic eTPD technology utilizes LYsosomal TArgeting Chimeras (LYTACs) that link extracellular target proteins (secreted or membrane-associated) to lysosome-targeting receptors (LTRs) on the cell surface. The resulting complex is then internalized by endocytosis and trafficked to lysosomes, where the target protein is degraded. The successful elimination of various extracellular proteins via LYTACs and related approaches has been reported, including several important targets in oncology that drive tumor growth and dissemination. This review summarizes current progress in the eTPD field and focuses primarily on the respective technological developments. It discusses the design principles and diversity of degrader molecules and the landscape of available targets and effectors that can be employed for eTPD. Finally, it emphasizes current open questions, challenges, and perspectives of this technological platform to promote the expansion of the eTPD toolkit and further development of its therapeutic applications.
Collapse
Affiliation(s)
- M A A Mamun
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Anush G Bakunts
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Alexander L Chernorudskiy
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China.
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, 20156, Italy.
| |
Collapse
|
2
|
Guo T, Steen JA, Mann M. Mass-spectrometry-based proteomics: from single cells to clinical applications. Nature 2025; 638:901-911. [PMID: 40011722 DOI: 10.1038/s41586-025-08584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/02/2025] [Indexed: 02/28/2025]
Abstract
Mass-spectrometry (MS)-based proteomics has evolved into a powerful tool for comprehensively analysing biological systems. Recent technological advances have markedly increased sensitivity, enabling single-cell proteomics and spatial profiling of tissues. Simultaneously, improvements in throughput and robustness are facilitating clinical applications. In this Review, we present the latest developments in proteomics technology, including novel sample-preparation methods, advanced instrumentation and innovative data-acquisition strategies. We explore how these advances drive progress in key areas such as protein-protein interactions, post-translational modifications and structural proteomics. Integrating artificial intelligence into the proteomics workflow accelerates data analysis and biological interpretation. We discuss the application of proteomics to single-cell analysis and spatial profiling, which can provide unprecedented insights into cellular heterogeneity and tissue architecture. Finally, we examine the transition of proteomics from basic research to clinical practice, including biomarker discovery in body fluids and the promise and challenges of implementing proteomics-based diagnostics. This Review provides a broad and high-level overview of the current state of proteomics and its potential to revolutionize our understanding of biology and transform medical practice.
Collapse
Affiliation(s)
- Tiannan Guo
- State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China.
| | - Judith A Steen
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Konstantinidou M, Arkin MR. Molecular glues for protein-protein interactions: Progressing toward a new dream. Cell Chem Biol 2024; 31:1064-1088. [PMID: 38701786 PMCID: PMC11193649 DOI: 10.1016/j.chembiol.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
The modulation of protein-protein interactions with small molecules is one of the most rapidly developing areas in drug discovery. In this review, we discuss advances over the past decade (2014-2023) focusing on molecular glues (MGs)-monovalent small molecules that induce proximity, either by stabilizing native interactions or by inducing neomorphic interactions. We include both serendipitous and rational discoveries and describe the different approaches that were used to identify them. We classify the compounds in three main categories: degradative MGs, non-degradative MGs or PPI stabilizers, and MGs that induce self-association. Diverse, illustrative examples with structural data are described in detail, emphasizing the elements of molecular recognition and cooperative binding at the interface that are fundamental for a MG mechanism of action.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Huang X, Wu F, Ye J, Wang L, Wang X, Li X, He G. Expanding the horizons of targeted protein degradation: A non-small molecule perspective. Acta Pharm Sin B 2024; 14:2402-2427. [PMID: 38828146 PMCID: PMC11143490 DOI: 10.1016/j.apsb.2024.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 06/05/2024] Open
Abstract
Targeted protein degradation (TPD) represented by proteolysis targeting chimeras (PROTACs) marks a significant stride in drug discovery. A plethora of innovative technologies inspired by PROTAC have not only revolutionized the landscape of TPD but have the potential to unlock functionalities beyond degradation. Non-small-molecule-based approaches play an irreplaceable role in this field. A wide variety of agents spanning a broad chemical spectrum, including peptides, nucleic acids, antibodies, and even vaccines, which not only prove instrumental in overcoming the constraints of conventional small molecule entities but also provided rapidly renewing paradigms. Herein we summarize the burgeoning non-small molecule technological platforms inspired by PROTACs, including three major trajectories, to provide insights for the design strategies based on novel paradigms.
Collapse
Affiliation(s)
- Xiaowei Huang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengbo Wu
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Ye
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyun Wang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Cheng L, Wang Y, Guo Y, Zhang SS, Xiao H. Advancing protein therapeutics through proximity-induced chemistry. Cell Chem Biol 2024; 31:428-445. [PMID: 37802076 PMCID: PMC10960704 DOI: 10.1016/j.chembiol.2023.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
Recent years have seen a remarkable growth in the field of protein-based medical treatments. Nevertheless, concerns have arisen regarding the cytotoxicity limitations, low affinity, potential immunogenicity, low stability, and challenges to modify these proteins. To overcome these obstacles, proximity-induced chemistry has emerged as a next-generation strategy for advancing protein therapeutics. This method allows site-specific modification of proteins with therapeutic agents, improving their effectiveness without extensive engineering. In addition, this innovative approach enables spatial control of the reaction based on proximity, facilitating the formation of irreversible covalent bonds between therapeutic proteins and their targets. This capability becomes particularly valuable in addressing challenges such as the low affinity frequently encountered between therapeutic proteins and their targets, as well as the limited availability of small molecules for specific protein targets. As a result, proximity-induced chemistry is reshaping the field of protein drug preparation and propelling the revolution in novel protein therapeutics.
Collapse
Affiliation(s)
- Linqi Cheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yiming Guo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Sophie S Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
6
|
Kumar S, Nabet B. A chemical magnet: Approaches to guide precise protein localization. Bioorg Med Chem 2024; 102:117672. [PMID: 38461554 PMCID: PMC11064470 DOI: 10.1016/j.bmc.2024.117672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Small molecules that chemically induce proximity between two proteins have been widely used to precisely modulate protein levels, stability, and activity. Recently, several studies developed novel strategies that employ heterobifunctional molecules that co-opt shuttling proteins to control the spatial localization of a target protein, unlocking new potential within this domain. Together, these studies lay the groundwork for novel targeted protein relocalization modalities that can rewire the protein circuitry and interactome to influence biological outcomes.
Collapse
Affiliation(s)
- Saurav Kumar
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Mukai K, Cost R, Zhang XS, Condiff E, Cotton J, Liu X, Boudanova E, Niebel B, Piepenhagen P, Cai X, Park A, Zhou Q. Targeted protein degradation through site-specific antibody conjugation with mannose 6-phosphate glycan. MAbs 2024; 16:2415333. [PMID: 39434219 PMCID: PMC11497922 DOI: 10.1080/19420862.2024.2415333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent developments in targeted protein degradation have provided great opportunities to eliminating extracellular protein targets using potential therapies with unique mechanisms of action and pharmacology. Among them, Lysosome-Targeting Chimeras (LYTACs) acting through mannose 6-phosphate receptor (M6PR) have been shown to facilitate degradation of several soluble and membrane-associated proteins in lysosomes with high efficiency. Herein we have developed a novel site-specific antibody conjugation approach to generate antibody mannose 6-phosphate (M6P) conjugates. The method uses a high affinity synthetic M6P glycan, bisM6P, that is coupled to an Fc-engineered antibody NNAS. This mutant without any effector function was generated by switching the native glycosylation site from position 297 to 298 converting non-sialylated structures to highly sialylated N-glycans. The sialic acid of the glycans attached to Asn298 in the engineered antibody was selectively conjugated to bisM6P without chemoenzymatic modification, which is often used for site-specific antibody conjugation through glycans. The conjugate is mainly homogeneous by analysis using mass spectrometry, typically with one or two glycans coupled. The M6P-conjugated antibody against a protein of interest (POI) efficiently internalized targeted soluble proteins, such as human tumor necrosis factor (TNF), in both cancer cell lines and human immune cells, through the endo-lysosomal pathway as demonstrated by confocal microscopy and flow cytometry. TNF in cell culture media was significantly depleted after the cells were incubated with the M6P-conjugated antibody. TNF internalization is mediated through M6PR, and it is correlated well with cell surface expression of cation-independent M6PR (CI-MPR) in immune cells. A significant amount of CI-MPR remains on the cell surface, while internalized TNF is degraded in lysosomes. Thus, the antibody-M6P conjugate is highly efficient in inducing internalization and subsequent lysosome-mediated protein degradation. Our platform provides a unique method for producing biologics-based degraders that may be used to treat diseases through event-driven pharmacology, thereby addressing unmet medical needs.
Collapse
Affiliation(s)
- Kaori Mukai
- Immunology & Inflammation Research, Sanofi, Cambridge, MA, USA
| | - Robert Cost
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | - Xin Sheen Zhang
- Translational In Vivo Models Research, Sanofi, Cambridge, MA, USA
| | - Emily Condiff
- Translational In Vivo Models Research, Sanofi, Cambridge, MA, USA
| | | | - Xiaohua Liu
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | | | - Björn Niebel
- Large Molecules Research, Sanofi R&D Ghent, Ghent, Belgium
| | | | - Xinming Cai
- Immunology & Inflammation Research, Sanofi, Cambridge, MA, USA
| | - Anna Park
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | - Qun Zhou
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| |
Collapse
|
8
|
Amirian R, Azadi Badrbani M, Izadi Z, Samadian H, Bahrami G, Sarvari S, Abdolmaleki S, Nabavi SM, Derakhshankhah H, Jaymand M. Targeted protein modification as a paradigm shift in drug discovery. Eur J Med Chem 2023; 260:115765. [PMID: 37659194 DOI: 10.1016/j.ejmech.2023.115765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Targeted Protein Modification (TPM) is an umbrella term encompassing numerous tools and approaches that use bifunctional agents to induce a desired modification over the POI. The most well-known TPM mechanism is PROTAC-directed protein ubiquitination. PROTAC-based targeted degradation offers several advantages over conventional small-molecule inhibitors, has shifted the drug discovery paradigm, and is acquiring increasing interest as over ten PROTACs have entered clinical trials in the past few years. Targeting the protein of interest for proteasomal degradation by PROTACS was the pioneer of various toolboxes for selective protein degradation. Nowadays, the ever-increasing number of tools and strategies for modulating and modifying the POI has expanded far beyond protein degradation, which phosphorylation and de-phosphorylation of the protein of interest, targeted acetylation, and selective modification of protein O-GlcNAcylation are among them. These novel strategies have opened new avenues for achieving more precise outcomes while remaining feasible and minimizing side effects. This field, however, is still in its infancy and has a long way to precede widespread use and translation into clinical practice. Herein, we investigate the pros and cons of these novel strategies by exploring the latest advancements in this field. Ultimately, we briefly discuss the emerging potential applications of these innovations in cancer therapy, neurodegeneration, viral infections, and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mehdi Azadi Badrbani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sajad Sarvari
- Department of Pharmaceutical Science, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Sara Abdolmaleki
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran.
| | - Seyed Mohammad Nabavi
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy.
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Ciulli A, O'Connor S, Chung CW, Hartung IV, Testa A, Daniels DL, Heitman LH. The 17 th EFMC Short Course on Medicinal Chemistry on Small Molecule Protein Degraders. ChemMedChem 2023; 18:e202300464. [PMID: 37817354 DOI: 10.1002/cmdc.202300464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/10/2023] [Indexed: 10/12/2023]
Abstract
The 17th EFMC Short Course on Medicinal Chemistry took place April 23-26, 2023 in Oegstgeest, near Leiden in the Netherlands. It covered for the first time the exciting topic of Targeted Protein Degradation (full title: Small Molecule Protein Degraders: A New Opportunity for Drug Design and Development). The course was oversubscribed, with 35 attendees and 6 instructors mainly from Europe but also from the US and South Africa, and representing both industry and academia. This report summarizes the successful event, key lectures given and topics discussed.
Collapse
Affiliation(s)
- Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ Scotland, UK
| | - Suzanne O'Connor
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ Scotland, UK
| | | | - Ingo V Hartung
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Andrea Testa
- Amphista Therapeutics Ltd., Cori Building, Granta Park, Great Abington, Cambridge, CB21 6GQ, UK
| | - Danette L Daniels
- Foghorn Therapeutics, 500 Technology Square, Cambridge, MA 02139, USA
| | - Laura H Heitman
- Oncode Institute & Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), P. O. Box 9502, 2300RA, Leiden, The Netherlands
| |
Collapse
|
10
|
Kong NR, Jones LH. Clinical Translation of Targeted Protein Degraders. Clin Pharmacol Ther 2023; 114:558-568. [PMID: 37399310 DOI: 10.1002/cpt.2985] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Targeted protein degradation (TPD) has emerged as a potentially transformational therapeutic modality with considerable promise. Molecular glue degraders remodel the surface of E3 ligases inducing interactions with neosubstrates resulting in their polyubiquitination and proteasomal degradation. Molecular glues are clinically precedented and have demonstrated the ability to degrade proteins-of-interest (POIs) previously deemed undruggable due to the absence of a traditional small molecule binding pocket. Heterobifunctional proteolysis targeting chimeras (PROTACs) possess ligands for an E3 complex and the POIs, which are chemically linked together, and similarly hijack the ubiquitin machinery to deplete the target. There has been a recent surge in the number of degraders entering clinical trials, particularly directed toward cancer. Nearly all utilize CRL4CRBN as the E3 ligase, and a relatively limited diversity of POIs are currently targeted. In this review, we provide an overview of the degraders in clinical trials and provide a perspective on the lessons learned from their development and emerging human data that will be broadly useful to those working in the TPD field.
Collapse
Affiliation(s)
- Nikki R Kong
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Nadendla K, Simpson GG, Becher J, Journeaux T, Cabeza-Cabrerizo M, Bernardes GJL. Strategies for Conditional Regulation of Proteins. JACS AU 2023; 3:344-357. [PMID: 36873677 PMCID: PMC9975842 DOI: 10.1021/jacsau.2c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Design of the next-generation of therapeutics, biosensors, and molecular tools for basic research requires that we bring protein activity under control. Each protein has unique properties, and therefore, it is critical to tailor the current techniques to develop new regulatory methods and regulate new proteins of interest (POIs). This perspective gives an overview of the widely used stimuli and synthetic and natural methods for conditional regulation of proteins.
Collapse
Affiliation(s)
- Karthik Nadendla
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Grant G. Simpson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Julie Becher
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Toby Journeaux
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Mar Cabeza-Cabrerizo
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
12
|
CIDE-stepping E3s. Nat Chem Biol 2023; 19:3-4. [PMID: 36577874 DOI: 10.1038/s41589-022-01217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Burslem GM. BacPROTACs to basics: Targeted protein degradation in bacteria. Cell 2022; 185:2203-2205. [DOI: 10.1016/j.cell.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
|