1
|
Commissati S, Cagigas ML, Masedunskas A, Petrucci G, Tosti V, De Ciutiis I, Rajakumar G, Kirmess KM, Meyer MR, Goldhamer A, Kennedy BK, Hatem D, Rocca B, Fiorito G, Fontana L. Prolonged fasting promotes systemic inflammation and platelet activation in humans: A medically supervised, water-only fasting and refeeding study. Mol Metab 2025; 96:102152. [PMID: 40268190 DOI: 10.1016/j.molmet.2025.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/30/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVE Prolonged fasting (PF), defined as abstaining from energy intake for ≥4 consecutive days, has gained interest as a potential health intervention. However, the biological effects of PF on the plasma proteome are not well understood. METHODS In this study, we investigated the effects of a medically supervised water-only fast (mean duration: 9.8 ± 3.1 days), followed by 5.3 ± 2.4 days of guided refeeding, in 20 middle-aged volunteers (mean age: 52.2 ± 11.8 years; BMI: 28.8 ± 6.4 kg/m2). RESULTS Fasting resulted in a 7.7% mean weight loss and significant increases in serum beta-hydroxybutyrate (BHB), confirming adherence. Untargeted high-dimensional plasma proteomics (SOMAScan, 1,317 proteins) revealed multiple adaptations to PF, including preservation of skeletal muscle and bone, enhanced lysosomal biogenesis, increased lipid metabolism via PPARα signaling, and reduced amyloid fiber formation. Notably, PF significantly reduced circulating amyloid beta proteins Aβ40 and Aβ42, key components of brain amyloid plaques. In addition, PF induced an acute inflammatory response, characterized by elevated plasma C-reactive protein (CRP), hepcidin, midkine, and interleukin 8 (IL-8), among others. A retrospective cohort analysis of 1,422 individuals undergoing modified fasting confirmed increased CRP levels (from 2.8 ± 0.1 to 4.3 ± 0.2 mg/L). The acute phase response, associated with transforming growth factor (TGF)-β signaling, was accompanied by increased platelet degranulation and upregulation of the complement and coagulation cascade, validated by ELISAs in blood and urine. CONCLUSIONS While the acute inflammatory response during PF may serve as a transient adaptive mechanism, it raises concerns regarding potential cardiometabolic effects that could persist after refeeding. Further investigation is warranted to elucidate the long-term molecular and clinical implications of PF across diverse populations.
Collapse
Affiliation(s)
| | - Maria Lastra Cagigas
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Andrius Masedunskas
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Giovanna Petrucci
- Section of Pharmacology, Department of Safety and Bioethics, Catholic University School of Medicine, Rome, Italy
| | - Valeria Tosti
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Isabella De Ciutiis
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Gayathiri Rajakumar
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | - Brian K Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Duaa Hatem
- Section of Pharmacology, Department of Safety and Bioethics, Catholic University School of Medicine, Rome, Italy
| | - Bianca Rocca
- Section of Pharmacology, Department of Safety and Bioethics, Catholic University School of Medicine, Rome, Italy; NeuroFarBa Department, University of Florence, Florence, Italy
| | - Giovanni Fiorito
- Clinical Bioinformatics unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy; MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
2
|
Gökçeoğlu-Kayalı D, Berkyürek MA, Özdemir-Kumral ZN, Çilingir-Kaya ÖT. The Sex-Dependent Ameliorative Effect of Intermittent Fasting on Urinary System Functions in Genetic Absence Epileptic Rats. BIOLOGY 2025; 14:158. [PMID: 40001926 PMCID: PMC11852256 DOI: 10.3390/biology14020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Epilepsy, a brain condition causing recurrent seizures, can disrupt various body functions, including urination. This study explored how alternate-day fasting (ADF), a type of intermittent fasting, a diet involving one day of eating and fasting, subsequently affects urinary system health in epileptic rats. Using a genetic rat model of epilepsy, we examined bladder and kidney function through tissue analysis, biochemical tests, and physiological assessments, focusing on differences between males and females. The results showed that epilepsy causes significant urinary system damage linked to inflammation and oxidative stress. However, ADF reduces this damage by lowering inflammation and restoring antioxidant balance. Male rats exhibited more oxidative damage, while female rats responded better to ADF, likely due to hormonal differences. These findings suggest ADF as a potential, cost-effective dietary approach to protect against urinary complications in epilepsy and similar conditions. Understanding these effects may lead to improved treatments for both genders and a better quality of life for people with chronic diseases.
Collapse
Affiliation(s)
- Damla Gökçeoğlu-Kayalı
- Histology and Embryology Department, Marmara University School of Medicine, Istanbul 34854, Türkiye; (D.G.-K.); (M.A.B.)
- Histology and Embryology Department, İstanbul Atlas University School of Medicine, Istanbul 34403, Türkiye
| | - Mehmet Ali Berkyürek
- Histology and Embryology Department, Marmara University School of Medicine, Istanbul 34854, Türkiye; (D.G.-K.); (M.A.B.)
| | | | - Özlem Tuğçe Çilingir-Kaya
- Histology and Embryology Department, Marmara University School of Medicine, Istanbul 34854, Türkiye; (D.G.-K.); (M.A.B.)
| |
Collapse
|
3
|
Cui X, Huang X, Chen X, Li H, Wu Y, Yang Z, Liu Z, Feng R, Xu J, Wei C, Ding Z, Cheng H. Influence of Starvation on Biochemical, Physiological, Morphological, and Transcriptional Responses Associated with Glucose and Lipid Metabolism in the Liver of Javelin Goby ( Synechogobius hasta). Animals (Basel) 2024; 14:2734. [PMID: 39335323 PMCID: PMC11429288 DOI: 10.3390/ani14182734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, the influence of fasting on hepatic glucose and lipid metabolism was explored by examining biochemical, antioxidative, and morphological indicators and transcriptional expression in the liver of javelin goby (Synechogobius hasta) after 0, 3, 7, or 14 days of starvation. Marked reductions in hepatic glycogen and triglycerides occurred from the seventh day of starvation until the end of the trial (p < 0.05). However, no alterations in hepatic cholesterol or protein were detected throughout the entire experiment (p > 0.05). During fasting, the activities of pyruvate kinase, lactate dehydrogenase, and glycogen phosphorylase a all rose firstly and then fell (p < 0.05). The activities of hepatic fatty acid synthase and acetyl-CoA carboxylase were minimized to their lowest levels at the end of food deprivation (p < 0.05), while lipase was elevated after 7-14 days of fasting (p < 0.05). Catalase, glutathione, and the total antioxidative capacity were increased and maintained their higher values in the later stage of fasting (p < 0.05), whereas malondialdehyde was not significantly changed (p > 0.05). Hepatic vein congestion, remarkable cytoplasmic vacuoles, and irregular cell shape were present in S. hasta which endured 3-7 days of fasting and were less pronounced when food shortage was prolonged. In terms of genes associated with glucose and lipid metabolism, the hepatic phosphofructokinase gene was constantly up-regulated during fasting (p < 0.05). However, the mRNA levels of glycogen synthase and glucose-6-phosphatase were obviously lower when the food scarcity extended to 7 days or more (p < 0.05). Fatty acid synthase, stearoyl-CoA desaturase 1, and peroxisome proliferator-activated receptor γ were substantially down-regulated in S. hasta livers after 7-14 days of food deprivation (p < 0.05). However, genes involved in lipolysis and fatty acid transport were transcriptionally enhanced to varying extents and peaked at the end of fasting (p < 0.05). Overall, starvation lasting 7 days or more could concurrently mobilize hepatic carbohydrates and fat as energy resources and diminished their hepatic accumulation by suppressing biosynthesis and enhancing catabolism and transport, ultimately metabolically and structurally perturbing the liver in S. hasta. This work presents preliminary data on the dynamic characteristics of hepatic glucose and lipid metabolism in S. hasta in response to starvation, which may shed light on the sophisticated mechanisms of energetic homeostasis in fish facing nutrient unavailability and may benefit the utilization/conservation of S. hasta.
Collapse
Affiliation(s)
- Xiangyu Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyang Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Honghui Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yanru Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zikui Yang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
| | - Rui Feng
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chaoqing Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
4
|
Diab R, Dimachkie L, Zein O, Dakroub A, Eid AH. Intermittent Fasting Regulates Metabolic Homeostasis and Improves Cardiovascular Health. Cell Biochem Biophys 2024; 82:1583-1597. [PMID: 38847940 PMCID: PMC11445340 DOI: 10.1007/s12013-024-01314-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 10/02/2024]
Abstract
Obesity is a leading cause of morbidity and mortality globally. While the prevalence of obesity has been increasing, the incidence of its related complications including dyslipidemia and cardiovascular disease (CVD) has also been rising. Recent research has focused on modalities aimed at reducing obesity. Several modalities have been suggested including behavioral and dietary changes, medications, and bariatric surgery. These modalities differ in their effectiveness and invasiveness, with dietary changes gaining more interest due to their minimal risks compared to other modalities. Specifically, intermittent fasting (IF) has been gaining interest in the past decade. IF is characterized by cycles of alternating fasting and eating windows, with several different forms practiced. IF has been shown to reduce weight and alleviate obesity-related complications. Our review of clinical and experimental studies explores the effects of IF on the lipid profile, white adipose tissue (WAT) dynamics, and the gut microbiome. Notably, IF corrects dyslipidemia, reduces WAT accumulation, and decreases inflammation, which reduces CVD and obesity. This comprehensive analysis details the protective metabolic role of IF, advocating for its integration into public health practices.
Collapse
Affiliation(s)
- Rawan Diab
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Dakroub
- St. Francis Hospital and Heart Center, Roslyn, NY, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, QU Health, Doha, Qatar.
| |
Collapse
|
5
|
Park MA, Whelan CJ, Ahmed S, Boeringer T, Brown J, Carson TL, Crowder SL, Gage K, Gregg C, Jeong DK, Jim HSL, Judge AR, Mason TM, Parker N, Pillai S, Qayyum A, Rajasekhara S, Rasool G, Tinsley SM, Schabath MB, Stewart P, West J, McDonald P, Permuth JB. Defining and Addressing Research Priorities in Cancer Cachexia through Transdisciplinary Collaboration. Cancers (Basel) 2024; 16:2364. [PMID: 39001427 PMCID: PMC11240731 DOI: 10.3390/cancers16132364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
For many patients, the cancer continuum includes a syndrome known as cancer-associated cachexia (CAC), which encompasses the unintended loss of body weight and muscle mass, and is often associated with fat loss, decreased appetite, lower tolerance and poorer response to treatment, poor quality of life, and reduced survival. Unfortunately, there are no effective therapeutic interventions to completely reverse cancer cachexia and no FDA-approved pharmacologic agents; hence, new approaches are urgently needed. In May of 2022, researchers and clinicians from Moffitt Cancer Center held an inaugural retreat on CAC that aimed to review the state of the science, identify knowledge gaps and research priorities, and foster transdisciplinary collaborative research projects. This review summarizes research priorities that emerged from the retreat, examples of ongoing collaborations, and opportunities to move science forward. The highest priorities identified include the need to (1) evaluate patient-reported outcome (PRO) measures obtained in clinical practice and assess their use in improving CAC-related outcomes; (2) identify biomarkers (imaging, molecular, and/or behavioral) and novel analytic approaches to accurately predict the early onset of CAC and its progression; and (3) develop and test interventions (pharmacologic, nutritional, exercise-based, and through mathematical modeling) to prevent CAC progression and improve associated symptoms and outcomes.
Collapse
Affiliation(s)
- Margaret A. Park
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Christopher J. Whelan
- Department of Metabolism and Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Sabeen Ahmed
- Department of Machine Learning, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (S.A.); (G.R.)
| | - Tabitha Boeringer
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (T.B.); (S.P.)
| | - Joel Brown
- Department of Cancer Biology and Evolution, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (J.B.); (J.W.)
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tiffany L. Carson
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (T.L.C.); (S.L.C.); (H.S.L.J.); (N.P.); (S.M.T.)
| | - Sylvia L. Crowder
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (T.L.C.); (S.L.C.); (H.S.L.J.); (N.P.); (S.M.T.)
| | - Kenneth Gage
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (K.G.); (D.K.J.); (A.Q.)
| | - Christopher Gregg
- School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| | - Daniel K. Jeong
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (K.G.); (D.K.J.); (A.Q.)
| | - Heather S. L. Jim
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (T.L.C.); (S.L.C.); (H.S.L.J.); (N.P.); (S.M.T.)
| | - Andrew R. Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA;
| | - Tina M. Mason
- Department of Nursing Research, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Nathan Parker
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (T.L.C.); (S.L.C.); (H.S.L.J.); (N.P.); (S.M.T.)
| | - Smitha Pillai
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (T.B.); (S.P.)
| | - Aliya Qayyum
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (K.G.); (D.K.J.); (A.Q.)
| | - Sahana Rajasekhara
- Department of Supportive Care Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Ghulam Rasool
- Department of Machine Learning, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (S.A.); (G.R.)
| | - Sara M. Tinsley
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (T.L.C.); (S.L.C.); (H.S.L.J.); (N.P.); (S.M.T.)
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Matthew B. Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Paul Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Jeffrey West
- Department of Cancer Biology and Evolution, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (J.B.); (J.W.)
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Patricia McDonald
- Department of Metabolism and Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
- Lexicon Pharmaceuticals, Inc., Woodlands, TX 77381, USA
| | - Jennifer B. Permuth
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| |
Collapse
|
6
|
Albanesi CP, Méndez E, Michiels MS, Radonic M, López A, López-Mañanes AA. Differential modulation of digestive enzymes and energy reserves at different times after feeding in juveniles of the marine estuarine-dependent flatfish Paralichthys orbignyanus (Valenciennes, 1839). JOURNAL OF FISH BIOLOGY 2024; 104:34-43. [PMID: 37697670 DOI: 10.1111/jfb.15562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Integrative studies are lacking on the responses of digestive enzymes and energy reserves in conjunction with morphological traits at distinct postprandial times in marine estuarine-dependent flatfishes of ecological and economic importance, such as Paralichthys orbignyanus. We determined total weight (TW), hepato-somatic index (IH), activities of digestive enzymes in the intestine, and the concentration of energy reserves in the liver and the muscle at 0, 24, 72, and 360 h after feeding in juveniles of P. orbignyanus. Amylase activity decreased at 72 h (about 30%). Maltase, sucrose, and lipase activities reached peak at 24 h (67%, 600%, and 35%, respectively). Trypsin and aminopeptidase-N activities at 24 and 72 h, respectively, were lower than those at t = 0 (53% and 30%). A peak increase in the concentration of glycogen and triglycerides in the liver (24 h) (86% and 89%, respectively) occurred. In muscle, glycogen and triglyceride concentrations were unchanged at 24 h and higher at 72 and 360 h (100% and 60%). No changes were found in TW, IH, free glucose in the liver and muscle, and protein in the liver. The protein concentration in the muscle sharply increased at 24 and 360 h after feeding (60%). The results indicate a distinct and specific response of central components of carbohydrate, lipid, and protein metabolism that could be adjustments at the biochemical level upon periods of irregular feeding and even of long-term food deprivation inside coastal lagoons or estuaries. The distinct responses of digestive enzymes in the intestine and energy reserves in the liver and muscle suggest the differential modulation of tissue-specific anabolic and catabolic pathways that would allow the maintenance of physical conditions.
Collapse
Affiliation(s)
- Camila Paula Albanesi
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN-Universidad Nacional de Mar del Plata-CONICET, Mar Del Plata, Argentina
| | - Eugenia Méndez
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN-Universidad Nacional de Mar del Plata-CONICET, Mar Del Plata, Argentina
| | - María Soledad Michiels
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN-Universidad Nacional de Mar del Plata-CONICET, Mar Del Plata, Argentina
| | - Mariela Radonic
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N1, Mar del Plata, Argentina
| | - Andrea López
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N1, Mar del Plata, Argentina
| | - Alejandra A López-Mañanes
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN-Universidad Nacional de Mar del Plata-CONICET, Mar Del Plata, Argentina
| |
Collapse
|
7
|
Wang Y, Liu Y, Wang Y, Zhang A, Xie W, Zhang H, Weng Q, Xu M. Investigation of seasonal changes in lipid synthesis and metabolism-related genes in the oviduct of Chinese brown frog (<em>Rana dybowskii</em>). Eur J Histochem 2023; 67:3890. [PMID: 38116875 PMCID: PMC10773197 DOI: 10.4081/ejh.2023.3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
A peculiar physiological characteristic of the Chinese brown frog (Rana dybowskii) is that its oviduct dilates during pre-brumation rather than during the breeding season. This research aimed to examine the expression of genes connected with lipid synthesis and metabolism in the oviduct of R. dybowskii during both the breeding season and pre-brumation. We observed significant changes in the weight and size of the oviduct between the breeding season and pre-brumation. Furthermore, compared to the breeding season, pre-brumation exhibited significantly lower triglyceride content and a marked increase in free fatty acid content. Immunohistochemical results revealed the spatial distribution of triglyceride synthase (Dgat1), triglyceride hydrolase (Lpl and Hsl), fatty acid synthase (Fasn), and fatty acid oxidases (Cpt1a, Acadl, and Hadh) in oviductal glandular cells and epithelial cells during both the breeding season and pre-brumation. While the mRNA levels of triglycerides and free fatty acid synthesis genes (dgat1 and fasn) did not show a significant difference between the breeding season and pre-brumation, the mRNA levels of genes involved in triglycerides and free fatty acid metabolism (lpl, cpt1a, acadl, acox and hadh) were considerably higher during pre-brumation. Furthermore, the R. dybowskii oviduct's transcriptomic and metabolomic data confirmed differential expression of genes and metabolites enriched in lipid metabolism signaling pathways during both the breeding season and pre-brumation. Overall, these results suggest that alterations in lipid synthesis and metabolism during pre-brumation may potentially influence the expanding size of the oviduct, contributing to the successful overwintering of R. dybowskii.
Collapse
Affiliation(s)
- Yankun Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yuning Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yawei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Ao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Wenqian Xie
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Meiyu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| |
Collapse
|
8
|
Borowiec BG, McDonald AE, Wilkie MP. Upstream migrant sea lamprey (Petromyzon marinus) show signs of increasing oxidative stress but maintain aerobic capacity with age. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111503. [PMID: 37586606 DOI: 10.1016/j.cbpa.2023.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Following the parasitic juvenile phase of their life cycle, sea lamprey (Petromyzon marinus) mature into a reproductive but rapidly aging and deteriorating adult, and typically die shortly after spawning in May or June. However, pre-spawning upstream migrant sea lamprey can be maintained for several months beyond their natural lifespan when held in cold water (∼4-8 °C) under laboratory conditions. We exploited this feature to investigate the interactions between senescence, oxidative stress, and metabolic function in this phylogenetically ancient fish. We investigated how life history traits and mitochondria condition, as indicated by markers of oxidative stress (catalase activity, lipid peroxidation) and aerobic capacity (citrate synthase activity), changed in adult sea lamprey from June to December after capture during their upstream spawning migration. Body mass but not liver mass declined with age, resulting in an increase in hepatosomatic index. Both effects were most pronounced in males, which also tended to have larger livers than females. Lamprey experienced greater oxidative stress with age, as reflected by increasing activity of the antioxidant enzyme catalase and increasing levels of lipid peroxidation in liver mitochondrial isolates over time. Surprisingly, the activity of citrate synthase also increased with age in both sexes. These observations implicate mitochondrial dysfunction and oxidative stress in the senescence of sea lamprey. Due to their unique evolutionary position and the technical advantage of easily delaying the onset of senescence in lampreys using cold water, these animals could represent an evolutionary unique and tractable model to investigate senescence in vertebrates.
Collapse
Affiliation(s)
| | - Allison E McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada. https://twitter.com/AEMcDonaldWLU
| | - Michael P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
9
|
Ristyadi D, He XZ, Wang Q. Resource allocation strategies for survival and reproduction by an invasive pest in response to intermittent fasting. Curr Zool 2023; 69:600-606. [PMID: 37637313 PMCID: PMC10449421 DOI: 10.1093/cz/zoac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 08/29/2023] Open
Abstract
Intermittent fasting (IF) is a type of dietary restriction that involves fasting periods in intervals, which has been used as a strategy to improve health and extend longevity. Regular fasting is common during the process of biological invasions in nature. Yet, it is not clear how invasive animals adjust their resource allocations to survival and reproduction when periodical starvation occurs. Here, we used Tetranychus ludeni, a haplodiploid spider mite and an important invasive pest of horticultural crops around the world, to investigate the effects of IF on its life history strategies. We show that IF increased the longevity in females but not in males probably because of differences in resource storage, metabolic rate, and mating cost between sexes. In response to IF, females traded off fecundity and egg size but not the number of daughters for longevity gain, suggesting that T. ludeni females can adjust their life history strategies for population survival and growth during invasion process. Eggs produced by fasted females realized the same hatch rate and resultant young had the same survival rate as those by unfasted ones. In addition, IF had transgenerational maternal effects which prolonged offspring development period. We suggest that the longer immature developmental period can increase the body size of resulting adults, compensating egg size loss for offspring fitness. Our findings provide insight into resource allocations as responses to fasting, knowledge of which can be used for evaluation of pest invasions and for management of animal survival and reproduction by dietary regulations.
Collapse
Affiliation(s)
- Dwi Ristyadi
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, New Zealand
- Agriculture Faculty, Jambi University, Km 15 Mendalo Darat 36361, Jambi, Indonesia
| | - Xiong Z He
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Qiao Wang
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
10
|
Jiang C, Storey KB, Yang H, Sun L. Aestivation in Nature: Physiological Strategies and Evolutionary Adaptations in Hypometabolic States. Int J Mol Sci 2023; 24:14093. [PMID: 37762394 PMCID: PMC10531719 DOI: 10.3390/ijms241814093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Aestivation is considered to be one of the "purest" hypometabolic states in nature, as it involves aerobic dormancy that can be induced and sustained without complex factors. Animals that undergo aestivation to protect themselves from environmental stressors such as high temperatures, droughts, and food shortages. However, this shift in body metabolism presents new challenges for survival, including oxidative stress upon awakening from aestivation, accumulation of toxic metabolites, changes in energy sources, adjustments to immune status, muscle atrophy due to prolonged immobility, and degeneration of internal organs due to prolonged food deprivation. In this review, we summarize the physiological and metabolic strategies, key regulatory factors, and networks utilized by aestivating animals to address the aforementioned components of aestivation. Furthermore, we present a comprehensive overview of the advancements made in aestivation research across major species, including amphibians, fish, reptiles, annelids, mollusks, and echinoderms, categorized according to their respective evolutionary positions. This approach offers a distinct perspective for comparative analysis, facilitating an understanding of the shared traits and unique features of aestivation across different groups of organisms.
Collapse
Affiliation(s)
- Chunxi Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Armstrong HC, Russell DJF, Moss SEW, Pomeroy P, Bennett KA. Fitness correlates of blubber oxidative stress and cellular defences in grey seals (Halichoerus grypus): support for the life-history-oxidative stress theory from an animal model of simultaneous lactation and fasting. Cell Stress Chaperones 2023; 28:551-566. [PMID: 36933172 PMCID: PMC10469160 DOI: 10.1007/s12192-023-01332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
Life-history-oxidative stress theory predicts that elevated energy costs during reproduction reduce allocation to defences and increase cellular stress, with fitness consequences, particularly when resources are limited. As capital breeders, grey seals are a natural system in which to test this theory. We investigated oxidative damage (malondialdehyde (MDA) concentration) and cellular defences (relative mRNA abundance of heat shock proteins (Hsps) and redox enzymes (REs)) in blubber of wild female grey seals during the lactation fast (n = 17) and summer foraging (n = 13). Transcript abundance of Hsc70 increased, and Nox4, a pro-oxidant enzyme, decreased throughout lactation. Foraging females had higher mRNA abundance of some Hsps and lower RE transcript abundance and MDA concentrations, suggesting they experienced lower oxidative stress than lactating mothers, which diverted resources into pup rearing at the expense of blubber tissue damage. Lactation duration and maternal mass loss rate were both positively related to pup weaning mass. Pups whose mothers had higher blubber glutathione-S-transferase (GST) expression at early lactation gained mass more slowly. Higher glutathione peroxidase (GPx) and lower catalase (CAT) were associated with longer lactation but reduced maternal transfer efficiency and lower pup weaning mass. Cellular stress, and the ability to mount effective cellular defences, could proscribe lactation strategy in grey seal mothers and thus affect pup survival probability. These data support the life-history-oxidative stress hypothesis in a capital breeding mammal and suggest lactation is a period of heightened vulnerability to environmental factors that exacerbate cellular stress. Fitness consequences of stress may thus be accentuated during periods of rapid environmental change.
Collapse
Affiliation(s)
- Holly C Armstrong
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK.
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK.
| | - Debbie J F Russell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
| | - Simon E W Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
| | - Paddy Pomeroy
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
| | - Kimberley A Bennett
- Division of Health Science, School of Applied Sciences, Abertay University, Dundee, DD1 1HG, UK
| |
Collapse
|
12
|
Gou N, Wang K, Jin T, Yang B. Effects of Starvation and Refeeding on Growth, Digestion, Nonspecific Immunity and Lipid-Metabolism-Related Genes in Onychostoma macrolepis. Animals (Basel) 2023; 13:ani13071168. [PMID: 37048424 PMCID: PMC10093011 DOI: 10.3390/ani13071168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The present research was conducted to assess the influences of starvation and refeeding on growth, nonspecific immunity and lipid metabolic adaptation in Onychostoma macrolepis. To date, there have been no similar reports in O. macrolepis. The fish were randomly assigned into two groups: control group (continuous feeding for six weeks) and starved–refed group (starvation for three weeks and then refeeding for three weeks). After three weeks of starvation, the results showed that the body weight (BW, 1.44 g), condition factor (CF, 1.17%), visceral index (VSI, 3.96%), hepatopancreas index (HSI, 0.93%) and intraperitoneal fat index (IPFI, 0.70%) of fish were significantly lower compared to the control group (BW, 5.72 g; CF, 1.85%; VSI, 6.35%; HSI, 2.04%; IPFI, 1.92%) (p < 0.05). After starvation, the serum triglyceride (TG, 0.83 mmol/L), total cholesterol (T-GHOL, 1.15 mmol/L), high-density lipoprotein (HDL, 1.13 mmol/L) and low-density lipoprotein (LDL, 0.46 mmol/L) concentrations were significantly lower than those in the control group (TG, 1.69 mmol/L; T-GHOL, 1.86 mmol/L; HDL, 1.62 mmol/L; LDL, 0.63 mmol/L) (p < 0.05). The activities of intestinal digestive enzymes (amylase, lipase and protease) in the starved-refed group were significantly lower than those in the control group after three weeks of starvation (p < 0.05). The highest activities of immune enzymes such as lysozyme (LZM), acid phosphate (ACP), alkaline phosphate (ALP), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) in the hepatopancreas were presented in the starved–refed group at second week, and significantly higher than those in the control group (p < 0.05). Meanwhile, starvation significantly improved intestinal immune enzymes activities (p < 0.05). the lowest TG contents and the highest expression levels of lipolysis genes including hormone-sensitive lipase (HSL) and carnitine palmitoyl transferase 1 isoform A (CPT-1A) appeared in the hepatopancreas, muscle and intraperitoneal fat after starvation, indicating the mobilization of fat reserves in these tissues (p < 0.05). After refeeding, the recovery of TG content might be mediated by the upregulation of the expression levels of lipogenesis genes such as sterol regulatory element binding protein 1 (SREBP1) and fatty acid synthase (FAS). Understanding the duration of physiological and metabolic changes in O. macrolepis and their reversibility or irreversibility to supplementary feeding response could provide valuable reference for the adaptability of O. macrolepis in large-scale culturing, proliferation and release.
Collapse
|
13
|
Mc Auley MT. Dietary restriction and ageing: Recent evolutionary perspectives. Mech Ageing Dev 2022; 208:111741. [PMID: 36167215 DOI: 10.1016/j.mad.2022.111741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022]
Abstract
Dietary restriction (DR) represents one of the most robust interventions for extending lifespan. It is not known how DR increases lifespan. The prevailing evolutionary hypothesis suggests the DR response redirects metabolic resources towards somatic maintenance at the expense of investment in reproduction. Consequently, DR acts as a proximate mechanism which promotes a pro-longevity phenotype. This idea is known as resource reallocation. However, growing findings suggest this paradigm could be incomplete. It has been argued that during DR it is not always possible to identify a trade-off between reproduction and lifespan. It is also suggested the relationship between reproduction and somatic maintenance can be uncoupled by the removal or inclusion of specific nutrients. These findings have created an imperative to re-explore the nexus between DR and evolutionary theory. In this review I will address this evolutionary conundrum. My overarching objectives are fourfold: (1) to outline some of the evidence for and against resource reallocation; (2) to examine recent findings which have necessitated a theoretical re-evaluation of the link between life history theory and DR; (3) to present alternatives to the resource reallocation model; (4) to present emerging variables which potentially influence how DR effects evolutionary trade-offs.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Faculty of Science and Engineering, Thornton Science Park, University of Chester, Parkgate Road, Chester CH1 4BJ, UK.
| |
Collapse
|
14
|
Oxidative Stress Is a Potential Cost of Synchronous Nesting in Olive Ridley Sea Turtles. Antioxidants (Basel) 2022; 11:antiox11091772. [PMID: 36139846 PMCID: PMC9495575 DOI: 10.3390/antiox11091772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Olive ridley sea turtles, Lepidochelys olivacea, exhibit a polymorphic reproductive behavior, nesting solitarily or in mass aggregations termed “arribadas”, where thousands of individuals nest synchronously. Arribada nesting provides fitness benefits including mate finding during nearshore aggregations and predator satiation at the time of hatching, but it is unknown if such benefits come with a physiological cost. We used plasma metabolite profiling, stable isotope analysis, biochemical and endocrine assays to test whether metabolic parameters differ between nesting modes, and if arribada nesting is associated with increased levels of oxidative damage compared to solitary nesting. Arribada nesters were bigger and had higher circulating thyroid hormone levels than solitary nesters. Similarly, pathways related to phospholipid and amino acid metabolism, catabolic processes, and antioxidant defense were enriched in individuals nesting in arribada. Stable isotope signatures in skin samples showed differences in feeding zones with arribada nesters likely feeding on benthic and potentially more productive grounds. Arribada nesters had increased levels of plasma lipid peroxidation and protein oxidation products compared to solitary nesters. These results suggest that metabolic profiles differ between nesting modes and that oxidative stress is a trade-off for the fitness benefits associated with arribada nesting.
Collapse
|
15
|
Niu Y, Zhang X, Xu T, Li X, Zhang H, Wu A, Storey KB, Chen Q. Physiological and Biochemical Adaptations to High Altitude in Tibetan Frogs, Nanorana parkeri. Front Physiol 2022; 13:942037. [PMID: 35874536 PMCID: PMC9298763 DOI: 10.3389/fphys.2022.942037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
The Xizang plateau frog, N. parkeri (Anura: Dicroglossidae), is endemic to the Tibetan Plateau, ranging from 2,850 to 5,100 m above sea level. The present study explores physiological and biochemical adaptations to high altitude in this species with a particular emphasis on parameters of hematology, oxidative stress, and antioxidant defense in adult and juvenile N. parkeri collected from high (4,600 m a.s.l) and low (3,400 m a.s.l) altitudes. Hematological results showed that hemoglobin concentration ([Hb]), hematocrit (Hct), and red blood cell (RBC) counts were significantly higher in high-altitude N. parkeri. High-altitude juveniles had lower RBC sizes than low-altitude juveniles. Higher levels of GSH and GSSG were indicated only in juveniles from high altitude, not in adults. High-altitude individuals also showed lower oxidative damage, assessed as malondialdehyde (MDA) and carbonyl groups (CG) in the liver. High-altitude adults also showed higher activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione-S-transferase (GST) as well as total antioxidant capacity (T-AOC) in the liver as compared to low-altitude adults. Moreover, higher GPX activity and T-AOC were observed in the heart and brain of high-altitude adults. Liver CAT, GPX, and T-AOC showed significant increases in high-altitude juveniles. Vitamin C content was also higher in the heart of high-altitude frogs compared to low-altitude individuals. In summary, the high-altitude population of N. parkeri showed more robust hematological parameters, less oxidative damage, and stronger antioxidant defenses than the low-altitude population, all contributing to increased protection for survival in high-altitude environments.
Collapse
Affiliation(s)
- Yonggang Niu
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Xuejing Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tisen Xu
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Xiangyong Li
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Haiying Zhang
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Anran Wu
- Department of Life Sciences, Dezhou University, Dezhou, China
| | | | - Qiang Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Eaton L, Pamenter ME. What to do with low O 2: Redox adaptations in vertebrates native to hypoxic environments. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111259. [PMID: 35724954 DOI: 10.1016/j.cbpa.2022.111259] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) are important cellular signalling molecules but sudden changes in redox balance can be deleterious to cells and lethal to the whole organism. ROS production is inherently linked to environmental oxygen availability and many species live in variable oxygen environments that can range in both severity and duration of hypoxic exposure. Given the importance of redox homeostasis to cell and animal viability, it is not surprising that early studies in species adapted to various hypoxic niches have revealed diverse strategies to limit or mitigate deleterious ROS changes. Although research in this area is in its infancy, patterns are beginning to emerge in the suites of adaptations to different hypoxic environments. This review focuses on redox adaptations (i.e., modifications of ROS production and scavenging, and mitigation of oxidative damage) in hypoxia-tolerant vertebrates across a range of hypoxic environments. In general, evidence suggests that animals adapted to chronic lifelong hypoxia are in homeostasis, and do not encounter major oxidative challenges in their homeostatic environment, whereas animals exposed to seasonal chronic anoxia or hypoxia rapidly downregulate redox balance to match a hypometabolic state and employ robust scavenging pathways during seasonal reoxygenation. Conversely, animals adapted to intermittent hypoxia exposure face the greatest degree of ROS imbalance and likely exhibit enhanced ROS-mitigation strategies. Although some progress has been made, research in this field is patchy and further elucidation of mechanisms that are protective against environmental redox challenges is imperative for a more holistic understanding of how animals survive hypoxic environments.
Collapse
Affiliation(s)
- Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
17
|
Lu Q, Gong Y, Xi L, Liu Y, Xu W, Liu H, Jin J, Zhang Z, Yang Y, Zhu X, Xie S, Han D. Feed Restriction Alleviates Chronic Thermal Stress-Induced Liver Oxidation and Damages via Reducing Lipid Accumulation in Channel Catfish (Ictalurus punctatus). Antioxidants (Basel) 2022; 11:antiox11050980. [PMID: 35624844 PMCID: PMC9138062 DOI: 10.3390/antiox11050980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 02/05/2023] Open
Abstract
Caloric restriction is known to suppress oxidative stress in organ systems. However, whether caloric/feed restriction alleviates chronic thermal stress in aquatic animals remains unknown. Here, we set up three feeding rations: 3% BW (3% body weight/day), 2.5% BW (restricted feeding, 2.5% body weight/day) and 2% BW (high restricted feeding, 2% body weight/day), to investigate the effects and mechanism of feed restriction on improving chronic heat-induced (27 to 31 °C) liver peroxidation and damages in channel catfish (Ictalurus punctatus). The results showed that, compared to 3% BW, both 2.5% BW and 2% BW significantly reduced the liver expressions of hsc70, hsp70 and hsp90, but only 2.5% BW did not reduce the growth performance of channel catfish. The 2.5% BW and 2% BW also reduced the lipid deposition (TG) and improved the antioxidant capacity (CAT, SOD, GSH and T-AOC) in the liver of channel catfish. The heat-induced stress response (plasma glucose, cortisol and NO) and peroxidation (ROS and MDA) were also suppressed by either 2.5% BW or 2% BW. Moreover, 2.5% BW or 2% BW overtly alleviated liver inflammation and damages by reducing endoplasmic reticulum (ER) stress (BIP and Calnexin) and cell apoptosis (BAX, Caspase 3 and Caspase 9) in the liver of channel catfish. In conclusion, 2.5% body weight/day is recommended to improve the antioxidant capacity and liver health of channel catfish during the summer season, as it alleviates liver peroxidation and damages via suppressing lipid accumulation under chronic thermal stress.
Collapse
Affiliation(s)
- Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.L.); (Y.G.); (L.X.); (Y.L.); (W.X.); (H.L.); (J.J.); (Z.Z.); (Y.Y.); (X.Z.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
18
|
Camila A, Mariano GC, Alejandra LM. Prejuveniles of Mugil liza (Actinopterygii; Fam. Mugilidae) show digestive and metabolic flexibility upon different postprandial times and refeeding. J Comp Physiol B 2022; 192:561-573. [PMID: 35513525 DOI: 10.1007/s00360-022-01438-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
Many animals face periods of feeding restrictions implying fasting and refeeding. The determination of digestive/metabolic and body condition parameters at different times of food deprivation and after refeeding allows to evaluate the postprandial dynamics, the transition from feeding to fasting and the capacity to reverse digestive and metabolic alterations. In spite of its physiological importance, studies on estuarine-dependent detritivore fish are lacking. We determined total mass (TM), relative intestine length (RIL), hepatosomatic index (HSI), digestive enzymes activities in the intestine and energy reserves in liver and muscle at 0, 24, 72, 144 and 240 h after feeding and at 72 h after refeeding in prejuveniles of Mugil liza (Mugilidae) as a model species. After feeding, a decrease occurred in: TM (144 h, 25%), RIL (144 h, 23%); amylase and maltase (72 h, 45 and 35%), sucrase (24 h, 40%) and lipase (24 h, 70%) in intestine; glycogen and free glucose (72 h, 90 and 92%) in liver. In muscle, glycogen (72-144 h) and free glucose (144 h) (170% and 165%, respectively) peak increased; triglycerides decreased at 24-240 h (50%). After refeeding TM, RIL, carbohydrases activities in intestine, glycogen and free glucose in liver were recovered. In muscle, glycogen and free glucose were similar to 0 h; lipase activity and triglycerides were not recovered. Trypsin and APN in intestine, triglycerides in liver, protein in liver and muscle and HSI did not change. The differential modulation of key components of carbohydrates and lipid metabolism after feeding/refeeding would allow to face fasting and recover body condition. Our results improve lacking knowledge about digestive and metabolic physiology of detritivore fish.
Collapse
Affiliation(s)
- Albanesi Camila
- Grupo Fisiología Bioquímica, Integrativa y Adaptativa, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata CONICET-FCEyN, Funes 3250, 7600, Mar del Plata, Argentina
| | - González-Castro Mariano
- Grupo Fisiología Bioquímica, Integrativa y Adaptativa, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata CONICET-FCEyN, Funes 3250, 7600, Mar del Plata, Argentina
| | - López-Mañanes Alejandra
- Grupo Fisiología Bioquímica, Integrativa y Adaptativa, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata CONICET-FCEyN, Funes 3250, 7600, Mar del Plata, Argentina.
| |
Collapse
|
19
|
Khudyakov JI, Holser RR, Vierra CA, Ly ST, Niel TK, Hasan BM, Crocker DE, Costa DP. Changes in apolipoprotein abundance dominate proteome responses to prolonged fasting in elephant seals. J Exp Biol 2022; 225:274459. [DOI: 10.1242/jeb.243572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/27/2022] [Indexed: 01/10/2023]
Abstract
ABSTRACT
Unlike many animals that reduce activity during fasting, northern elephant seals (NES) undergo prolonged fasting during energy-intensive life-history stages such as reproduction and molting, fueling fasting energy needs by mobilizing fat stores accrued during foraging. NES display several unique metabolic features such as high fasting metabolic rates, elevated blood lipid and high-density lipoprotein (HDL) cholesterol levels, efficient protein sparing and resistance to oxidative stress during fasting. However, the cellular mechanisms that regulate these adaptations are still not fully understood. To examine how metabolic coordination is achieved during prolonged fasting, we profiled changes in blubber, skeletal muscle and plasma proteomes of adult female NES over a 5 week fast associated with molting. We found that while blubber and muscle proteomes were remarkably stable over fasting, over 50 proteins changed in abundance in plasma, including those associated with lipid storage, mobilization, oxidation and transport. Apolipoproteins dominated the blubber, plasma and muscle proteome responses to fasting. APOA4, APOE and APOC3, which are associated with lipogenesis and triglyceride accumulation, decreased, while APOA1, APOA2 and APOM, which are associated with lipid mobilization and HDL function, increased over fasting. Our findings suggest that changes in apolipoprotein composition may underlie the maintenance of high HDL levels and, together with adipokines and hepatokines that facilitate lipid catabolism, may mediate the metabolic transitions between feeding and fasting in NES. Many of these proteins have not been previously studied in this species and provide intriguing hypotheses about metabolic regulation during prolonged fasting in mammals.
Collapse
Affiliation(s)
- Jane I. Khudyakov
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Rachel R. Holser
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| | - Craig A. Vierra
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Serena T. Ly
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Theron K. Niel
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Basma M. Hasan
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Daniel E. Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| | - Daniel P. Costa
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
20
|
Giraud-Billoud M, Campoy-Diaz AD, Dellagnola FA, Rodriguez C, Vega IA. Antioxidant Responses Induced by Short-Term Activity–Estivation–Arousal Cycle in Pomacea canaliculata. Front Physiol 2022; 13:805168. [PMID: 35185614 PMCID: PMC8847974 DOI: 10.3389/fphys.2022.805168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
Long-term estivation (45 days) in the apple snail Pomacea canaliculata induces an increase of non-enzymatic antioxidants, such as uric acid and reduced glutathione (GSH), which constitutes an alternative to the adaptive physiological strategy of preparation for oxidative stress (POS). Here, we studied markers of oxidative stress damage, uric acid levels, and non-enzymatic antioxidant capacity, enzymatic antioxidant defenses, such as superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST), and transcription factors expression [forkhead box protein O (FOXO), hypoxia-inducible factor-1 alpha (HIF1α), and nuclear factor erythroid 2-related factor 2 (Nrf2)] in control active animals, 7-day estivating and aroused snails, in digestive gland, gill, and lung tissue samples. In the digestive gland, SOD and CAT activities significantly increased after estivation and decreased during arousal. Meanwhile, GST activity decreased significantly during the activity–estivation–arousal cycle. Gill CAT activity increased significantly at 7 days of estivation, and it decreased during arousal. In the lung, the CAT activity level increased significantly during the cycle. FOXO upregulation was observed in the studied tissues, decreasing its expression only in the gill of aroused animals during the cycle. HIF1α and Nrf2 transcription factors decreased their expression during estivation in the gill, while in the lung and the digestive gland, both transcription factors did not show significant changes. Our results showed that the short-term estivation induced oxidative stress in different tissues of P. canaliculata thereby increasing overall antioxidant enzymes activity and highlighting the role of FOXO regulation as a possible underlying mechanism of the POS strategy.
Collapse
Affiliation(s)
- Maximiliano Giraud-Billoud
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis, Argentina
- *Correspondence: Maximiliano Giraud-Billoud,
| | - Alejandra D. Campoy-Diaz
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis, Argentina
| | - Federico A. Dellagnola
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Cristian Rodriguez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Israel A. Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
21
|
Prokić MD, Petrović TG, Gavrilović BR, Despotović SG, Gavrić JP, Kijanović A, Tomašević Kolarov N, Vukov T, Radovanović TB. Carry-Over Effects of Desiccation Stress on the Oxidative Status of Fasting Anuran Juveniles. Front Physiol 2021; 12:783288. [PMID: 34925072 PMCID: PMC8674722 DOI: 10.3389/fphys.2021.783288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
Amphibians are sensitive to deteriorating environmental conditions, especially during transition to a terrestrial environment which is full of uncertainties. Harsh conditions, such as desiccation during earlier stages, affect different larval traits with possible carry-over effects on juvenile and adult life histories. The first consequences of the effects can be seen in juveniles in the challenges to find food and the ability to survive without it in a terrestrial habitat. Body size and the internal energy reserves acquired during the larval phase play an important role in this period. Herein, we tested how different water regimes (low water availability, desiccation and constant high-water availability) during larval development reflect on the oxidative status and ability of yellow belly toad (Bombina variegata) juveniles to endure short-term fasting. The desiccation regime significantly reduced the body size of metamorphs. The same was observed after 2 weeks of fasting, while the feeding treatment reduced differences mostly in the body mass of individuals from different water regimes. This was the result of a greater gain in mass in juveniles pre-exposed to desiccation. Pre-exposure to desiccation also modified the parameters of the antioxidant system (AOS) under feeding conditions, leading to higher values of superoxide dismutase, glutathione reductase and glutathione S-transferase, glutathione and sulfhydryl group concentrations, and lower glutathione peroxidase in comparison to juveniles reared under constant water. The increase in the AOS of juveniles can be considered as a physiological carry-over effect of desiccation, probably as the result of compensatory growth and/or earlier exposure to chronic stress. However, water levels during larval development did not exert significant effects on the oxidative status of juveniles subjected to food unavailability. Fasting juveniles, both control and desiccated, were exposed to oxidative stress, significantly higher lipid peroxide concentrations, lower superoxide dismutase, glutathione peroxidase, glutathione S-transferase, glutathione and sulfhydryl group values in comparison to feeding individuals. The lack of food in juvenile anurans activated the AOS response in the same manner, regardless of body size and stress pre-exposure, suggesting that the generally accepted hypothesis about the influence of metamorphic body size on the fitness of the postmetamorphic stage should be tested further.
Collapse
Affiliation(s)
- Marko D. Prokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara G. Petrović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka R. Gavrilović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Svetlana G. Despotović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena P. Gavrić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Kijanović
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tanja Vukov
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana B. Radovanović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Fasting Interventions for Stress, Anxiety and Depressive Symptoms: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13113947. [PMID: 34836202 PMCID: PMC8624477 DOI: 10.3390/nu13113947] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Background. Fasting interventions have shown effectiveness in alleviating stress, anxiety and depressive symptoms. However, no quantitative analysis has been carried out thus far. The objective was to determine the effectiveness of fasting interventions on stress, anxiety and depression and if these interventions were associated with increased or decreased fatigue/energy. Methods. Overall, 11 studies and 1436 participants were included in the quantitative analyses. Results. After limiting analyses to randomized controlled trials with low risk of bias, we found that fasting groups had lower anxiety (b = −0.508, p = 0.038), depression levels (b= −0.281, p = 0.012) and body mass index compared to controls without increased fatigue. There was no publication bias and no heterogeneity for these results. These interventions were safe, even in patients with type 2 diabetes. Conclusions. These results should be taken with a caveat. These results are preliminary and encouraging and fasting appears to be a safe intervention. Data are not sufficient to recommend one fasting intervention more than the others. No study was carried out in psychiatric populations and further trials should be carried out in these populations that may be good candidates for fasting interventions.
Collapse
|
23
|
da Mota Araujo HR, Sartori MR, Navarro CDC, de Carvalho JE, Luis da Cruz A. Feeding effects on liver mitochondrial bioenergetics of Boa constrictor (Serpentes: Boidae). J Exp Biol 2021; 224:272421. [PMID: 34622285 DOI: 10.1242/jeb.243142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Snakes are interesting examples of taxa that can overcome energy metabolism challenges, as many species can endure long periods without feeding, and their eventual meals are of reasonably large sizes, thus exhibiting dual extreme adaptations. Consequently, metabolic rate increases considerably to attend to the energetic demand of digestion, absorption and protein synthesis. These animals should be adapted to transition from these two opposite states of energy fairly quickly, and therefore we investigated mitochondrial function plasticity in these states. Herein, we compared liver mitochondrial bioenergetics of the boid snake Boa constrictor during fasting and after meal intake. We fasted the snakes for 60 days, and then we fed a subgroup with 30% of their body size and evaluated their maximum postprandial response. We measured liver respiration rates from permeabilized tissue and isolated mitochondria. From isolated mitochondria, we also measured Ca2+ retention capacity and redox status. Mitochondrial respiration rates were maximized after feeding, reaching an approximately 60% increase from fasting levels when energized with complex I-linked substrates. Interestingly, fasting and fed snakes exhibited similar respiratory control ratios and citrate synthase activity. Furthermore, we found no differences in Ca2+ retention capacity, indicating no increase in susceptibility to mitochondrial permeability transition, and no changes in mitochondrial redox state, although fed animals exhibited increases in the release of H2O2. Thus, we conclude that liver mitochondria from B. constrictor snakes increase respiration rates during the postprandial period and quickly improve the bioenergetic capacity without compromising redox balance.
Collapse
Affiliation(s)
| | - Marina Rincon Sartori
- Departamento de Patologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, 13083-877, São Paulo, Brazil
| | - Claudia D C Navarro
- Departamento de Patologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, 13083-877, São Paulo, Brazil
| | - José Eduardo de Carvalho
- Instituto de Ciências Químicas, Ambientais e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, 04021-001, São Paulo, Brazil
| | - André Luis da Cruz
- Instituto de Biologia, Universidade Federal da Bahia, Campus Ondina, 40170-115 Salvador, Bahia, Brazil
| |
Collapse
|
24
|
Piotrowski ER, Tift MS, Crocker DE, Pearson AB, Vázquez-Medina JP, Keith AD, Khudyakov JI. Ontogeny of Carbon Monoxide-Related Gene Expression in a Deep-Diving Marine Mammal. Front Physiol 2021; 12:762102. [PMID: 34744798 PMCID: PMC8567018 DOI: 10.3389/fphys.2021.762102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Marine mammals such as northern elephant seals (NES) routinely experience hypoxemia and ischemia-reperfusion events to many tissues during deep dives with no apparent adverse effects. Adaptations to diving include increased antioxidants and elevated oxygen storage capacity associated with high hemoprotein content in blood and muscle. The natural turnover of heme by heme oxygenase enzymes (encoded by HMOX1 and HMOX2) produces endogenous carbon monoxide (CO), which is present at high levels in NES blood and has been shown to have cytoprotective effects in laboratory systems exposed to hypoxia. To understand how pathways associated with endogenous CO production and signaling change across ontogeny in diving mammals, we measured muscle CO and baseline expression of 17 CO-related genes in skeletal muscle and whole blood of three age classes of NES. Muscle CO levels approached those of animals exposed to high exogenous CO, increased with age, and were significantly correlated with gene expression levels. Muscle expression of genes associated with CO production and antioxidant defenses (HMOX1, BVR, GPX3, PRDX1) increased with age and was highest in adult females, while that of genes associated with protection from lipid peroxidation (GPX4, PRDX6, PRDX1, SIRT1) was highest in adult males. In contrast, muscle expression of mitochondrial biogenesis regulators (PGC1A, ESRRA, ESRRG) was highest in pups, while genes associated with inflammation (HMOX2, NRF2, IL1B) did not vary with age or sex. Blood expression of genes involved in regulation of inflammation (IL1B, NRF2, BVR, IL10) was highest in pups, while HMOX1, HMOX2 and pro-inflammatory markers (TLR4, CCL4, PRDX1, TNFA) did not vary with age. We propose that ontogenetic upregulation of baseline HMOX1 expression in skeletal muscle of NES may, in part, underlie increases in CO levels and expression of genes encoding antioxidant enzymes. HMOX2, in turn, may play a role in regulating inflammation related to ischemia and reperfusion in muscle and circulating immune cells. Our data suggest putative ontogenetic mechanisms that may enable phocid pups to transition to a deep-diving lifestyle, including high baseline expression of genes associated with mitochondrial biogenesis and immune system activation during postnatal development and increased expression of genes associated with protection from lipid peroxidation in adulthood.
Collapse
Affiliation(s)
| | - Michael S. Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Daniel E. Crocker
- Biology Department, Sonoma State University, Rohnert Park, CA, United States
| | - Anna B. Pearson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - José P. Vázquez-Medina
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Anna D. Keith
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
25
|
Ensminger DC, Crocker DE, Lam EK, Allen KN, Vázquez-Medina JP. Repeated stimulation of the HPA axis alters white blood cell count without increasing oxidative stress or inflammatory cytokines in fasting elephant seal pups. J Exp Biol 2021; 224:272184. [PMID: 34524449 DOI: 10.1242/jeb.243198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis controls the release of glucocorticoids, which regulate immune and inflammatory function by modulating cytokines, white blood cells and oxidative stress via glucocorticoid receptor (GR) signaling. Although the response to HPA activation is well characterized in many species, little is known about the impacts of HPA activation during extreme physiological conditions. Hence, we challenged 18 simultaneously fasting and developing elephant seal pups with daily intramuscular injections of adrenocorticotropin (ACTH), a GR antagonist (RU486), or a combination of the two (ACTH+RU486) for 4 days. We collected blood at baseline, 2 h and 4 days after the beginning of treatment. ACTH and ACTH+RU486 elevated serum aldosterone and cortisol at 2 h, with effects diminishing at 4 days. RU486 alone induced a compensatory increase in aldosterone, but not cortisol, at 4 days. ACTH decreased neutrophils at 2 h, while decreasing lymphocytes and increasing the neutrophil:lymphocyte ratio at 4 days. These effects were abolished by RU486. Despite alterations in white blood cells, there was no effect of ACTH or RU486 on transforming growth factor-β or interleukin-6 levels; however, both cytokines decreased with the 4 day fasting progression. Similarly, ACTH did not impact protein oxidation, lipid peroxidation or antioxidant enzymes, but plasma isoprostanes and catalase activity decreased while glutathione peroxidase increased with fasting progression. These data demonstrate differential acute (2 h) and chronic (4 days) modulatory effects of HPA activation on white blood cells and that the chronic effect is mediated, at least in part, by GR. These results also underscore elephant seals' extraordinary resistance to oxidative stress derived from repeated HPA activation.
Collapse
Affiliation(s)
- David C Ensminger
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3200, USA.,Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| | - Emily K Lam
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3200, USA
| | - Kaitlin N Allen
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
26
|
WITHDRAWN: Anti-digestibility and anti-oxidation properties of propyl gallate complexes of rice starch improved by hot-melt extrusion with twin-screw systems. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|