1
|
Hou QL, Zhang HQ, Zhu JN, Chen EH. Functional analysis of dopa decarboxylase in the larval pupation and immunity of the diamondback moth, Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106195. [PMID: 39672624 DOI: 10.1016/j.pestbp.2024.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/26/2024] [Indexed: 12/15/2024]
Abstract
The diamondback moth (Plutella xylostella L.), a notorious pest infesting cruciferous vegetables worldwide, has developed a high level of resistance to various commonly used chemical pesticides. In this paper, we explore whether dopa decarboxylase (DDC), which is essential for survival and development in insects, could be used as a potential target for the control of P. xylostella. Here, the full-length cDNA (PxDDC) of P. xylostella was identified, with a complete open reading frame of 1434 bp in length, encoding a protein of 477 amino acids. The temporal and spatial expression analysis showed a periodical expression pattern of PxDDC during molting, reaching a peak during the process of pupation, and it was found to be highly expressed in the epidermis of prepupal stage, indicating a crucial role of PxDDC in larval-pupal metamorphosis of P. xylostella. Subsequently, there was a significant decreasing in pupation and eclosion rates, and less production of melanin in P. xylostella after the disruption of PxDDC function by the injection of dsPxDDC (RNAi, RNA interference) or feeding a larval diet supplemented with L-α-methyl-DOPA (L-α-M-D) as DDC inhibitor. In addition, we found four antimicrobial peptide genes were significantly inhibited after feeding P. xylostella with L-α-M-D, and the injection of Escherichia coli could significantly increase insect mortality of enzyme inhibitor treated P. xylostella, suggesting PxDDC was involved in immune responses as well. In summary, these results confirm that PxDDC is required for larval-pupal metamorphosis and immunity of P. xylostella, suggesting a critical potential future novel insecticide target for RNAi based pest control.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Han-Qiao Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jia-Ni Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
2
|
Li T, Wang G, He W, Li G, Wang C, Zhao J, Chen P, Guo M, Chen P. A secreted phospholipase A 2 (BmsPLA 2 ) regulates melanization of immunity through BmDDC in the silkworm Bombyx mori. INSECT SCIENCE 2023; 30:1579-1594. [PMID: 36924440 DOI: 10.1111/1744-7917.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Insect immune-associated phospholipase A2 (PLA2 ) is an important target of pathogen invasion. Melanization, an effective defense response, has significant correlations with other immune responses to coordinate immune attack against invaders. However, the effect of PLA2 on melanization has not yet been reported in insects or other arthropods. In this work, we cloned a PLA2 gene (BmsPLA2 ), and its protein had characteristic features of secreted PLA2 (sPLA2 ). After injection of bacteria, BmsPLA2 expression and sPLA2 activity in hemolymph significantly increased. BmsPLA2 fluorescence was transferred from the cytoplasm to the cell membranes of circulating hemocytes. These results indicated that BmsPLA2 was related to hemolymph immunity in silkworms. Interestingly, reducing BmsPLA2 by RNA interference decreased melanosis (melanistic hemocytes) levels in vivo and in vitro, while BmsPLA2 overexpression had the opposite effect. The larval survival and melanization rate in the hemocoel both slowed depending on the PLA2 inhibitor dosage. These results demonstrated that BmsPLA2 plays a role in melanization during the immune process of silkworms. Surprisingly, the level of BmDDC matched the degree of melanization in various observations. BmDDC expression showed a significant increase, with the peak occurring later than that of BmsPLA2 after injection of bacteria, implying that BmsPLA2 was activated prior to BmDDC. Moreover, the alteration of BmsPLA2 by RNA interference or overexpression led to altered BmDDC levels. These results suggested that BmsPLA2 regulates the melanization response in silkworms through BmDDC. Our study proposes a new regulatory mechanism of the melanization response and new directions for understanding the complex immune networks of insects.
Collapse
Affiliation(s)
- Tian Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
| | - Gemin Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wei He
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Guiqin Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Chunyang Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Jiamei Zhao
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Pan Chen
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Meiwei Guo
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Ping Chen
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Hiura T, Yoshida H, Miyata U, Asami T, Suzuki Y. Conferring High IAA Productivity on Low-IAA-Producing Organisms with PonAAS2, an Aromatic Aldehyde Synthase of a Galling Sawfly, and Identification of Its Inhibitor. INSECTS 2023; 14:598. [PMID: 37504604 PMCID: PMC10380194 DOI: 10.3390/insects14070598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Gall-inducing insects often contain high concentrations of phytohormones, such as auxin and cytokinin, which are suggested to be involved in gall induction, but no conclusive evidence has yet been obtained. There are two possible approaches to investigating the importance of phytohormones in gall induction: demonstrating either that high phytohormone productivity can induce gall-inducing ability in non-gall-inducing insects or that the gall-inducing ability is inhibited when phytohormone productivity in galling insects is suppressed. In this study, we show that the overexpression of PonAAS2, which encodes an aromatic aldehyde synthase (AAS) responsible for the rate-limiting step in indoleacetic acid (IAA) biosynthesis in a galling sawfly (Pontania sp.) that contains high levels of endogenous IAA, conferred high IAA productivity on Caenorhabditis elegans, as the model system. This result strongly suggests that PonAAS2 can also confer high IAA productivity on low-IAA-producing insects. We also successfully identified an inhibitor of PonAAS2 in a chemical library. This highly selective inhibitor showed stronger inhibitory activity against AAS than against aromatic amino acid decarboxylase, which belongs to the same superfamily as AAS. We also confirm that this inhibitor clearly inhibited IAA productivity in the high-IAA-producing C. elegans engineered here.
Collapse
Affiliation(s)
- Takeshi Hiura
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-0054, Japan
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Hibiki Yoshida
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Umi Miyata
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshihito Suzuki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-0054, Japan
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| |
Collapse
|
4
|
Yan Y, Sigle LT, Rinker DC, Estévez-Lao TY, Capra JA, Hillyer JF. The immune deficiency and c-Jun N-terminal kinase pathways drive the functional integration of the immune and circulatory systems of mosquitoes. Open Biol 2022; 12:220111. [PMID: 36069078 PMCID: PMC9449813 DOI: 10.1098/rsob.220111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune and circulatory systems of animals are functionally integrated. In mammals, the spleen and lymph nodes filter and destroy microbes circulating in the blood and lymph, respectively. In insects, immune cells that surround the heart valves (ostia), called periostial haemocytes, destroy pathogens in the areas of the body that experience the swiftest haemolymph (blood) flow. An infection recruits additional periostial haemocytes, amplifying heart-associated immune responses. Although the structural mechanics of periostial haemocyte aggregation have been defined, the genetic factors that regulate this process remain less understood. Here, we conducted RNA sequencing in the African malaria mosquito, Anopheles gambiae, and discovered that an infection upregulates multiple components of the immune deficiency (IMD) and c-Jun N-terminal kinase (JNK) pathways in the heart with periostial haemocytes. This upregulation is greater in the heart with periostial haemocytes than in the circulating haemocytes or the entire abdomen. RNA interference-based knockdown then showed that the IMD and JNK pathways drive periostial haemocyte aggregation and alter phagocytosis and melanization on the heart, thereby demonstrating that these pathways regulate the functional integration between the immune and circulatory systems. Understanding how insects fight infection lays the foundation for novel strategies that could protect beneficial insects and harm detrimental ones.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Leah T. Sigle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - David C. Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - John A. Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA,Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Barek H, Zhao H, Heath K, Veraksa A, Sugumaran M. Drosophila yellow-h encodes dopaminechrome tautomerase: A new enzyme in the eumelanin biosynthetic pathway. Pigment Cell Melanoma Res 2022; 35:26-37. [PMID: 34388859 DOI: 10.1111/pcmr.13008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
Melanin is a widely distributed phenolic pigment that is biosynthesized from tyrosine and its hydroxylated product, dopa, in all animals. However, recent studies reveal a significant deviation from this paradigm, as insects appear to use dopamine rather than dopa as the major precursor of melanin. This observation calls for a reconsideration of the insect melanogenic pathway. While phenoloxidases and laccases can oxidize dopamine for dopaminechrome production, the fate of dopaminechrome remains undetermined. Dopachrome decarboxylase/tautomerase, encoded by yellow-f/f2 of Drosophila melanogaster, can convert dopaminechrome into 5,6-dihydroxyindole, but the same enzyme from other organisms does not act on dopaminechrome, suggesting the existence of a specific dopaminechrome tautomerase (DPT). We now report the identification of this novel enzyme that biosynthesizes 5,6-dihydroxyindole from dopaminechrome in Drosophila. Dopaminechrome tautomerase acted on both dopaminechrome and N-methyl dopaminechrome but not on dopachrome or other aminochromes tested. Our biochemical and molecular studies reveal that this enzyme is encoded by the yellow-h gene, a member of the yellow gene family, and advance our understanding of the physiological functions of this gene family. Identification and characterization of DPT clarifies the precursor for melanin biosynthetic pathways and proves the existence of an independent melanogenic pathway in insects that utilizes dopamine as the primary precursor.
Collapse
Affiliation(s)
- Hanine Barek
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Heya Zhao
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Katerina Heath
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Manickam Sugumaran
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Chen EH, Hou QL, Dou W, Yang PJ, Wang JJ. Expression profiles of tyrosine metabolic pathway genes and functional analysis of DOPA decarboxylase in puparium tanning of Bactrocera dorsalis (Hendel). PEST MANAGEMENT SCIENCE 2022; 78:344-354. [PMID: 34532962 DOI: 10.1002/ps.6648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Tanning is an important physiological process with critical roles in cuticle pigmentation and sclerotization. Previous studies have shown that insect cuticle tanning is closely associated with the tyrosine metabolism pathway, which consists of a series of enzymes. RESULTS In this study, 24 tyrosine metabolism pathway genes were identified in the oriental fruit fly Bactrocera dorsalis (Hendel) genome. Gene expression profiles throughout 15 developmental stages of B. dorsalis were established based on our previous RNA sequencing data, and we found that 13 enzyme genes could be involved in the process of pupariation. Accordingly, a tyrosine-mediated tanning pathway during the pupariation of B. dorsalis was predicted and a critical enzyme, 3,4-dihydroxyphenylalanine (DOPA) decarboxylase (DDC), was used to explore its possible roles in formation of the puparium. First, a real-time quantitative polymerase chain reaction confirmed that BdDDC had an epidermis-specific expression pattern, and was highly expressed during larval metamorphosis in B. dorsalis. Subsequent disruption of BdDDC by feeding 5-day-old larvae with DDC inhibitor (l-α-methyl-DOPA) could lead to: (i) a significant decrease in BdDDC enzyme activity and dopamine concentration; (ii) defects in puparium pigmentation; (iii) impairment of the morphology and less thickness of the puparium; and (iv) lower pupal weight and obstacles to eclosion. CONCLUSION This study provided a potential tyrosine metabolic pathway that was responsible for insect tanning during pupariation, and the BdDDC enzyme has been shown to have crucial roles in larval-pupal tanning of B. dorsalis. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Er-Hu Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Pei-Jin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 2021; 83:110003. [PMID: 33836260 DOI: 10.1016/j.cellsig.2021.110003] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Insects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism. Innate immunity in insects consists of basal immunity that controls the constitutive synthesis of effector molecules such as antimicrobial peptides, and inducible immunity that is activated after detection of a microbe or its product(s). Activation and coordination of innate immune defenses in insects involve evolutionary conserved immune factors. Previous research in insects has led to the identification and characterization of distinct immune signalling pathways that modulate the response to microbial infections. This work has not only advanced the field of insect immunology, but it has also rekindled interest in the innate immune system of mammals. Here we review the current knowledge on key molecular components of insect immunity and discuss the opportunities they present for confronting infectious diseases in humans.
Collapse
|
8
|
Wang JY, Zhang H, Siemann E, Ji XY, Chen YJ, Wang Y, Jiang JX, Wan NF. Immunity of an insect herbivore to an entomovirus is affected by different host plants. PEST MANAGEMENT SCIENCE 2020; 76:1004-1010. [PMID: 31489764 DOI: 10.1002/ps.5609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Interactions between herbivorous insects and entomoviruses may depend on host plant, perhaps mediated through changes in herbivore innate immunity. RESULTS Caterpillars (Spodoptera exigua) fed Glycine max had high viral loads and low melanization rates together with low melanization enzyme [PO, DDC, TH] activities and gene expressions. Caterpillars fed Ipomoea aquatica had low viral loads and high melanization, gene activities and gene expressions while those fed Brassica oleracea or artificial diet had intermediate levels of each. Melanization rates were negatively correlated with viral loads and positively correlated with activity and expression of each of the three enzymes. Some diet effects on enzymes were constitutive because the same diets led to low (G. max) or high (I. aquatica) melanization related gene activities and expressions without infection. CONCLUSION Diet influences the interactions between insect herbivores and viruses by shaping the innate immune response both at the onset of infection and afterwards as viral loads accumulate over a period of days. In addition, diets that lead to low viral loads are associated with high activities and gene expressions of a variety of melanization related enzymes suggesting a common causative mechanism. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Hao Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Xiang-Yun Ji
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Yi-Juan Chen
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Yi Wang
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Jie-Xian Jiang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Nian-Feng Wan
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| |
Collapse
|
9
|
Wang K, Ren Q, Shen XL, Li B, Du J, Yu XD, Du ZQ. Molecular characterization and expression analysis of dopa decarboxylase involved in the antibacterial innate immunity of the freshwater crayfish, Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2019; 91:19-28. [PMID: 31077848 DOI: 10.1016/j.fsi.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Dopa decarboxylase (DDC) is responsible for the synthesis of dopamine, which acts as an important modulator in the nervous systems of vertebrates and invertebrates. Recent studies have indicated that DDC also plays crucial roles in the insect innate immune system. However, the functions of DDC in immunomodulation in crustaceans have not been thoroughly elucidated to date. In this study, a new full-length cDNA of the DDC protein was identified from red swamp crayfish, Procambarus clarkii (named Pc-ddc). The ORF of Pc-ddc encoded 474 amino acids, which possessed a 377-amino-acid domain. Pc-ddc was expressed at a relatively high level in the hemocytes and gills of crayfish. This protein was expressed at a relatively low level in the hepatopancreas and intestine. The expression level of Pc-ddc was clearly upregulated in hemocytes, hepatopancreas, gills, and intestine tissues after challenge with S. aureus or E. ictaluri. The results of the enzyme catalysis assay showed that the enzyme catalysis activity of rPc-DDC was 35 ± 2.8 ng h-1 mg-1 (n = 3). In addition, the results of the mimetic crayfish hemocytes encapsulation assay showed that the encapsulation rate of beads coated with rPc-DDC was clearly increased. The results of the bacterial binding assay showed that rPc-DDC strongly binds to S. aureus and E. ictaluri. Finally, when Pc-ddc was knocked down, the number of surviving crayfish clearly decreased after S. aureus or E. ictaluri was injected. All of these results indicate that Pc-DDC is an important immunomodulating enzyme in the neuroendocrine-immune (NEI) system of crayfish.
Collapse
Affiliation(s)
- Kai Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Xiu-Li Shen
- Library, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Bo Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Jie Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Xiao-Dong Yu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Zhi-Qiang Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China.
| |
Collapse
|
10
|
Sterkel M, Ons S, Oliveira PL. DOPA decarboxylase is essential for cuticle tanning in Rhodnius prolixus (Hemiptera: Reduviidae), affecting ecdysis, survival and reproduction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 108:24-31. [PMID: 30885802 DOI: 10.1016/j.ibmb.2019.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/25/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Cuticle tanning occurs in insects immediately after hatching or molting. During this process, the cuticle becomes dark and rigid due to melanin deposition and protein crosslinking. In insects, different from mammals, melanin is synthesized mainly from dopamine, which is produced from DOPA by the enzyme DOPA decarboxylase. In this work, we report that the silencing of the RpAadc-2 gene, which encodes the putative Rhodnius prolixus DOPA decarboxylase enzyme, resulted in a reduction in nymph survival, with a high percentage of treated insects dying during the ecdysis process or in the expected ecdysis period. Those treated insects that could complete ecdysis presented a decrease in cuticle pigmentation and hardness after molting. In adult females, the knockdown of AADC-2 resulted in a reduction in the hatching of eggs; the nymphs that managed to hatch failed to tan the cuticle and were unable to feed. Despite the failure in cuticle tanning, knockdown of the AADC-2 did not increase the susceptibility to topically applied deltamethrin, a pyrethroid insecticide. Additionally, our results showed that the melanin synthesis pathway did not play a major role in the detoxification of the excess (potentially toxic) tyrosine from the diet, an essential trait for hematophagous arthropod survival after a blood meal.
Collapse
Affiliation(s)
- Marcos Sterkel
- Laboratory of Genetics and Functional Genomics, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120, 1459, La Plata, 1900, Argentina.
| | - Sheila Ons
- Laboratory of Genetics and Functional Genomics, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120, 1459, La Plata, 1900, Argentina.
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco D. Prédio do CCS, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Liao C, Upadhyay A, Liang J, Han Q, Li J. 3,4-Dihydroxyphenylacetaldehyde synthase and cuticle formation in insects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:44-50. [PMID: 29155013 DOI: 10.1016/j.dci.2017.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/28/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Cuticle is the most important structure that protects mosquitoes and other insect species from adverse environmental conditions and infections of microorganism. The physiology and biochemistry of insect cuticle formation have been studied for many years and our understanding of cuticle formation and hardening has increased considerably. This is especially true for flexible cuticle. The recent discovery of a novel enzyme that catalyzes the production of 3,4-dihydroxyphenylacetaldehyde (DOPAL) in insects provides intriguing insights concerning the flexible cuticle formation in insects. For convenience, the enzyme that catalyzes the production DOPAL from l-dopa is named DOPAL synthase. In this mini-review, we summarize the biochemical pathways of cuticle formation and hardening in general and discuss DOPAL synthase-mediated protein crosslinking in insect flexible cuticle in particular.
Collapse
Affiliation(s)
- Chenghong Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228, China; Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Archana Upadhyay
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228, China; Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Jing Liang
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228, China; Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China.
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
12
|
Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, Hudson AO. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front Mol Biosci 2018; 5:29. [PMID: 29682508 PMCID: PMC5897657 DOI: 10.3389/fmolb.2018.00029] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tyrosine, phenylalanine and tryptophan are the three aromatic amino acids (AAA) involved in protein synthesis. These amino acids and their metabolism are linked to the synthesis of a variety of secondary metabolites, a subset of which are involved in numerous anabolic pathways responsible for the synthesis of pigment compounds, plant hormones and biological polymers, to name a few. In addition, these metabolites derived from the AAA pathways mediate the transmission of nervous signals, quench reactive oxygen species in the brain, and are involved in the vast palette of animal coloration among others pathways. The AAA and metabolites derived from them also have integral roles in the health of both plants and animals. This review delineates the de novo biosynthesis of the AAA by microbes and plants, and the branching out of AAA metabolism into major secondary metabolic pathways in plants such as the phenylpropanoid pathway. Organisms that do not possess the enzymatic machinery for the de novo synthesis of AAA must obtain these primary metabolites from their diet. Therefore, the metabolism of AAA by the host animal and the resident microflora are important for the health of all animals. In addition, the AAA metabolite-mediated host-pathogen interactions in general, as well as potential beneficial and harmful AAA-derived compounds produced by gut bacteria are discussed. Apart from the AAA biosynthetic pathways in plants and microbes such as the shikimate pathway and the tryptophan pathway, this review also deals with AAA catabolism in plants, AAA degradation via the monoamine and kynurenine pathways in animals, and AAA catabolism via the 3-aryllactate and kynurenine pathways in animal-associated microbes. Emphasis will be placed on structural and functional aspects of several key AAA-related enzymes, such as shikimate synthase, chorismate mutase, anthranilate synthase, tryptophan synthase, tyrosine aminotransferase, dopachrome tautomerase, radical dehydratase, and type III CoA-transferase. The past development and current potential for interventions including the development of herbicides and antibiotics that target key enzymes in AAA-related pathways, as well as AAA-linked secondary metabolism leading to antimicrobials are also discussed.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Penelope J. Cross
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Lily E. Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
13
|
Guan H, Song S, Robinson H, Liang J, Ding H, Li J, Han Q. Structural Basis of the Substrate Specificity and Enzyme Catalysis of a Papaver somniferum Tyrosine Decarboxylase. Front Mol Biosci 2017; 4:5. [PMID: 28232911 PMCID: PMC5299019 DOI: 10.3389/fmolb.2017.00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/27/2017] [Indexed: 12/03/2022] Open
Abstract
Tyrosine decarboxylase (TyDC), a type II pyridoxal 5′-phosphate decarboxylase, catalyzes the decarboxylation of tyrosine. Due to a generally high sequence identity to other aromatic amino acid decarboxylases (AAADs), primary sequence information is not enough to understand substrate specificities with structural information. In this study, we selected a typical TyDC from Papaver somniferum as a model to study the structural basis of AAAD substrate specificities. Analysis of the native P. somniferum TyDC crystal structure and subsequent molecular docking and dynamics simulation provide some structural bases that explain substrate specificity for tyrosine. The result confirmed the previous proposed mechanism for the enzyme selectivity of indolic and phenolic substrates. Additionally, this study yields the first crystal structure for a plant type II pyridoxal-5'-phosphate decarboxylase.
Collapse
Affiliation(s)
- Huai Guan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan UniversityHainan, China; Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHainan, China; Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan UniversityHaikou, Hainan, China
| | - Shuaibao Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan UniversityHainan, China; Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHainan, China; Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan UniversityHaikou, Hainan, China
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton New York, NY, USA
| | - Jing Liang
- Department of Biochemistry, Virginia Tech Blacksburg, VA, USA
| | - Haizhen Ding
- Department of Biochemistry, Virginia Tech Blacksburg, VA, USA
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech Blacksburg, VA, USA
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan UniversityHainan, China; Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHainan, China; Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan UniversityHaikou, Hainan, China
| |
Collapse
|
14
|
Bombyx mori and Aedes aegypti form multi-functional immune complexes that integrate pattern recognition, melanization, coagulants, and hemocyte recruitment. PLoS One 2017; 12:e0171447. [PMID: 28199361 PMCID: PMC5310873 DOI: 10.1371/journal.pone.0171447] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/20/2017] [Indexed: 02/08/2023] Open
Abstract
The innate immune system of insects responds to wounding and pathogens by mobilizing multiple pathways that provide both systemic and localized protection. Key localized responses in hemolymph include melanization, coagulation, and hemocyte encapsulation, which synergistically seal wounds and envelop and destroy pathogens. To be effective, these pathways require a targeted deposition of their components to provide protection without compromising the host. Extensive research has identified a large number of the effectors that comprise these responses, but questions remain regarding their post-translational processing, function, and targeting. Here, we used mass spectrometry to demonstrate the integration of pathogen recognition proteins, coagulants, and melanization components into stable, high-mass, multi-functional Immune Complexes (ICs) in Bombyx mori and Aedes aegypti. Essential proteins common to both include phenoloxidases, apolipophorins, serine protease homologs, and a serine protease that promotes hemocyte recruitment through cytokine activation. Pattern recognition proteins included C-type Lectins in B. mori, while A. aegypti contained a protein homologous to Plasmodium-resistant LRIM1 from Anopheles gambiae. We also found that the B. mori IC is stabilized by extensive transglutaminase-catalyzed cross-linking of multiple components. The melanization inhibitor Egf1.0, from the parasitoid wasp Microplitis demolitor, blocked inclusion of specific components into the IC and also inhibited transglutaminase activity. Our results show how coagulants, melanization components, and hemocytes can be recruited to a wound surface or pathogen, provide insight into the mechanism by which a parasitoid evades this immune response, and suggest that insects as diverse as Lepidoptera and Diptera utilize similar defensive mechanisms.
Collapse
|
15
|
Critical Analysis of the Melanogenic Pathway in Insects and Higher Animals. Int J Mol Sci 2016; 17:ijms17101753. [PMID: 27775611 PMCID: PMC5085778 DOI: 10.3390/ijms17101753] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022] Open
Abstract
Animals synthesize melanin pigments for the coloration of their skin and use it for their protection from harmful solar radiation. Insects use melanins even more ingeniously than mammals and employ them for exoskeletal pigmentation, cuticular hardening, wound healing and innate immune responses. In this review, we discuss the biochemistry of melanogenesis process occurring in higher animals and insects. A special attention is given to number of aspects that are not previously brought to light: (1) the molecular mechanism of dopachrome conversion that leads to the production of two different dihydroxyindoles; (2) the role of catecholamine derivatives other than dopa in melanin production in animals; (3) the critical parts played by various biosynthetic enzymes associated with insect melanogenesis; and (4) the presence of a number of important gaps in both melanogenic and sclerotinogenic pathways. Additionally, importance of the melanogenic process in insect physiology especially in the sclerotization of their exoskeleton, wound healing reactions and innate immune responses is highlighted. The comparative biochemistry of melanization with sclerotization is also discussed.
Collapse
|
16
|
Barreaux AMG, Barreaux P, Koella JC. Overloading the immunity of the mosquito Anopheles gambiae with multiple immune challenges. Parasit Vectors 2016; 9:210. [PMID: 27080035 PMCID: PMC4832557 DOI: 10.1186/s13071-016-1491-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/03/2016] [Indexed: 11/14/2022] Open
Abstract
Background Melanisation – the production and deposition of a layer of melanin that encapsulates many pathogens, including bacteria, filarial nematodes and malaria parasites is one of the main immune responses in mosquitoes. Can a high parasite load overload this immune response? If so, how is the melanisation response distributed among the individual parasites? Methods We considered these questions with the mosquito Anopheles gambiae by inoculating individuals simultaneously with one, two or three negatively charged Sephadex beads, and estimating the melanisation as the darkness of the bead (which ranges from about 0 for unmelanised beads to 100 for the most melanised beads of our experiment). Results As the number of beads increased, the average degree to which beads were melanised decreased from 71 to 50. While the darkness of the least melanised bead in a mosquito decreased from an average of 71 to 35, the darkness of the most strongly melanised one did not change with the number of beads. Conclusions As the number of beads increased, the mosquito’s immune response became overloaded. The mosquito’s response was to prioritise the melanisation of one bead rather than distributing its response over all beads. Such immune overloading may be an important factor underlying the evolution of resistance against vector-borne diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1491-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A M G Barreaux
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - P Barreaux
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - J C Koella
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|
17
|
Fuchs S, Behrends V, Bundy JG, Crisanti A, Nolan T. Phenylalanine metabolism regulates reproduction and parasite melanization in the malaria mosquito. PLoS One 2014; 9:e84865. [PMID: 24409310 PMCID: PMC3883676 DOI: 10.1371/journal.pone.0084865] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/20/2013] [Indexed: 11/25/2022] Open
Abstract
The blood meal of the female malaria mosquito is a pre-requisite to egg production and also represents the transmission route for the malaria parasite. The proper and rapid assimilation of proteins and nutrients in the blood meal creates a significant metabolic challenge for the mosquito. To better understand this process we generated a global profile of metabolite changes in response to blood meal of Anopheles gambiae, using Gas Chromatography-Mass Spectrometry (GC-MS). To disrupt a key pathway of amino acid metabolism we silenced the gene phenylalanine hydroxylase (PAH) involved in the conversion of the amino acid phenylalanine into tyrosine. We observed increased levels of phenylalanine and the potentially toxic metabolites phenylpyruvate and phenyllactate as well as a reduction in the amount of tyrosine available for melanin synthesis. This in turn resulted in a significant impairment of the melanotic encapsulation response against the rodent malaria parasite Plasmodium berghei. Furthermore silencing of PAH resulted in a significant impairment of mosquito fertility associated with reduction of laid eggs, retarded vitellogenesis and impaired melanisation of the chorion. Carbidopa, an inhibitor of the downstream enzyme DOPA decarboxylase that coverts DOPA into dopamine, produced similar effects on egg melanization and hatching rate suggesting that egg chorion maturation is mainly regulated via dopamine. This study sheds new light on the role of amino acid metabolism in regulating reproduction and immunity.
Collapse
Affiliation(s)
- Silke Fuchs
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Volker Behrends
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jacob G. Bundy
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tony Nolan
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Chen P, Li L, Wang J, Li H, Li Y, Lv Y, Lu C. BmPAH catalyzes the initial melanin biosynthetic step in Bombyx mori. PLoS One 2013; 8:e71984. [PMID: 23991017 PMCID: PMC3753331 DOI: 10.1371/journal.pone.0071984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/06/2013] [Indexed: 11/19/2022] Open
Abstract
Pigmentation during insect development is a primal adaptive requirement. In the silkworm, melanin is the primary component of larval pigments. The rate limiting substrate in melanin synthesis is tyrosine, which is converted from phenylalanine by the rate-limiting enzyme phenylalanine hydroxylase (PAH). While the role of tyrosine, derived from phenylalanine, in the synthesis of fiber proteins has long been known, the role of PAH in melanin synthesis is still unknown in silkworm. To define the importance of PAH, we cloned the cDNA sequence of BmPAH and expressed its complete coding sequence using the Bac-to-Bac baculovirus expression system. Purified recombinant protein had high PAH activity, some tryptophan hydroxylase activity, but no tyrosine hydroxylase activity, which are typical properties of PAH in invertebrates. Because melanin synthesis is most robust during the embryonic stage and larval integument recoloring stage, we injected BmPAH dsRNA into silkworm eggs and observed that decreasing BmPAH mRNA reduced neonatal larval tyrosine and caused insect coloration to fail. In vitro cultures and injection of 4th instar larval integuments with PAH inhibitor revealed that PAH activity was essential for larval marking coloration. These data show that BmPAH is necessary for melanin synthesis and we propose that conversion of phenylalanine to tyrosine by PAH is the first step in the melanin biosynthetic pathway in the silkworm.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Silkworm Genome Biology and College of Biotechnology, Southwest University, Chongqing, China ; College of Biotechnology, Southwest University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Hepat R, Kim Y. Transient expression of a viral histone H4 inhibits expression of cellular and humoral immune-associated genes in Tribolium castaneum. Biochem Biophys Res Commun 2011; 415:279-83. [PMID: 22037579 DOI: 10.1016/j.bbrc.2011.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/10/2011] [Indexed: 02/05/2023]
Abstract
A viral histone H4 is encoded in a polydnavirus called Cotesia plutellae bracovirus (CpBV), which is symbiotic to an endoparasitoid wasp, C. plutellae. Compared to general histone H4s, the viral H4 possesses an extra N-terminal tail containing 38 amino acid residues, which has been presumed to control host gene expression in an epigenetic mode. To analyze the epigenetic control activity of CpBV-H4 on expression of immune-associated genes, it was transiently expressed in larvae of Tribolium castaneum that had been annotated in the immune genes from a full genome sequence. Subsequent alteration of gene expression pattern was compared with that of its mutant form deleting N-terminal tail (truncated CpBV-H4). In response to bacterial challenge, T. castaneum induces expression of 13 antimicrobial peptide (AMP) genes. When CpBV-H4 was expressed, the larvae failed to express 12 inducible AMP genes. By contrast, when truncated CpBV-H4 was transiently expressed, all AMP genes were expressed. Hemocyte nodule formation was significantly impaired by expression of CpBV-H4, in which expressions of tyrosine hydroxylase and dihydroxyphenylalanine decarboxylase were suppressed. However, expression of truncated CpBV-H4 did not give any significant adverse effect on the cellular immunity. The immunosuppression of CpBV-H4 was further supported by its activity of enhancing bacterial pathogenicity of an entomopathogenic bacterium, Xenorhabdus nematophila, against larvae transiently expressing CpBV-H4. These results suggest that CpBV-H4 suppresses both humoral and cellular immune responses of T. castaneum by altering a normal epigenetic control of immune-associated gene expression.
Collapse
Affiliation(s)
- Rahul Hepat
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | |
Collapse
|
20
|
Abstract
Throughout their lifetime, mosquitoes are exposed to pathogens during feeding, through breaks in their cuticle and following pathogen-driven cuticular degradation. To resist infection, mosquitoes mount innate cellular and humoral immune responses that are elicited within minutes of exposure and can lead to pathogen death via three broadly defined mechanisms: lysis, melanization and hemocyte-mediated phagocytosis. This chapter reviews our current understanding of the mosquito immune system, with an emphasis on the physical barriers that prevent pathogens from entering the body, the organs and tissues that regulate immune responses and the mechanistic and molecular bases of immunity.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Institute for Global Health, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
21
|
Zhou Z, Yang J, Wang L, Zhang H, Gao Y, Shi X, Wang M, Kong P, Qiu L, Song L. A dopa decarboxylase modulating the immune response of scallop Chlamys farreri. PLoS One 2011; 6:e18596. [PMID: 21533240 PMCID: PMC3076384 DOI: 10.1371/journal.pone.0018596] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 03/05/2011] [Indexed: 01/11/2023] Open
Abstract
Background Dopa decarboxylase (DDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme that catalyzes the decarboxylation of L-Dopa to dopamine, and involved in complex neuroendocrine-immune regulatory network. The function for DDC in the immunomodulation remains unclear in invertebrate. Methodology The full-length cDNA encoding DDC (designated CfDDC) was cloned from mollusc scallop Chlamys farreri. It contained an open reading frame encoding a polypeptide of 560 amino acids. The CfDDC mRNA transcripts could be detected in all the tested tissues, including the immune tissues haemocytes and hepatopancreas. After scallops were treated with LPS stimulation, the mRNA expression level of CfDDC in haemocytes increased significantly (5.5-fold, P<0.05) at 3 h and reached the peak at 12 h (9.8-fold, P<0.05), and then recovered to the baseline level. The recombinant protein of CfDDC (rCfDDC) was expressed in Escherichia coli BL21 (DE3)-Transetta, and 1 mg rCfDDC could catalyze the production of 1.651±0.22 ng dopamine within 1 h in vitro. When the haemocytes were incubated with rCfDDC-coated agarose beads, the haemocyte encapsulation to the beads was increased significantly from 70% at 6 h to 93% at 24 h in vitro in comparison with that in the control (23% at 6 h to 25% at 24 h), and the increased haemocyte encapsulation was repressed by the addition of rCfDDC antibody (which is acquired via immunization 6-week old rats with rCfDDC). After the injection of DDC inhibitor methyldopa, the ROS level in haemocytes of scallops was decreased significantly to 0.41-fold (P<0.05) of blank group at 12 h and 0.47-fold (P<0.05) at 24 h, respectively. Conclusions These results collectively suggested that CfDDC, as a homologue of DDC in scallop, modulated the immune responses such as haemocytes encapsulation as well as the ROS level through its catalytic activity, functioning as an indispensable immunomodulating enzyme in the neuroendocrine-immune regulatory network of mollusc.
Collapse
Affiliation(s)
- Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Jialong Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LS); (LW)
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yang Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Pengfei Kong
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LS); (LW)
| |
Collapse
|
22
|
Han Q, Ding H, Robinson H, Christensen BM, Li J. Crystal structure and substrate specificity of Drosophila 3,4-dihydroxyphenylalanine decarboxylase. PLoS One 2010; 5:e8826. [PMID: 20098687 PMCID: PMC2809104 DOI: 10.1371/journal.pone.0008826] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/31/2009] [Indexed: 11/19/2022] Open
Abstract
Background 3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. Principal Findings In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. Conclusions The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.
Collapse
Affiliation(s)
- Qian Han
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Haizhen Ding
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Bruce M. Christensen
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
23
|
Nappi A, Poirié M, Carton Y. The role of melanization and cytotoxic by-products in the cellular immune responses of Drosophila against parasitic wasps. ADVANCES IN PARASITOLOGY 2009; 70:99-121. [PMID: 19773068 DOI: 10.1016/s0065-308x(09)70004-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cellular innate immune response of several species of Drosophila terminates with the encasement of large foreign objects within melanotic capsules comprised of several layers of adhering blood cells or hemocytes. This reaction is manifested by various Drosophila hosts in response to infection by endoparasitic wasps (i.e., parasitoids). Creditable assessments of the factor(s) causing, or contributing to, parasite mortality have long been considered as cytotoxic elements certain molecules associated with enzyme-mediated melanogenesis. However, observations that warrant additional or alternative considerations are those documenting parasitoid survival despite melanotic encapsulation, and those where parasitoids are destroyed with no evidence of this host response. Recent studies of the production of some reactive intermediates of oxygen and nitrogen during infection provide a basis for proposing that these molecules constitute important components of the immune arsenal of Drosophila. Studies of the virulence factors injected by female wasps during oviposition that suppress the host response will likely facilitate identification of the cytotoxic molecules as well as the cell-signaling pathways that regulate their synthesis.
Collapse
Affiliation(s)
- A Nappi
- Department of Biology, Loyola University of Chicago, Chicago, IL 60525, USA
| | | | | |
Collapse
|