1
|
Gouda MNR, Naga KC, Nebapure SM, Subramanian S. Unravelling the genomic landscape reveals the presence of six novel odorant-binding proteins in whitefly Bemisia tabaci Asia II-1. Int J Biol Macromol 2024; 279:135140. [PMID: 39216571 DOI: 10.1016/j.ijbiomac.2024.135140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Genome wide analysis identified 14 OBPs in B. tabaci Asia II-1, of which six are new to science. Phylogenetic analysis traced their diversity and evolutionary lineage among Hemipteran insects. Comparative analysis reclassified the OBP gene families among B. tabaci cryptic species: Asia I, II-1, MEAM1, and MED. The 14 OBPs were clustered on four chromosomes of B. tabaci. RT-qPCR showed high expression of OBP3 and 8 across all body tissues and OBP10 in the abdomen. Molecular docking showed that OBP 3 and 10 had high affinity bonding with different candidate ligands, with binding energies ranging from -5.0 to -7.7 kcal/mol. Competitive fluorescence binding assays revealed that β-caryophyllene and limonene had high binding affinities for OBP3 and 10, with their IC50 values ranging from 9.16 to 14 μmol·L-1 and KD values around 7 to 9 μmol·L-1. Behavioural assays revealed that β-caryophyllene and carvacrol were attractants, β-ocimene and limonene were repellents, and γ-terpinene and β-ocimene were oviposition deterrents to B. tabaci. Functional validation by RNAi demonstrated that OBP3 and OBP10 modulated host recognition of B. tabaci. This study expands our understanding of the genomic landscape of OBPs in B. tabaci, offering scope for developing novel pest control strategies.
Collapse
Affiliation(s)
- M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Kailash Chandra Naga
- Division of Plant Protection, Central Potato Research Institute, Shimla, Himachal Pradesh 171001, India.
| | - S M Nebapure
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - S Subramanian
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
2
|
Xiao X, Yin XH, Hu SY, Miao HN, Wang Z, Li H, Zhang YJ, Liang P, Gu SH. Overexpression of Two Odorant Binding Proteins Confers Chlorpyrifos Resistance in the Green Peach Aphid Myzus persicae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20101-20113. [PMID: 39223077 DOI: 10.1021/acs.jafc.4c05026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The green peach aphid, Myzus persicae, is a worldwide agricultural pest. Chlorpyrifos has been widely used to control M. persicae for decades, thus leading to a high resistance to chlorpyrifos. Recent studies have found that insect odorant binding proteins (OBPs) play essential roles in insecticide resistance. However, the potential resistance mechanism underlying the cross-link between aphid OBPs and chlorpyrifos remains unclear. In this study, two OBPs (MperOBP3 and MperOBP7) were found overexpressed in M. persicae chlorpyrifos-resistant strains (CRR) compared to chlorpyrifos-sensitive strains (CSS); furthermore, chlorpyrifos can significantly induce the expression of both OBPs. An in vitro binding assay indicated that both OBPs strongly bind with chlorpyrifos; an in vivo RNAi and toxicity bioassay confirmed silencing either of the two OBPs can increase the susceptibility of aphids to chlorpyrifos, suggesting that overexpression of MperOBP3 and MperOBP7 contributes to the development of resistance of M. persicae to chlorpyrifos. Our findings provide novel insights into insect OBPs-mediated resistance mechanisms.
Collapse
Affiliation(s)
- Xing Xiao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xin-Hui Yin
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Shi-Yuan Hu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Hao-Nan Miao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Zhuo Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| | - Hu Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Shao-Hua Gu
- Department of Entomology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| |
Collapse
|
3
|
Li YJ, Liu TA, Zhao H, Han Y, Lou BH, Lei CY, Song YQ, Jiang HB. Repellency, Toxicity, and Chemical Composition of Plant Essential Oils from Myrtaceae against Asian Citrus Psyllid, Diaphorina citri Kuwayama (Hemiptera Liviidae). Molecules 2024; 29:3390. [PMID: 39064968 PMCID: PMC11279514 DOI: 10.3390/molecules29143390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Diaphorina citri Kuwayama (D. citri) is one of the major pests in the citrus industry, which spreads Citrus Huanglongbing disease. It has developed resistance to chemical insecticides. Therefore, searching for greener solutions for pest management is critically important. The main aim of this study was to evaluate the repellent and insecticidal efficacy of essential oils (EOs) from four species of Myrtaceae plants: Psidium guajava (PG), Eucalyptus robusta (ER), Eucalyptus tereticornis (ET), and Baeckea frutescens (BF) against D. citri and to analyze their chemical compositions. GC-MS analysis was performed, and the results indicated that the EOs of PG, ER, ET, and BF were rich in terpenoids, ketones, esters, and alcohol compounds. The repellent rate of all four EOs showed that it decreased with exposure time but increased with the concentration of EOs from 80.50% to 100.00% after treating D. citri for 6 h with four EOs at 100% concentration and decreased to 67.71% to 85.49% after 24 h of exposure. Among the compounds from the EOs tested, eucalyptol had the strongest repellent activity, with a 24 h repellency rate of 100%. The contact toxicity bioassay results showed that all EOs have insecticidal toxicity to D. citri; the LC50 for nymphs was 36.47-93.15 mL/L, and for adults, it was 60.72-111.00 mL/L. These results show that when PG is used as the reference material, the ER, ET, and BF EOs have strong biological activity against D. citri, which provides a scientific basis for the further development of plant-derived agrochemicals.
Collapse
Affiliation(s)
- Yi-Jie Li
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Tian-Ao Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (T.-A.L.); (H.Z.); (H.-B.J.)
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hang Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (T.-A.L.); (H.Z.); (H.-B.J.)
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yang Han
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Bing-Hai Lou
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Cui-Yun Lei
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Ya-Qin Song
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (T.-A.L.); (H.Z.); (H.-B.J.)
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Lun X, Xu X, Zhang Y, Zhang R, Cao Y, Zhang X, Jin M, Zhang Z, Zhao Y. An Antennae-Enriched Odorant-Binding Protein EonuOBP43 Mediate the Behavioral Response of the Tea Green Leafhopper, Empoasca onukii Matsuda to the Host and Nonhost Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20000-20010. [PMID: 38059819 DOI: 10.1021/acs.jafc.3c07144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Olfaction is crucial for Empoasca onukii Matsuda to recognize odors from the host and nonhost plants, and it has been proposed that odorant binding proteins are directly required for odorant discrimination and represent potential targets of interest for pest control. Here, we cloned EonuOBP43 and expressed the recombinant EonuOBP43 protein. Furthermore, competitive fluorescence binding assays with 19 ligands indicated that terpenoids and alkanes showed a relatively higher than for other classes of chemicals. Additionally, ligand docking and site-directed mutagenesis results revealed that seven hydrophobic residues, including Val-86, Met-89, Phe-90, Ile-104, Ile-105, Leu-130, and Val-134, played a key role in the binding of EonuOBP43 to plant volatiles. In olfactometer tests, E. onukii were significantly attracted to α-farnesene and repelled to β-caryophyllene, and dsOBP43 treated adult lost response to α-farnesene and β-caryophyllene. In summary, our results demonstrated that EonuOBP43 may function as a carrier in the process of sensing plant compounds of E. onukii.
Collapse
Affiliation(s)
- Xiaoyue Lun
- Shandong Agricultural University, Tai'an 271018, China
| | - Xiuxiu Xu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Yu Zhang
- Shandong Agricultural University, Tai'an 271018, China
| | - Ruirui Zhang
- Shandong Agricultural University, Tai'an 271018, China
| | - Yan Cao
- Shandong Agricultural University, Tai'an 271018, China
| | | | - Meina Jin
- Shandong Agricultural University, Tai'an 271018, China
| | | | - Yunhe Zhao
- Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
5
|
Zhu J, Wang F, Zhang Y, Yang Y, Hua D. Odorant-binding Protein 10 From Bradysia odoriphaga (Diptera: Sciaridae) Binds Volatile Host Plant Compounds. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7. [PMID: 36729094 PMCID: PMC9894006 DOI: 10.1093/jisesa/iead004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 06/18/2023]
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a major insect pest of seven plant families including 30 commercial crops in Asia. The long-term use of chemical pesticides leads to problems such as insect resistance, environmental issues, and food contamination. Against this background, a novel pest control method should be developed. In insects, odorant-binding proteins (OBPs) transport odor molecules, including pheromones and plant volatiles, to olfactory receptors. Here, we expressed and characterized the recombinant B. odoriphaga OBP BodoOBP10, observing that it could bind the sulfur-containing compounds diallyl disulfide and methyl allyl disulfide with Ki values of 8.01 μM and 7.00 μM, respectively. Homology modeling showed that the BodoOBP10 3D structure was similar to that of a typical OBP. Both diallyl disulfide and methyl allyl disulfide bound to the same site on BodoOBP10, mediated by interactions with six hydrophobic residues Met70, Ile75, Thr89, Met90, Leu93, and Leu94, and one aromatic residue, Phe143. Furthermore, silencing BodoOBP10 expression via RNAi significantly reduced the electroantennogram (EAG) response to diallyl disulfide and methyl allyl disulfide. These findings suggest that BodoOBP10 should be involved in the recognition and localization of host plants.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China
| | - Fu Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | |
Collapse
|
6
|
Li R, Shan S, Song X, Khashaveh A, Wang S, Yin Z, Lu Z, Dhiloo KH, Zhang Y. Plant volatile ligands for male-biased MmedOBP14 stimulate orientation behavior of the parasitoid wasp Microplitis mediator. Int J Biol Macromol 2022; 223:1521-1529. [PMID: 36400212 DOI: 10.1016/j.ijbiomac.2022.11.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
As an important class of chemosensory-associated proteins, odorant binding proteins (OBPs) play a key role in the perception of olfactory signals for insects. Parasitoid wasp Microplitis mediator relies on its sensitive olfactory system to locate host larvae of Noctuidae and Geometridae. In the present study, MmedOBP14, a male-biased OBP in M. mediator, was functionally investigated. In fluorescence competitive binding assays, the recombinant MmedOBP14 showed strong binding abilities to five plant volatiles: β-ionone, 3,4-dimethylacetophenone, 4-ethylacetophenone, acetophenone and ocimene. Homology modeling and molecular docking results indicated that the binding sites of all five ligands were similar and concentrated in the binding pocket of MmedOBP14. Except acetophenone, the remaining four ligands at 1, 10 and 100 μg/μL caused strong antennal electrophysiological responses in adults M. mediator, and males showed more obvious EAG responses to most ligands than females. In behavioral trials, males were attracted by low concentrations of MmedOBP14 ligands, whereas high doses of β-ionone and acetophenone had a repellent effect on males. Moreover, 1 μg/μL of 3,4-dimethylacetophenone showed the strongest attractiveness to female wasps. These findings suggest that MmedOBP14 may play a more important role in the perception of plant volatiles for male wasps to locate habitat, supplement nutrition and search partners.
Collapse
Affiliation(s)
- Ruijun Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuan Song
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanning Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zixuan Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ziyun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei 071000, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China..
| |
Collapse
|
7
|
Comparison and Functional Analysis of Odorant-Binding Proteins and Chemosensory Proteins in Two Closely Related Thrips Species, Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) Based on Antennal Transcriptome Analysis. Int J Mol Sci 2022; 23:ijms232213900. [PMID: 36430376 PMCID: PMC9692942 DOI: 10.3390/ijms232213900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Two closely related thrips species, Frankliniella occidentalis and Frankliniella intonsa, are important pests on agricultural and horticultural crops. They have several similarities, including occurrence patterns, host range, and aggregation pheromone compounds. However, there are very few reports about the chemosensory genes and olfactory mechanisms in these two species. To expand our knowledge of the thrips chemosensory system, we conducted antennal transcriptome analysis of two thrips species, and identified seven odorant-binding proteins (OBPs) and eight chemosensory proteins (CSPs) in F. occidentalis, as well as six OBPs and six CSPs in F. intonsa. OBPs and CSPs showed high sequence identity between the two thrips species. The RT-qPCR results showed that the orthologous genes FoccOBP1/3/4/5/6, FintOBP1/3/4/6, FoccCSP1/2/3, and FintCSP1/2 were highly expressed in male adults. Molecular docking results suggested that orthologous pairs FoccOBP4/FintOBP4, FoccOBP6/FintOBP6, and FoccCSP2/FintCSP2 might be involved in transporting the major aggregation pheromone compound neryl (S)-2-methylbutanoate, while orthologous pairs FoccOBP6/FintOBP6, FoccCSP2/FintCSP2, and FoccCSP3/FintCSP3 might be involved in transporting the minor aggregation pheromone compound (R)-lavandulyl acetate. These results will provide a fundamental basis for understanding the molecular mechanisms of pheromone reception in the two thrips species.
Collapse
|
8
|
Li JB, Yin MZ, Yao WC, Ma S, Dewer Y, Liu XZ, Wang YY, Wang CW, Li BP, Zhu XY. Genome-Wide Analysis of Odorant-Binding Proteins and Chemosensory Proteins in the Bean bug Riptortus pedestris. Front Physiol 2022; 13:949607. [PMID: 35910558 PMCID: PMC9329939 DOI: 10.3389/fphys.2022.949607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Insects have sensitive olfactory systems to interact with environment and respond to the change in host plant conditions. Key genes in the system can be potential targets for developing new and efficient pest behaviour control methods. Riptortus pedestris is an important soybean pest in East Asia and has caused serious damage to the soybean plants in Huang-Huai-Hai region of China. However, the current treatment of pests is dominated by chemical insecticides and lacks efficient sustainable prevention and control technologies. In this study, we identified 49 putative odorant-binding proteins (OBPs) (43 were new genes) and 25 chemosensory proteins (CSPs) (17 were new genes) in R. pedestris genome. These OBP and CSP genes are clustered in highly conserved groups from other hemipteran species in phylogenetic trees. Most RpedOBPs displayed antennal-biased expression. Among the 49 RpedOBPs, 33 were significantly highly expressed in the antennae, including three male-biased and nine female-biased. While many RpedCSPs were detected both in the antennae and in non-antennal tissues, only 11 RpedCSPs displayed antennal-biased expression, in which four RpedCSPs were male-biased and five RpedCSPs were female-biased. Some OBP and CSP genes showed sex-biased expression profiles. Our results not only provide a foundation for future exploration of the functions of RpedOBPs and RpedCSPs but also aid in developing environmentally friendly insecticides in the future.
Collapse
Affiliation(s)
- Jin-Bu Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Mao-Zhu Yin
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Sai Ma
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Xing-Zhou Liu
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Yue-Ying Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Chao-Wei Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Bao-Ping Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Bao-Ping Li, ; Xiu-Yun Zhu,
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
- *Correspondence: Bao-Ping Li, ; Xiu-Yun Zhu,
| |
Collapse
|
9
|
Repellency Mechanism of Natural Guar Gum-Based Film Incorporated with Citral against Brown Planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Int J Mol Sci 2022; 23:ijms23020758. [PMID: 35054952 PMCID: PMC8776237 DOI: 10.3390/ijms23020758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 12/10/2022] Open
Abstract
Using of plant essential oil that coevolved as a defense mechanism against agriculture insects is an alternative means of controlling many insect pests. In order to repel brown planthoppers (BPHs), the most notorious rice insect pest, a new film based on guar gum incorporated with citral (GC film) was formulated, which was effective while being environmentally friendly. In this paper, the effect and mechanism of GC film repellency against BPHs were determined. Repellent activity test and olfactory reaction analysis showed that GC film had repellency effect against BPHs, with repellency of 60.00% and 73.93%, respectively. The result of olfactory reaction indicated that GC film repellency against BPHs relied on smell. EPG analysis showed the proportion and mean duration of np waveform were significantly higher than in CK and increased following the treatment concentration, which indicated that GC film affected the recognition of BPHs to rice. Further analysis by RNA sequencing analysis showed a total of 679 genes were significantly upregulated and 284 genes were significantly downregulated in the BPHs fed on the rice sprayed with GC film compared to control. Odorant-binding protein (OBP) gene 797 and gustatory receptor gene (GR)/odorant receptor (OR) gene 13110 showed a significant decrease in differential expression and significant increase in differential expression, respectively. There were 0.66 and 2.55 differential expression multiples between treated BPHs and control, respectively. According to the results described above, we reasoned that GC film repellency against BPHs due to smell, by release of citral, caused the recognition difficulties for BPHs to rice, and OBP gene 797 and GR/OR gene 13110 appeared to be the crucial candidate genes for GC film repellency against BPHs. The present study depicted a clear and consistent repellency effect for GC film against BPHs and preliminarily clarified the mechanism of GC film as a repellent against BPHs, which might offer an alternative approach for control of BPHs in the near future. Our results could also help in the development and improvement of GC films.
Collapse
|
10
|
Li YJ, Chen HC, Hong TL, Yan MW, Wang J, Shao ZM, Wu FA, Sheng S, Wang J. Identification of chemosensory genes by antennal transcriptome analysis and expression profiles of odorant-binding proteins in parasitoid wasp Aulacocentrum confusum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100881. [PMID: 34273642 DOI: 10.1016/j.cbd.2021.100881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
The endoparasitoid wasp, Aulacocentrum confusum (Hymenoptera: Braconidae), is a preponderant natural enemy of the larvae of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae), which is a destructive pest of mulberry trees. We first constructed the antennal transcriptome database of A. confusum. In total, we obtained 48,262,304 clean reads from the dataset and assembled 24,324 unigenes. A total of 12,690 (52.17%) unigenes indicated significant similarity (E-value < 10-5) compared to known protein sequences of other species from the NCBI non-redundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used to determine the functional categories of these genes. A total of 84 putative chemosensory genes were identified from the antennal transcriptome of A. confusum, including 11 putative odorant-binding protein (OBP) genes, six chemosensory protein (CSP) genes, 44 olfactory receptor (OR) genes (including one olfactory co-receptor, Orco), 19 ionotropic receptor (IR) genes, and four sensory neuron membrane protein (SNMP) genes. Results of qPCR assays indicated that among of 11 AconOBPs, nine AconOBP genes were significantly expressed in the antennae of A. confusum adults. AconOBP8 was significantly expressed in the abdomen and AconOBP10 was highly expressed in the thorax. These findings can build a basis for further study on the processes of chemosensory perception in A. confusum at the molecular level.
Collapse
Affiliation(s)
- Yi-Jiangcheng Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Hong-Chao Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Tian-le Hong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Meng-Wen Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Jiao Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Zuo-Min Shao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China.
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China.
| |
Collapse
|
11
|
Liu XQ, Jiang HB, Fan JY, Liu TY, Meng LW, Liu Y, Yu HZ, Dou W, Wang JJ. An odorant-binding protein of Asian citrus psyllid, Diaphorina citri, participates in the response of host plant volatiles. PEST MANAGEMENT SCIENCE 2021; 77:3068-3079. [PMID: 33686750 DOI: 10.1002/ps.6352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Odorant-binding proteins (OBPs) in insects contribute to the sensitivity of the olfactory system and connect external odorants to olfactory receptor neurons. Determination of the chemosensory functions in Diaphorina citri, a vector of the citrus Huanglongbing pathogen, may help in developing a potential target for pest management. RESULTS Diaphorina citri showed dose-dependent electroantennogram recording (EAG) responses to 12 host plant volatiles. A two-choice behavioral trap experiment showed that four compounds (methyl salicylate, linalool, citral and R-(+)-limonene) that elicited high EAG responses also had significant attraction to adults. The expression profiles induced by these compounds were detected in nine OBP genes, DcitOBP1-9. DcitOBP3, DcitOBP6 and DcitOBP7 commonly showed significant upregulation or downregulation compared with the control. Microscale thermophoresis (MST) showed that the recombinant protein DcitOBP7 had high in vitro binding affinities (Kd < 10 μm) to methyl salicylate, linalool and R-(+)-limonene, and moderate binding affinity to citral with a Kd value of 15.95 μm. Furthermore, RNA interference (RNAi)-suppressed messenger RNA (mRNA) expression of DcitOBP7 resulted in a significant reduction in EAG activity and in adult D. citri behavioral responses to tested volatiles and the preferred host, Murraya paniculata. The hydrophilic residue Arg107 of DcitOBP7 may have a key role in binding odorants via formation of hydrogen bonds. CONCLUSION These results show that DcitOBP7 plays an important role in the olfactory response. This finding may provide new insight into the functions of OBP families in D. citri and aid in the development of safe strategies for managing D. citri populations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jia-Yao Fan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tian-Yuan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hai-Zhong Yu
- Laboratory of Pest and Disease Control, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Wang MM, Long GJ, Guo H, Liu XZ, Wang H, Dewer Y, Li ZQ, Liu K, Zhang QL, Ma YF, He P, He M. Two carboxylesterase genes in Plutella xylostella associated with sex pheromones and plant volatiles degradation. PEST MANAGEMENT SCIENCE 2021; 77:2737-2746. [PMID: 33527628 DOI: 10.1002/ps.6302] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Carboxyl/cholinesterases (CCEs) are thought to play a pivotal role in the degradation of sex pheromones and plant-derived odorants in insects, but their exact biochemistry and physiological functions remain unclear. RESULTS In this study, two paralogous antennae-enriched CCEs from Plutella xylostella (PxylCCE16a and 16c) were identified and functionally characterized. High-purity protein preparations of active recombinant PxylCCE16a and 16c have been obtained from Sf9 insect cells by Ni2+ affinity purification. Our results revealed that the purified recombinant PxylCCE016c is able to degrade two sex pheromone components Z9-14:Ac and Z11-16:Ac at 27.64 ± 0.79% and 24.40 ± 3.07%, respectively, while PxylCCE016a presented relatively lower activity. Additionally, a similar difference in activity was measured in plant-derived odorants. Furthermore, both CCEs displayed obvious preferences for the two sex pheromone components, especially on Z11-16:Ac (Km values are in the range 7.82-45.06 μmol L-1 ) which much lower than plant odorants (Km values are in the range 1290-4030 μmol L-1 ). Furthermore, the activity of the two newly identified CCEs is pH-dependent. The activity at pH 6.5 is obviously higher than that at pH 5.0. Interestingly, only PxylCCE016c can be inhibited by a common esterase inhibitor triphenyl phosphate (TPP) with LC50 of 1570 ± 520 μmol L-1 . CONCLUSION PxylCCE16c plays a more essential role in odorant degradation than PxylCCE16a. Moreover, the current study provides novel potential pesticide targets for the notorious moth Plutella xylostella. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei-Mei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Gui-Jun Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Huan Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Xuan-Zheng Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Hong Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Zhao-Qun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, P. R. China
| | - Kun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Qiu-Liang Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Yun-Feng Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
13
|
Tian W, Zhang T, Gu S, Guo Y, Gao X, Zhang Y. OBP14 (Odorant-Binding Protein) Sensing in Adelphocoris lineolatus Based on Peptide Nucleic Acid and Graphene Oxide. INSECTS 2021; 12:insects12050422. [PMID: 34066819 PMCID: PMC8151863 DOI: 10.3390/insects12050422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 02/04/2023]
Abstract
OBPs play a crucial role in the recognition of ligands and are involved in the initial steps of semiochemical perception. The diverse expression of OBP genes allows them to participate in different physiological functions in insects. In contrast to classic OBPs with typical olfactory roles in A. lineolatus, the physiological functions of Plus-C OBPs remain largely unknown. In addition, detection of the expression of insect OBP genes by conventional methods is difficult in vitro. Here, we focused on AlinOBP14, a Plus-C OBP from A. lineolatus, and we developed a PNA-GO-based mRNA biosensor to detect the expression of AlinOBP14. The results demonstrated that AlinOBP14 plays dual roles in A. lineolatus. The AlinOBP14 is expressed beneath the epidermis of the vertex and gena in heads of A. lineolatus, and it functions as a carrier for three terpenoids, while AlinOBP14 is also expressed in the peripheral antennal lobe and functions as a carrier for endogenous compounds such as precursors for juvenile hormone (JH) and JHⅢ. Our investigation provides a new method to detect the expression of OBP genes in insects, and the technique will facilitate the use of these genes as potential targets for novel insect behavioral regulation strategies against the pest.
Collapse
Affiliation(s)
- Wenhua Tian
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.T.); (S.G.); (X.G.)
| | - Tao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Y.G.)
| | - Shaohua Gu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.T.); (S.G.); (X.G.)
| | - Yuyuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Y.G.)
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.T.); (S.G.); (X.G.)
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Y.G.)
- Correspondence: ; Tel.: +86-10-6281-5929
| |
Collapse
|
14
|
Wang Q, Liu JT, Zhang YJ, Chen JL, Li XC, Liang P, Gao XW, Zhou JJ, Gu SH. Coordinative mediation of the response to alarm pheromones by three odorant binding proteins in the green peach aphid Myzus persicae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 130:103528. [PMID: 33482303 DOI: 10.1016/j.ibmb.2021.103528] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Odorant binding proteins (OBPs) play an essential role for insect chemosensation in insect peripheral nervous systems of antennae. Each antennal sensilla contains more than one OBP at high concentrations but the interactions and cooperation between co-localized OBPs are rarely reported. In present study, we cloned, expressed and purified eight OBPs of the green peach aphid Myzus persicae. The effects of knocking down the expression of these OBP genes by RNAi on the electrophysiological and behavioural responses of M. persicae to the aphid alarm pheromone, (E)-β-farnesene (EβF) were investigated. The results showed that the aphids could still be repelled by EβF when the expression of each of three OBP genes was individually knocked down. However, the simultaneous knockdown of MperOBP3/7/9 expression significantly reduced the electrophysiological response and the repellent behaviours of M. persicae to EβF than the single OBP gene knockdown (P < 0.05). Rather than a normal saturation binding curve of individual OBP, the binding curve of MperOBP3/7/9 is bell-shaped with a higher affinity for the fluorescent probe N-phenyl-1-naphthylamine (1-NPN). The competitive binding assays confirmed that MperOBP3, MperOBP7, MperOBP9 and MperOBP3/7/9 mixture exhibited a stronger binding affinity for EβF, than for sex pheromones and plant volatiles with a dissociation constant of 2.5 μM, 1.1 μM, 3.9 μM and 1.0 μM, respectively. The competitive binding curve of MperOBP3/7/9 mixture to EβF is shallow without bottom plateau, suggesting a conformational change and a rapid dissociation after the displacement of all 1-NPN (in vivo after the saturation binding of all OBPs by EβF). The interaction between OBPs and formation of a heterogeneous unit may facilitate the delivery EβF to the OR at electrophysiological and behavioural levels during insect odorant signal transduction thus mediate M. persicae response to the alarm pheromone EβF.
Collapse
Affiliation(s)
- Qian Wang
- Department of Entomology, China Agricultural University, Beijing, 100193, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jing-Tao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ju-Lian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xian-Chun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, USA
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Xi-Wu Gao
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Jing-Jiang Zhou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, China; State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, China
| | - Shao-Hua Gu
- Department of Entomology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Wang L, Bi YD, Liu M, Li W, Liu M, Di SF, Yang S, Fan C, Bai L, Lai YC. Identification and expression profiles analysis of odorant-binding proteins in soybean aphid, Aphis glycines (Hemiptera: Aphididae). INSECT SCIENCE 2020; 27:1019-1030. [PMID: 31271503 DOI: 10.1111/1744-7917.12709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
The soybean aphid, Aphis glycines, is an extreme specialist and an important invasive pest that relies on olfaction for behaviors such as feeding, mating, and foraging. Odorant-binding proteins (OBPs) play a vital role in olfaction by binding to volatile compounds and by regulating insect sensing of the environment. In this work we used rapid amplification of complementary DNA ends technology to identify and characterize 10 genes encoding A. glycines OBPs (AglyOBPs) belonging to 3 subfamilies, including 4 classic OBPs, 5 Plus-C OBPs, and one Minus-C OBP. Quantitative real-time polymerase chain reaction demonstrated variable specific expression patterns for the 10 genes based on developmental stage and aphid tissue sampled. Expression levels of 7 AglyOBPs (2, 3, 4, 5, 7, 9, and 10) were highest in the 4th instar, indicating that the 4th nymphal instar is an important developmental period during which soybean aphids regulate feeding and search for host plants. Tissue-specific expression results demonstrated that AglyOBP2, 7, and 9 exhibited significantly higher expression levels in antennae. Meanwhile, ligand-binding analysis of 5 OBPs demonstrated binding of AglyOBP2 and AglyOBP3 to a broad spectrum of volatiles released by green leaf plants, with bias toward 6- to 8-carbon chain volatiles and strong binding of AglyOBP7 to trans-β-farnesene. Taken together, our findings build a foundation of knowledge for use in the study of molecular olfaction mechanisms and provide insights to guide future soybean aphid research.
Collapse
Affiliation(s)
- Ling Wang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Program, Harbin, China
| | - Ying-Dong Bi
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ming Liu
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Wei Li
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Miao Liu
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shu-Feng Di
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shuai Yang
- Virus-free Seedling Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chao Fan
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lei Bai
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yong-Cai Lai
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
16
|
Cheng WN, Zhang YD, Liu W, Li GW, Zhu-Salzman K. Molecular and functional characterization of three odorant-binding proteins from the wheat blossom midge, Sitodiplosis mosellana. INSECT SCIENCE 2020; 27:721-734. [PMID: 31017726 DOI: 10.1111/1744-7917.12677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Sitodiplosis mosellana, a periodic but devastating wheat pest, relies on wheat spike volatiles as a cue in selecting hosts for oviposition. Insect odorant-binding proteins (OBPs) are thought to play essential roles in filtering, binding and transporting hydrophobic odorant molecules to specific receptors. To date, the molecular mechanisms underlying S. mosellana olfaction are poorly understood. Here, three S. mosellana antenna-specific OBP genes, SmosOBP11, 16 and 21, were cloned and bacterially expressed. Binding properties of the recombinant proteins to 28 volatiles emitted from wheat spikes were investigated using fluorescence competitive binding assays. Sequence analysis suggested that these SmosOBPs belong to the Classic OBP subfamily. Ligand-binding analysis showed that all three SmosOBPs preferentially bound alcohol, ester and ketone compounds, and SmosOBP11 and 16 also selectively bound terpenoid compounds. In particular, the three SmosOBPs had high binding affinities (Ki < 20 μmol/L) to 3-hexanol and cis-3-hexenylacetate that elicited strong electroantennogram (EAG) response from female antennae. In addition, SmosOBP11 displayed significantly higher binding (Ki < 8 μmol/L) than SmosOBP16 and 21 to 1-octen-3-ol, D-panthenol, α-pinene and heptyl acetate which elicited significant EAG response, suggesting that SmosOBP11 plays a major role in recognition and transportation of these volatiles. These findings have provided important insight into the molecular mechanism by which S. mosellana specifically recognizes plant volatiles for host selection, and have facilitated identification of effective volatile attractants that are potentially useful for pest monitoring and trapping.
Collapse
Affiliation(s)
- Wei-Ning Cheng
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Dong Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Guang-Wei Li
- Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, Shaanxi, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
17
|
Zhang H, Chen JL, Lin JH, Lin JT, Wu ZZ. Odorant-binding proteins and chemosensory proteins potentially involved in host plant recognition in the Asian citrus psyllid, Diaphorina citri. PEST MANAGEMENT SCIENCE 2020; 76:2609-2618. [PMID: 32083388 DOI: 10.1002/ps.5799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are two families of small water-soluble proteins involved in odor detection and subsequent signal transmission. Determination of their binding mechanisms and specificity towards different odorants is important for developing OBPs/CSPs as targets in pest control management. RESULTS We re-annotated genes encoding putative OBPs and CSPs in the Asian citrus psyllid (Diaphorina citri) draft genome using various bioinformatic tools. Genes encoding nine OBPs (seven Classic and two Plus-C) and 12 CSPs were identified, consistent with our previous transcriptomic results. Tissue-specific and developmental expression analyses suggested that genes encoding six OBPs and four CSPs were predominantly expressed in antennae, and displayed various expression patterns in different development stages, suggesting potential involvement in olfactory perception. Competitive fluorescence binding assays with 13 candidate ligands, including known host plant volatiles, sex pheromone components and repellents, showed that DcitOBP3 could bind to various odorants, whereas DcitOBP6, 8 and 9 bound specifically to host plant terpenoids. DcitCSP1 and 12 could also bind to certain terpenoids with high binding specificity. CONCLUSION OBP- and CSP-encoding genes were systematically identified by annotating the draft D. citri genome and those potentially involved in odorant detection and signal transmission were identified by analyzing their tissue-expression profiles and odorant-binding affinities, particularly to the peripheral molecular perception of host plant terpenoids. The identified genes may provide potential targets for efficient pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- He Zhang
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Jun-Long Chen
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Jia-Hao Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Jin-Tian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Zhong-Zhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| |
Collapse
|
18
|
Expression Profiles and Biochemical Analysis of Chemosensory Protein 3 from Nilaparvata lugens (Hemiptera: Delphacidae). J Chem Ecol 2020; 46:363-377. [PMID: 32125582 DOI: 10.1007/s10886-020-01166-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/26/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
Insects have evolved highly sensitive olfactory sensory systems to detect plant hosts and mates, with plant volatiles playing an important role in informing insect behavior. Chemosensory proteins (CSPs) are thought to play a key role in this process, but in this respect, there is limited information on brown planthopper Nilaparvata lugens, one of the most destructive pests of rice. To expand our understanding of CSP function in N. lugens we explored expression profiles and binding characteristics of NlugCSP3. The ligands with higher binding affinity were also validated by molecular docking and behavioral assays. NlugCSP3 mRNA was expressed at relatively higher levels in antennae and abdomen of 3-day-old unmated macropterous males as well as in antennae of 3-day mated macropterous and brachypterous females. Fluorescence competitive binding assays revealed that 5 out of 25 candidate volatiles are strong binders (Ki < 10 μM). Behavioral assays revealed that nonadecane and 2-tridecanone, which have high binding affinities in fluorescence competition-binding assays, displayed strong attractiveness to N. lugens. Pursuing this further, molecular docking analysis identified key amino acid residues involved in binding volatile compounds. Overall, our data provide a base for further investigation of the potential physiological functions of CSP3 in Nilaparvata lugens, and extend the function of NlugCSP3 in chemoreception of N. lugens.
Collapse
|
19
|
Qu MQ, Cui Y, Zou Y, Wu ZZ, Lin JT. Identification and expression analysis of odorant binding proteins and chemosensory proteins from dissected antennae and mouthparts of the rice bug Leptocorisa acuta. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100631. [PMID: 31706978 DOI: 10.1016/j.cbd.2019.100631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
The rice bug, Leptocorisa acuta (Tunberg) (Hemiptera: Alydidae), is a notorious pest in Asia, and it is significantly attracted by the volatiles derived from host plants. However, it remains unknown how L. acuta recognizes host volatile compounds at the molecular level. Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are thought to be responsible for the initial biochemical recognition during olfactory perception. Here, we followed the RNA Sequencing (RNA-Seq) approach to identify candidate genes encoding OBPs and CSPs from dissected antennae and mouthparts of L. acuta. In total, 26 unigenes were identified coding for OBPs (22 Classic OBPs and four Plus-C OBPs), and 17 unigenes coding for CSPs. Real-time quantitative PCR (RT-qPCR) revealed that 11 OBPs (LacuOBP1, 5, 6, 7, 9, 11, 13, 14, 17, 20 and 23) and nine CSPs (LacuCSP2, 3, 4, 5, 6, 8, 9, 10 and 12) were predominantly expressed in antennae, indicating that they might be essential for detection of general odorants and pheromones. Among these antennae-predominantly expressed genes, LacuOBP11 and LacuOBP13 showed male-biased expression and therefore may play crucial roles in the detection of sex pheromones. Seven LacuOBPs (LacuOBP4, 8, 10, 12, 21, 25 and 26) and two CSPs (LacuCSP7 and LacuOBP11) were predominantly expressed in mouthparts, suggesting that these genes might be involved in taste perception. Our work provides a starting point to facilitate functional study of these OBPs and CSPs in L. acuta at the molecular level in the future.
Collapse
Affiliation(s)
- Meng-Qiu Qu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Yang Cui
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Yan Zou
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Zhong-Zhen Wu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Jin-Tian Lin
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China.
| |
Collapse
|
20
|
Xu JW, Zhu XY, Chao QJ, Zhang YJ, Yang YX, Wang RR, Zhang Y, Xie MZ, Ge YT, Wu XL, Zhang F, Zhang YN, Ji L, Xu L. Chemosensory Gene Families in the Oligophagous Pear Pest Cacopsylla chinensis (Hemiptera: Psyllidae). INSECTS 2019; 10:insects10060175. [PMID: 31212973 PMCID: PMC6628306 DOI: 10.3390/insects10060175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/28/2023]
Abstract
Chemosensory systems play an important role in insect behavior, and some key associated genes have potential as novel targets for pest control. Cacopsylla chinensis is an oligophagous pest and has become one of the main pests of pear trees, but little is known about the molecular-level means by which it locates its hosts. In this study, we assembled the head transcriptome of C. chinensis using Illumina sequencing, and 63,052 Unigenes were identified. A total of 36 candidate chemosensory genes were identified, including five different families: 12 odorant binding proteins (OBPs), 11 chemosensory proteins (CSPs), 7 odorant receptors (ORs), 4 ionotropic receptors (IRs), and 2 gustatory receptors (GRs). The number of chemosensory gene families is consistent with that found in other Hemipteran species, indicating that our approach successfully obtained the chemosensory genes of C. chinensis. The tissue expression of all genes using quantitative real-time PCR (qRT-PCR) found that some genes displayed male head, female head, or nymph-biased specific/expression. Our results enrich the gene inventory of C. chinensis and provide valuable resources for the analysis of the functions of some key genes. This will help in developing molecular targets for disrupting feeding behavior in C. chinensis.
Collapse
Affiliation(s)
- Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Qiu-Jie Chao
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Yong-Jie Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Yu-Xia Yang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ran-Ran Wang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Yu Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Meng-Zhen Xie
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ya-Ting Ge
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Xin-Lai Wu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan 250000, China.
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Lei Ji
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Lu Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
21
|
He P, Chen GL, Li S, Wang J, Ma YF, Pan YF, He M. Evolution and functional analysis of odorant-binding proteins in three rice planthoppers: Nilaparvata lugens, Sogatella furcifera, and Laodelphax striatellus. PEST MANAGEMENT SCIENCE 2019; 75:1606-1620. [PMID: 30515974 DOI: 10.1002/ps.5277] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/03/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The white-backed planthopper (WBPH) Sogatella furcifera, the brown planthopper (BPH) Nilaparvata lugens, and the small brown planthopper (SBPH) Laodelphax striatellus are three notorious rice pests that cause annual losses in rice yield through sap-sucking and virus transmission. Odorant-binding proteins (OBPs) are crucial olfactory genes involved in host-seeking behavior. RESULTS We discovered the presence of 12, 12, and 16 OBPs in WBPH, BPH, and SBPH, respectively, including two novel OBPs in BPH and seven novel OBPs in SBPH. Phylogenetic analysis indicated that most of these OBPs have homologous genes, and one group (SfurOBP11, NlugOBP8, and LstrOBP2) show a slower evolution rate and are more conserved. Further, in vitro binding studies demonstrated that the three OBPs have similar binding affinities for some rice plant volatiles. Finally, RNA interference (RNAi) successfully inhibited the mRNA expression of the three OBPs, and in vivo behavioral tests showed that the OBP-deficient rice planthoppers were partly anosmic and lost some of their ability to locate rice plants. CONCLUSION These results demonstrate the crucial role of the rice planthopper OBP genes in seeking rice plants. This information complements the current genetic resources for the development of RNAi-based transgenic rice and other pest management technologies. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Guang-Lei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Jun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Yun-Feng Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Yu-Feng Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
22
|
Hu K, Liu S, Qiu L, Li Y. Three odorant-binding proteins are involved in the behavioral response of Sogatella furcifera to rice plant volatiles. PeerJ 2019; 7:e6576. [PMID: 30867994 PMCID: PMC6409085 DOI: 10.7717/peerj.6576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
Plant volatiles play an important role in regulating insect behavior. Odorant binding proteins (OBPs) are involved in the first step of the olfactory signal transduction pathway and plant volatiles recognition. Sogatella furcifera is one of the most destructive pests of rice crops. Understanding the functions of S. furcifera OBPs (SfurOBPs) in the host plant location and the behavioral responses of S. furcifera to rice plant volatiles could lead to improved, more environmentally-friendly, methods for controlling this pest. We found that SfurOBP1 displayed only weak binding with all the tested volatiles. SfurOBP2, SfurOBP3 and SfurOBP11 had different binding affinities to β-ionone. SfurOBP2 and SfurOBP11 had strong binding affinities to β-caryophyllene (Ki = 2.23 µM) and plant alcohol (Ki = 2.98 µM), respectively. The results of Y-olfactometer experiments indicate that S. furcifera was significantly repelled by octanal and n-octane but strongly attracted by (+)-limonene, acetophenone, 2-heptanone, n-hendecane, α-farnesene and β-ionone. Furthermore, the dsRNA-mediated gene silencing of SfurOBP2, SfurOBP3 and SfurOBP11 shifted the olfactory behavior of S. furcifera for β-ionone, α-farnesene and plant alcohol, respectively. These results suggest that the SfurOBPs are involved in the recognition of rice plant volatiles, and several potential repellants and lures for controlling this pest.
Collapse
Affiliation(s)
- Kui Hu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Sheng Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, China.,National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan Province, China
| |
Collapse
|
23
|
Wang Q, Zhou J, Liu J, Huang G, Xu W, Zhang Q, Chen J, Zhang Y, Li X, Gu S. Integrative transcriptomic and genomic analysis of odorant binding proteins and chemosensory proteins in aphids. INSECT MOLECULAR BIOLOGY 2019; 28:1-22. [PMID: 29888835 PMCID: PMC7380018 DOI: 10.1111/imb.12513] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Odorant binding proteins (OBPs) and chemosensory proteins (CSPs) play essential roles in insect chemosensory recognition. Here, we identified nine OBPs and nine CSPs from the Myzus persicae transcriptome and genome. Genomic structure analysis showed that the number and length of the introns are much higher, and this appears to be a unique feature of aphid OBP genes. Three M. persicae OBP genes (OBP3/7/8) as well as CSP1/4/6, CSP2/9 and CSP5/8 are tandem arrayed in the genome. Phylogenetic analyses of five different aphid species suggest that aphid OBPs and CSPs are conserved in single copy across all aphids (with occasional losses), indicating that each OBP and CSP class evolved from a single gene in the common ancestor of aphids without subsequent duplication. Motif pattern analysis revealed that aphid OBP and CSP motifs are highly conserved, and this could suggest the conserved functions of aphid OBPs and CSPs. Three OBPs (MperOBP6/7/10) are expressed antennae specifically, and five OBPs (MperOBP2/4/5/8/9) are expressed antennae enriched, consistent with their putative olfactory roles. M. persicae CSPs showed much broader expression profiles in nonsensory organs than OBPs. None of the nine MperCSPs were found to be antennae specific, but five of them (MperCSP1/2/4/5/6) showed higher expression levels in the legs than in other tissues. MperCSP10 mainly expressed in the antennae and legs. The broad and diverse expression patterns of M. persicae CSPs suggest their multifunctions in olfactory perception, development and other processes.
Collapse
Affiliation(s)
- Q. Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - J.‐J. Zhou
- Department of Biological Chemistry and Crop ProtectionRothamsted ResearchHarpendenUK
| | - J.‐T. Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - G.‐Z. Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - W.‐Y. Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- College of Plant ProtectionHebei Agricultural UniversityBaodingChina
| | - Q. Zhang
- Institute of Cotton Research, Hebei Academy of Agriculture and Forestry SciencesShijiazhuangChina
| | - J.‐L. Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Y.‐J. Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - X.‐C. Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Department of Entomology and BIO5 InstituteUniversity of ArizonaTucsonAZUSA
| | - S.‐H. Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
24
|
Zhang Y, Tan Y, Zhou XR, Pang BP. A whole-body transcriptome analysis and expression profiling of odorant binding protein genes in Oedaleus infernalis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:134-141. [DOI: 10.1016/j.cbd.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/12/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
|
25
|
Younas A, Waris MI, Chang XQ, Shaaban M, Abdelnabby H, Ul Qamar MT, Wang MQ. A chemosensory protein MsepCSP5 involved in chemoreception of oriental armyworm Mythimna separata. Int J Biol Sci 2018; 14:1935-1949. [PMID: 30585258 PMCID: PMC6299372 DOI: 10.7150/ijbs.27315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/29/2018] [Indexed: 01/25/2023] Open
Abstract
Chemosensory proteins (CSPs) have been suggested to perform several functions in insects, including chemoreception. To find out whether MsepCSP5 identified from Mythimna separata shows potential physiological functions in olfaction, gene expression profiles, ligand-binding experiments, molecular docking, RNA interference, and behavioral test were performed. Results showed that MsepCSP5 was highly expressed in female antennae. MsepCSP5 showed high binding affinities to a wide range of host-related semiochemicals, and displayed that 26 out of 35 candidate volatiles were highly bound (Ki < 10 µM) at pH 5.0 rather than pH 7.4. The binding sites of MsepCSP5 to candidate volatiles were well predicted by three-dimensional structure modeling and molecular docking experiments. Pursuing further, biological activities of M. separata to highly bound compounds elicited strong behavioral responses, such as alcoholic compounds displayed strong attractiveness whereas terpenes showed repellency to M. separata. The transcript expression level of MsepCSP5 gene significantly decreased after injecting target dsRNAs, and resulted in non-significant preference responses of M. separata to semiochemicals, such as 3-pentanol and 1-octene-3-ol. In conclusion, MsepCSP5 may involve in semiochemical reception of M. separata.
Collapse
Affiliation(s)
- Aneela Younas
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Irfan Waris
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang-Qian Chang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shaaban
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hazem Abdelnabby
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia 13736, Egypt
| | | | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
26
|
Chen GL, Pan YF, Ma YF, Wang J, He M, He P. Binding affinity characterization of an antennae-enriched chemosensory protein from the white-backed planthopper, Sogatella furcifera (Horváth), with host plant volatiles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:1-7. [PMID: 30497699 DOI: 10.1016/j.pestbp.2018.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023]
Abstract
The white-backed planthopper (WBPH) Sogatella furcifera is a notorious rice pest in Asia. Olfaction is crucial for the WBPH to seek and locate rice plants. However, its mechanism is still not fully understood. Chemosensory proteins (CSPs) are some of the important olfactory-related proteins. In this study, we first used a bacterial system to successfully express the recombinant, antennae-enriched protein SfurCSP5. Further, competitive fluorescence binding assays with 86 candidate ligands, including some known rice plant volatiles, showed that SfurCSP5 has high affinities for 2-tridecanone, 2-pentadecanone, and β-ionone, which are known to be present in volatile mixtures that can attract rice planthoppers, and produced Ki values of 4.89, 4.09, and 1.39 μmol/L, respectively. Additionally, homology modeling of the protein structure of SfurCSP5 showed that it possesses five α-helixes (α-1, α-2, α-3, α-4, and α-5), which is a non-typical feature of the insect CSPs. Finally, ligand docking results revealed that Leu-44, Ile-64, Phe-90, Trp-98, and Phe-101 are five hydrophobic residues that interact with all of the ligands, indicating their key involvement in the binding of SfurCSP5. Our study lays the foundation for an understanding of the olfaction mechanism of rice planthoppers.
Collapse
Affiliation(s)
- Guang-Lei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China
| | - Yu-Feng Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China
| | - Yun-Feng Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China
| | - Jun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.
| |
Collapse
|
27
|
Li ZQ, Zhang S, Cai XM, Luo JY, Dong SL, Cui JJ, Chen ZM. Distinct binding affinities of odorant-binding proteins from the natural predator Chrysoperla sinica suggest different strategies to hunt prey. JOURNAL OF INSECT PHYSIOLOGY 2018; 111:25-31. [PMID: 30336148 DOI: 10.1016/j.jinsphys.2018.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Chrysoperla sinica is an important natural predator of many notorious agricultural pests. Understanding its olfactory mechanism can help enhance the effectiveness of C. sinica in biological control. In the present study, we investigated the tissue expression patterns of 12 odorant-binding protein (OBP) genes from C. sinica (CsinOBPs). The results of quantitative real-time polymerase chain reaction (qPCR) showed that CsinOBP1, CsinOBP2, CsinOBP3, CsinOBP4, CsinOBP6, CsinOBP7, CsinOBP9, CsinOBP10, and CsinOBP12 were predominantly expressed in the antennae of both sexes, indicating their roles in olfaction. Additionally, the qPCR analysis revealed that the 12 CsinOBP genes had distinct expression patterns, while the motif-pattern investigation suggested that the OBPs had different ligands. The ligand-binding assay showed that CsinOBP1 and CsinOBP10 had broader binding spectra than did the other OBPs. Thus, CsinOBP1 was able to bind not only plant volatiles (such as farnesol, cis-3-hexenyl hexanoate, geranylacetone, β-ionone, 2-tridecanone, and trans-nerolidol) but also the aphid alarm pheromone (E)-β-farnesene. On the other hand, CsinOBP2 and CsinOBP6 exhibited relatively narrow binding spectra, only binding ethyl benzoate. The study also identified several compounds that can potentially be used to develop slow-release agents attracting C. sinica and to improve search strategies for insect pest control.
Collapse
Affiliation(s)
- Zhao-Qun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China.
| | - Shuai Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiao-Ming Cai
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Jun-Yu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shuang-Lin Dong
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Jin-Jie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zong-Mao Chen
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China.
| |
Collapse
|
28
|
Guo W, Ren D, Zhao L, Jiang F, Song J, Wang X, Kang L. Identification of Odorant-Binding Proteins (OBPs) and Functional Analysis of Phase-Related OBPs in the Migratory Locust. Front Physiol 2018; 9:984. [PMID: 30079035 PMCID: PMC6062766 DOI: 10.3389/fphys.2018.00984] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/04/2018] [Indexed: 02/04/2023] Open
Abstract
Olfactory plasticity, which is one of the major characteristics of density-dependent phase polyphenism, plays critical roles in the large-scale aggregation formation of Locusta migratoria. It is still unknown whether odorant-binding proteins (OBPs) are involved in phase-related olfactory plasticity of locusts, despite the confirmed involvement of several types of olfactory perception genes. In this study, we performed a large-scale search for OBPs and verified their expression patterns in the migratory locust. We identified 17 OBPs in the L. migratoria genome, of which 10 were novel, and we found their scattering distribution characteristics by mapping the genomic loci. Next, we revealed that these OBPs with close phylogenic relationships displayed similar tissue-specific expression profiles by a combined analysis of qRT-PCR and phylogenetic tree reconstruction. In all identified locust OBPs, seven OBPs showed differential mRNA expression levels in antenna tissue between gregarious and solitarious nymphs. Six of these seven OBPs displayed higher mRNA expression in the antennae of gregarious nymphs. The mRNA expression of LmigOBP2 and LmigOBP4 increased during gregarization and decreased during solitarization. RNAi experiments confirmed that only LmigOBP4 regulates the behavioral traits to affect gregarious behavior. These results demonstrated that OBPs also play important roles in the regulation of phase-related behavior of the locusts.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dani Ren
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lianfeng Zhao
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Feng Jiang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Juan Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Younas A, Waris MI, Tahir ul Qamar M, Shaaban M, Prager SM, Wang MQ. Functional Analysis of the Chemosensory Protein MsepCSP8 From the Oriental Armyworm Mythimna separata. Front Physiol 2018; 9:872. [PMID: 30050456 PMCID: PMC6052345 DOI: 10.3389/fphys.2018.00872] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022] Open
Abstract
Chemosensory proteins (CSPs) play important roles in chemosensation in insects, but their exact physiological functions remain elusive. In order to investigate the functions of CSPs in the oriental armyworm Mythimna separata, in the present study we explored expression patterns and binding characteristics of the CSP, MsepCSP8. The distinctive functions of MsepCSP8 were also validated by RNAi. The results showed that MsepCSP8 shares high sequence similarity with CSPs of other insect family members, including the characteristic four-cysteine signature motif. MsepCSP8 mRNA was specifically expressed in antennae of females at levels well above those in other tissues. Competitive binding assays confirmed that 20 out of 56 ligands bound more strongly to MsepCSP8 at pH 7.4 than at pH 5.0. Protein structure modeling and molecular docking analyses identified amino acid residues involved in binding volatile compounds, and behavioral response experiments showed that M. separata elicited significant responses to five volatiles from compounds displaying high binding affinity to MsepCSP8. MsepCSP8 transcript abundance was decreased by dsMsepCSP8 injection, which affected the behavioral responses of M. separata to representative semiochemicals. Our findings demonstrate that MsepCSP8 likely contributes to mediating responses of M. separata adults to plant volatiles.
Collapse
Affiliation(s)
- Aneela Younas
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad I. Waris
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Muhammad Shaaban
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Sean M. Prager
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Tropidothorax elegans Distant (Hemiptera: Lygaeidae). Sci Rep 2018; 8:7803. [PMID: 29773848 PMCID: PMC5958050 DOI: 10.1038/s41598-018-26137-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/02/2018] [Indexed: 11/09/2022] Open
Abstract
Tropidothorax elegans Distant (Hemiptera: Lygaeidae) is an insect pest that inflicts damage to vegetables and flowering plants across China. The olfactory system regulates insect behavior, such as feeding, mating, oviposition and predator avoidance. Odorant-binding proteins (OBPs) and the chemosensory proteins (CSPs) are two groups of small soluble proteins that initiate olfactory signal transduction in insects. In this study, we generated antennal transcriptomes of male and female T. elegans, and identified 19 putative OBP (14 classic OBPs and five plus-C OBPs) and seven CSP genes. Through real-time quantitative PCR analysis, we found that 14 of the 19 OBP genes were highly expressed in the antennae of both adult females and males, and 3 OBP genes were expressed higher in the antennae of males than females. Some OBP genes were also highly expressed in the legs or wings. Three CSP genes were highly expressed in the antennae of both sexes, and TeleCSP7 showed higher expression in male antennae compare to females. Interestingly, one CSP gene, TeleCSP2, was expressed in all olfactory tissues. Our results provide molecular insights into further investigating of the olfactory system of an important plant pest, T. elegans.
Collapse
|
31
|
Waris MI, Younas A, Ul Qamar MT, Hao L, Ameen A, Ali S, Abdelnabby HE, Zeng FF, Wang MQ. Silencing of Chemosensory Protein Gene NlugCSP8 by RNAi Induces Declining Behavioral Responses of Nilaparvata lugens. Front Physiol 2018; 9:379. [PMID: 29706901 PMCID: PMC5906745 DOI: 10.3389/fphys.2018.00379] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/27/2018] [Indexed: 01/05/2023] Open
Abstract
Chemosensory proteins (CSPs) play imperative functions in chemical and biochemical signaling of insects, as they distinguish and transfer ecological chemical indications to a sensory system in order to initiate behavioral responses. The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), has emerged as the most destructive pest, causing serious damage to rice in extensive areas throughout Asia. Biotic characteristics like monophagy, dual wing forms, and annual long-distance migration imply a critical role of chemoreception in N. lugens. In this study, we cloned the full-length CSP8 gene from N. lugens. Protein sequence analysis indicated that NlugCSP8 shared high sequence resemblance with the CSPs of other insect family members and had the typical four-cysteine signature. Analysis of gene expression indicated that NlugCSP8 mRNA was specifically expressed in the wings of mated 3-day brachypterous females with a 175-fold difference compare to unmated 3-day brachypterous females. The NlugCSP8 mRNA was also highly expressed in the abdomen of unmated 5-day brachypterous males and correlated to the age, gender, adult wing form, and mating status. A competitive ligand-binding assay demonstrated that ligands with long chain carbon atoms, nerolidol, hexanal, and trans-2-hexenal were able to bind to NlugCSP8 in declining order of affinity. By using bioinformatics techniques, three-dimensional protein structure modeling and molecular docking, the binding sites of NlugCSP8 to the volatiles which had high binding affinity were predicted. In addition, behavioral experiments using the compounds displaying the high binding affinity for the NlugCSP8, revealed four compounds able to elicit significant behavioral responses from N. lugens. The in vivo functions of NlugCSP8 were further confirmed through the testing of RNAi and post-RNAi behavioral experiments. The results revealed that reduction in NlugCSP8 transcript abundance caused a decrease in behavioral response to representative attractants. An enhanced understanding of the NlugCSP8 is expected to contribute in the improvement of more effective and eco-friendly control strategies of BPH.
Collapse
Affiliation(s)
- Muhammad I Waris
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aneela Younas
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Liu Hao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Asif Ameen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Saqib Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hazem Elewa Abdelnabby
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Egypt
| | - Fang-Fang Zeng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
He P, Engsontia P, Chen GL, Yin Q, Wang J, Lu X, Zhang YN, Li ZQ, He M. Molecular characterization and evolution of a chemosensory receptor gene family in three notorious rice planthoppers, Nilaparvata lugens, Sogatella furcifera and Laodelphax striatellus, based on genome and transcriptome analyses. PEST MANAGEMENT SCIENCE 2018; 74:2156-2167. [PMID: 29542232 DOI: 10.1002/ps.4912] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 02/28/2024]
Abstract
BACKGROUND The white-backed planthopper (WBPH) Sogatella furcifera, the brown planthopper (BPH) Nilaparvata lugens, and the small brown planthopper (SBPH) Laodelphax striatellus (Hemiptera: Delphacidae) are rice pests that damage rice plants by sap-sucking and by transmitting viruses. Host-seeking behavior involves chemosensory receptor genes that include odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). RESULTS We used genome and transcriptome data to identify 141 ORs, 28 GRs and 25 IRs in BPH; 135 ORs, 18 GRs and 16 IRs in WBPH; and 37 ORs, 14 GRs and 6 IRs in SBPH. A phylogenetic analysis identified several specific OR clades of rice planthoppers, the results indicating that these OR members might be used to respond to specific host volatiles. OR co-receptor (Orco) is the most conserved and essential OR gene among these species and RNA interference (RNAi) can decrease their mRNA expression level to <50%. RNAi knockdown rice planthoppers were anosmia and were unable to seek or locate rice plants in behavioral tests. CONCLUSION The results demonstrate the importance of the planthopper Orco genes in locating rice plants. This information may aid in the development of RNAi-based transgenic rice and other pest management technologies. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| | - Patamarerk Engsontia
- Molecular Ecology and Evolution Research Unit, Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Guang-Lei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| | - Qian Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu Province, People's Republic of China
| | - Jun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| | - Xu Lu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, People's Republic of China
| | - Zhao-Qun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, People's Republic of China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| |
Collapse
|
33
|
Li ZQ, Ma L, Yin Q, Cai XM, Luo ZX, Bian L, Xin ZJ, He P, Chen ZM. Gene Identification of Pheromone Gland Genes Involved in Type II Sex Pheromone Biosynthesis and Transportation in Female Tea Pest Ectropis grisescens. G3 (BETHESDA, MD.) 2018; 8:899-908. [PMID: 29317471 PMCID: PMC5844310 DOI: 10.1534/g3.117.300543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/07/2018] [Indexed: 11/18/2022]
Abstract
Moths can biosynthesize sex pheromones in the female sex pheromone glands (PGs) and can distinguish species-specific sex pheromones using their antennae. However, the biosynthesis and transportation mechanism for Type II sex pheromone components has rarely been documented in moths. In this study, we constructed a massive PG transcriptome database (14.72 Gb) from a moth species, Ectropis grisescens, which uses type II sex pheromones and is a major tea pest in China. We further identified putative sex pheromone biosynthesis and transportation-related unigenes: 111 cytochrome P450 monooxygenases (CYPs), 25 odorant-binding proteins (OBPs), and 20 chemosensory proteins (CSPs). Tissue expression and phylogenetic tree analyses showed that one CYP (EgriCYP341-fragment3), one OBP (EgriOBP4), and one CSP (EgriCSP10) gene displayed an enriched expression in the PGs, and that EgriOBP2, 3, and 25 are clustered in the moth pheromone-binding protein clade. We considered these our candidate genes. Our results yielded large-scale PG sequence information for further functional studies.
Collapse
Affiliation(s)
- Zhao-Qun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Long Ma
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, People's Republic of China
| | - Qian Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu Province 210014, People's Republic of China
| | - Xiao-Ming Cai
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Zong-Xiu Luo
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Lei Bian
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Zhao-Jun Xin
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Peng He
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Zong-Mao Chen
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| |
Collapse
|
34
|
Sun L, Wang Q, Wang Q, Dong K, Xiao Y, Zhang YJ. Identification and Characterization of Odorant Binding Proteins in the Forelegs of Adelphocoris lineolatus (Goeze). Front Physiol 2017; 8:735. [PMID: 29018358 PMCID: PMC5623005 DOI: 10.3389/fphys.2017.00735] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022] Open
Abstract
The chemosensory system is essential for insects to detect exogenous compounds, and odorant binding proteins (OBPs) play crucial roles in odorant binding and transduction. In the alfalfa plant bug Adelphocoris lineolatus, an important pest of multiple crops, our understanding of the physiological roles of antenna-biased OBPs has increased dramatically, whereas OBPs related to gustation have remained mostly unexplored. In this study, we employed RNA sequencing and RACE PCR methods to identify putative OBPs from the adult forelegs of both sexes. Eight candidate OBPs were identified, and three OBPs (AlinOBP15, 16, and 17) were novel. Full-length sequence alignment and phylogenetic analyses suggested that these three candidate OBPs had characteristics typical of the insect OBP family. AlinOBP16 and 17 displayed six highly conserved cysteines, placing them in the classic OBP subfamily, whereas AlinOBP15 resembled AlinOBP14 and clustered with the Plus-C clade. Quantitative real-time PCR (qRT-PCR) revealed distinct and significant tissue- and sex-biased expression patterns. AlinOBP15 was highly expressed in female heads, and AlinOBP16 and 17 were strongly expressed in female antennae. In particular, AlinOBP11, the most abundant OBP gene in our foreleg transcriptome dataset, was predominately expressed in adult legs. Furthermore, four types of sensilla hairs were observed on the forelegs of adult A. lineolatus, including sensilla trichodea, setae, and two types of sensilla chaetica (Sch1 and Sch2). Anti-AlinOBP11 antiserum strongly labeled the outer sensillum lymph of Sch2, implying that it has important gustatory functions in A. lineolatus. Our current findings provide evidence that OBPs can be functionally expressed in the tarsal gustatory sensilla of hemipteran mirid species, broadening our understanding of OBP chemosensory function in insects and facilitating the discovery of new functional targets for the regulation of insect host-searching behaviors.
Collapse
Affiliation(s)
- Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Li ZQ, Zhang S, Cai XM, Luo JY, Dong SL, Cui JJ, Chen ZM. Three odorant binding proteins may regulate the behavioural response of Chrysopa pallens to plant volatiles and the aphid alarm pheromone (E)-β-farnesene. INSECT MOLECULAR BIOLOGY 2017; 26:255-265. [PMID: 28247518 DOI: 10.1111/imb.12295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Artificial Chrysopa pallens release is a well-known method for suppressing aphids, but it is difficult to establish lacewing populations in the field. Understanding the functions of C. pallens odorant-binding proteins (CpalOBPs) and behavioural responses of C. pallens to plant volatiles and aphid alarm pheromone (E)-ß-farnesene has important implications for population establishment after lacewing release. Based on our previous study, five antennae-enriched CpalOBPs were selected. Sequence alignment and phylogenetic analysis revealed that these five CpalOBPs were Classic OBPs and separated into different clades. Of them, CpalOBP10 clustered in the same clade with aphid OBP7, which mediates the perception of green leaf volatiles and (E)-ß-farnesene. Ligand-binding assays showed 31 compounds, including plant-derived compounds, pest-induced volatiles and (E)-ß-farnesene, had high binding affinities for at least one of these five CpalOBPs. Of the 31 compounds, the pest-induced volatiles (Z)-3-hexenyl hexanoate and 2-hexyl-1-decanol, used in host location by the black bean aphid, elicited significant attractive behavioural responses from C. pallens. Conversely, (E)-ß-farnesene elicited strongly repellent behavioural responses. It is conceivable that C. pallens utilizes plant-derived compounds, pest-induced volatiles and (E)-ß-farnesene as foraging cues. Our studies provide new insights into the interrelationships amongst C. pallens, its prey and the host plants. Compounds that elicited significant behavioural responses from C. pallens were also identified.
Collapse
Affiliation(s)
- Z-Q Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - S Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - X-M Cai
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - J-Y Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - S-L Dong
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - J-J Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Z-M Chen
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
36
|
Sheng S, Liao CW, Zheng Y, Zhou Y, Xu Y, Song WM, He P, Zhang J, Wu FA. Candidate chemosensory genes identified in the endoparasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) by antennal transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:20-31. [PMID: 28187311 DOI: 10.1016/j.cbd.2017.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 10/20/2022]
Abstract
Meteorus pulchricornis is an endoparasitoid wasp which attacks the larvae of various lepidopteran pests. We present the first antennal transcriptome dataset for M. pulchricornis. A total of 48,845,072 clean reads were obtained and 34,967 unigenes were assembled. Of these, 15,458 unigenes showed a significant similarity (E-value <10-5) to known proteins in the NCBI non-redundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used to classify the functions of M. pulchricornis antennae genes. We identified 16 putative odorant-binding protein (OBP) genes, eight chemosensory protein (CSP) genes, 99 olfactory receptor (OR) genes, 19 ionotropic receptor (IR) genes and one sensory neuron membrane protein (SNMP) gene. BLASTx best hit results and phylogenetic analysis both indicated that these chemosensory genes were most closely related to those found in other hymenopteran species. Real-time quantitative PCR assays showed that 14 MpulOBP genes were antennae-specific. Of these, MpulOBP6, MpulOBP9, MpulOBP10, MpulOBP12, MpulOBP15 and MpulOBP16 were found to have greater expression in the antennae than in other body parts, while MpulOBP2 and MpulOBP3 were expressed predominately in the legs and abdomens, respectively. These results might provide a foundation for future studies of olfactory genes and chemoreception in M. pulchricornis.
Collapse
Affiliation(s)
- Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China.
| | - Cheng-Wu Liao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Yu Zheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Yu Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Yan Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Wen-Miao Song
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Peng He
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jian Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China.
| |
Collapse
|
37
|
Li ZQ, He P, Zhang YN, Dong SL. Molecular and Functional Characterization of Three Odorant-Binding Protein from Periplaneta americana. PLoS One 2017; 12:e0170072. [PMID: 28081263 PMCID: PMC5232348 DOI: 10.1371/journal.pone.0170072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/28/2016] [Indexed: 11/18/2022] Open
Abstract
The American cockroach, Periplaneta americana, is a vector of many pathogenic organisms associated with human diseases. Olfaction plays a crucial role in guiding cockroach behaviors and contributes to their ability to transmit pathogens. Odorant binding proteins (OBPs), abundant in the insect olfactory sensilla, are important for insect olfaction. In this study, three OBP genes, PameOBP1, 2 and 3, were cloned from P. americana. Sequence alignment and phylogenetic analysis revealed that PameOBP1, 2 and 3 belong to the Minus-C OBP, Classic OBP, and Plus-C OBP subfamilies, respectively. Expression pattern and ligand-binding analysis showed that PameOBP1 and 2 were specifically expressed in antennae, and exhibited high binding affinities (Ki < 2 μM) to farnesene, farnesol, 2-tridecanone, and tetradecane, suggesting roles in volatile perception. Conversely, PameOBP3 was ubiquitously expressed in most of the tissues examined at high levels and displayed very weak binding affinities (Ki > 40 μM) for all 87 ligands tested. Our study provides insights into the functional diversity of PameOBP genes and provides some volatiles that can potentially be used in behavioral interference of P. americana.
Collapse
Affiliation(s)
- Zhao-Qun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Peng He
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Shuang-Lin Dong
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
- * E-mail:
| |
Collapse
|
38
|
Tissue, developmental, and caste-specific expression of odorant binding proteins in a eusocial insect, the red imported fire ant, Solenopsis invicta. Sci Rep 2016; 6:35452. [PMID: 27765943 PMCID: PMC5073229 DOI: 10.1038/srep35452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/28/2016] [Indexed: 11/13/2022] Open
Abstract
Insects interact with the surrounding environment via chemoreception, and in social insects such as ants, chemoreception functions to mediate diverse behaviors including food acquisition, self/non-self recognition, and intraspecific communication. The invasive red imported fire ant, Solenopsis invicta, has spread worldwide, displaying a remarkable environmental adaptability. Odorant binding proteins (OBPs) are chemical compound carriers, involved in diverse physiological processes including odor detection and chemical transport. S. invicta contains a highly divergent 17-member OBP gene family, that includes an ant-specific expansion and the social organization implicated Gp-9 (OBP3) gene. A systematic gene expression analysis of the SiOBP repertoire was performed across social caste (workers, male and female alates), tissues (antennae, head, thorax, and abdomen), and developmental stages (egg, larvae, and pupae), revealing that although SiOBPs were expressed in the antennae, the major regions of expression were in the head and thorax across all castes, and the abdomen in male and female alates. SiOBPs were very highly expressed in female alates and at somewhat lower levels in male alates and workers. SiOBPs were differentially expressed, with unique signatures in various castes and tissues, suggesting functionality of SiOBPs beyond olfaction Expression patterns of SiOBP subgroups also showed relationships with their evolutionary relatedness.
Collapse
|
39
|
Paula DP, Togawa RC, Costa MMC, Grynberg P, Martins NF, Andow DA. Identification and expression profile of odorant-binding proteins in Halyomorpha halys (Hemiptera: Pentatomidae). INSECT MOLECULAR BIOLOGY 2016; 25:580-594. [PMID: 27170546 DOI: 10.1111/imb.12243] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The brown marmorated stink bug, Halyomorpha halys, is a devastating invasive species in the USA. Similar to other insects, olfaction plays an important role in its survival and reproduction. As odorant-binding proteins (OBPs) are involved in the initial semiochemical recognition steps, we used RNA-Sequencing (RNA-Seq) to identify OBPs in its antennae, and studied their expression pattern in different body parts under semiochemical stimulation by either aggregation or alarm pheromone or food odorants. Thirty full-length putative HhalOBPs were identified, corresponding to 22 'classic' OBPs and eight 'Plus-C' OBPs. The similarity amongst them ranged from 4.95-70.92%, and with another 325 hemipteran OBPs similarity ranged from 1.94-91.51%, the highest levels being with other stink bug OBPs. Phylogenetic analysis confirmed the monophyly of seven groups of stink bug and other hemipteran OBPs. All 30 HhalOBPs were expressed and about 2/3 were expressed primarily in antennae. The expression of 21 HhalOBPs was higher in the antennae under alarm pheromone stimulus, indicating that multiple OBPs may be responding to this pheromone. Two were highest in antennae under aggregation pheromone stimulus. These findings should provide a basis for understanding the physiological functions of HhalOBPs and the chemosensory perception of this pest, which may help to uncover new control targets for behavioural interference.
Collapse
Affiliation(s)
- D P Paula
- Parque Estação Biológica, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - R C Togawa
- Parque Estação Biológica, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - M M C Costa
- Parque Estação Biológica, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - P Grynberg
- Parque Estação Biológica, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - N F Martins
- Parque Estação Biológica, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - D A Andow
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
40
|
Xue W, Fan J, Zhang Y, Xu Q, Han Z, Sun J, Chen J. Identification and Expression Analysis of Candidate Odorant-Binding Protein and Chemosensory Protein Genes by Antennal Transcriptome of Sitobion avenae. PLoS One 2016; 11:e0161839. [PMID: 27561107 PMCID: PMC4999175 DOI: 10.1371/journal.pone.0161839] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022] Open
Abstract
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of aphids are thought to be responsible for the initial molecular interactions during olfaction that mediate detection of chemical signals. Analysis of the diversity of proteins involved comprises critical basic research work that will facilitate the development of sustainable pest control strategies. To help us better understand differences in the olfactory system between winged and wingless grain aphids, we constructed an antennal transcriptome from winged and wingless Sitobion avenae (Fabricius), one of the most serious pests of cereal fields worldwide. Among the 133,331 unigenes in the antennal assembly, 13 OBP and 5 CSP putative transcripts were identified with 6 OBP and 3 CSP sequences representing new S. avenae annotations. We used qPCR to examine the expression profile of these genes sets across S. avenae development and in various tissues. We found 7 SaveOBPs and 1 SaveCSP were specifically or significantly elevated in antennae compared with other tissues, and that some transcripts (SaveOBP8, SaveCSP2 and SaveCSP5) were abundantly expressed in the legs of winged or wingless aphids. The expression levels of the SaveOBPs and SaveCSPs varied depending on the developmental stage. Possible physiological functions of these genes are discussed. Further molecular and functional studies of these olfactory related genes will explore their potential as novel targets for controlling S. avenae.
Collapse
Affiliation(s)
- Wenxin Xue
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jia Fan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yong Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingxuan Xu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zongli Han
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingrui Sun
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Julian Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- * E-mail: ;
| |
Collapse
|
41
|
An XK, Hou ML, Liu YD. Reference Gene Selection and Evaluation for Gene Expression Studies Using qRT-PCR in the White-Backed Planthopper, Sogatella furcifera (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:879-886. [PMID: 26612891 DOI: 10.1093/jee/tov333] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The white-backed planthopper, Sogatella furcifera (Hemiptera, Delphacidae), is one of the most devastating rice pests. For a better control strategy, various genetic studies have been conducted using reverse-transcription quantitative real-time polymerase chain reaction (qRT-PCR). The appropriate application of qRT-PCR requires reliable endogenous controls; however, studies on this aspect of the white-backed planthopper are lacking. In the present study, nine commonly used reference genes, elongation factor 1-α (EF1-α), polyubiquitin (UB), ribosomal protein S18 (RPS18), actin 1 (ACT), α-1 tubulin (TUB), glyceraldehyde-3-phosphate (GAPDH), ribosomal protein L9 (RPL9), ribosomal protein L10 (RPL10), and 18S ribosomal RNA (18S), were evaluated by qRT-PCR for their expression stability under four different experimental conditions (different developmental stages, acquisition of Southern rice black-streaked dwarf virus (SRBSDV), different tissues, and different temperature stress). These results were analyzed using four software programs (geNorm, NormFinder, BestKeeper, and the delta Ct method) and a Web-based comprehensive tool RefFinder to compare and rank candidate reference genes. According to the results of RefFinder analysis, which integrates the abovementioned four software programs, TUB was ranked as the most suitable reference gene at different developmental stages and under different temperature stress, and GAPDH and RPL9 showed the highest stability for acquisition of SRBSDV and different tissues, respectively. These results will provide a solid foundation for future gene expression study on the white-backed planthopper, and also will give aids in establishing a standardized qRT-PCR procedure for other related insects.
Collapse
|
42
|
Liu Z, Smagghe G, Lei Z, Wang JJ. Identification of Male- and Female-Specific Olfaction Genes in Antennae of the Oriental Fruit Fly (Bactrocera dorsalis). PLoS One 2016; 11:e0147783. [PMID: 26845547 PMCID: PMC4741523 DOI: 10.1371/journal.pone.0147783] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 01/10/2016] [Indexed: 12/02/2022] Open
Abstract
The oriental fruit fly (Bactrocera dorsalis) is a species of tephritid fruit fly, endemic to Southeast Asia but also introduced to many regions of the US, and it is one of the major pest species with a broad host range of cultivated and wild fruits. Although males of B. dorsalis respond strongly to methyl eugenol and this is used for monitoring and estimating populations, the molecular mechanism of the oriental fruit fly olfaction has not been elucidated yet. Therefore, in this project, using next generation sequencing technologies, we sequenced the transcriptome of the antennae of male and female adults of B. dorsalis. We identified a total of 20 candidate odorant binding proteins (OBPs), 5 candidate chemosensory proteins (CSPs), 35 candidate odorant receptors (ORs), 12 candidate ionotropic receptors (IRs) and 4 candidate sensory neuron membrane proteins (SNMPs). The sex-specific expression of these genes was determined and a subset of 9 OR genes was further characterized by qPCR with male and female antenna, head, thorax, abdomen, leg and wing samples. In the male antennae, 595 genes showed a higher expression, while 128 genes demonstrated a higher expression in the female antennae. Interestingly, 2 ORs (BdorOR13 and BdorOR14) were highly and specifically expressed in the antennae of males, and 4 ORs (BdorOR13, BdorOR16, BdorOR18 and BdorOR35) clustered with DmOR677, suggesting pheromone reception. We believe this study with these antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs can play an important role in the detection of pheromones and general odorants, and so in turn our data improve our current understanding of insect olfaction at the molecular level and provide important information for disrupting the behavior of the oriental fruit fly using chemical communication methods.
Collapse
Affiliation(s)
- Zhao Liu
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Guy Smagghe
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, 400715, China
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Zhongren Lei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Jin-Jun Wang
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, 400715, China
| |
Collapse
|
43
|
Zhou CX, Min SF, Yan-Long T, Wang MQ. Analysis of antennal transcriptome and odorant binding protein expression profiles of the recently identified parasitoid wasp, Sclerodermus sp. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 16:10-9. [DOI: 10.1016/j.cbd.2015.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/28/2015] [Accepted: 06/24/2015] [Indexed: 01/07/2023]
|
44
|
Molecular Characterization and Expression Profiling of Odorant-Binding Proteins in Apolygus lucorum. PLoS One 2015; 10:e0140562. [PMID: 26466366 PMCID: PMC4605488 DOI: 10.1371/journal.pone.0140562] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023] Open
Abstract
Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most important agricultural pests, with broad host range and cryptic feeding habits in China. Chemosensory behavior plays an important role in many crucial stages in the life of A. lucorum, such as the detection of sex pheromone cues during mate pursuit and fragrant odorants during flowering host plant localization. Odorant-binding proteins (OBPs) are involved in the initial biochemical recognition steps in semiochemical perception. In the present study, a transcriptomics-based approach was used to identify potential OBPs in A. lucorum. In total, 38 putative OBP genes were identified, corresponding to 26 ‘classic’ OBPs and 12 ‘Plus-C’ OBPs. Phylogenetic analysis revealed that A. lucorum OBP proteins are more closely related to the OBP proteins of other mirid bugs as the same family OBP clustering together. Quantitative real-time PCR analysis for the first reported 23 AlucOBPs revealed that the expression level of 11 AlucOBP genes were significantly higher in antennae of both sexes than in other tissues. Three of them were male antennae-biased and six were female antennae-biased, suggesting their putative roles in the detection of female sex pheromones and host plant volatiles. In addition, three, four, two and one AlucOBPs had the highest degree of enrichment in the stylet, head, leg, and in abdomen tissues, respectively. Two other OBPs were ubiquitously expressed in the main tissues, including antennae, stylets, heads, legs and wings. Most orthologs had similar expression patterns, strongly indicating that these genes have the same function in olfaction and gustation.
Collapse
|
45
|
Farias LR, Schimmelpfeng PHC, Togawa RC, Costa MMC, Grynberg P, Martins NF, Borges M, Blassioli-Moraes MC, Laumann RA, Báo SN, Paula DP. Transcriptome-Based Identification of Highly Similar Odorant-Binding Proteins among Neotropical Stink Bugs and Their Egg Parasitoid. PLoS One 2015; 10:e0132286. [PMID: 26161752 PMCID: PMC4498631 DOI: 10.1371/journal.pone.0132286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/11/2015] [Indexed: 12/24/2022] Open
Abstract
Olfaction plays a fundamental role in insect survival through resource location and intra and interspecific communications. We used RNA-Seq to analyze transcriptomes for odorant-binding proteins (OBPs) from major stink bug pest species in Brazil, Euschistus heros, Chinavia ubica, and Dichelops melacanthus, and from their egg parasitoid, Telenomus podisi. We identified 23 OBPs in E. heros, 25 OBPs in C. ubica, 9 OBPs in D. melacanthus, and 7 OBPs in T. podisi. The deduced amino acid sequences of the full-length OBPs had low intraspecific similarity, but very high similarity between two pairs of OBPs from E. heros and C. ubica (76.4 and 84.0%) and between two pairs of OBPs from the parasitoid and its preferred host E. heros (82.4 and 88.5%), confirmed by a high similarity of their predicted tertiary structures. The similar pairs of OBPs from E. heros and C. ubica may suggest that they have derived from a common ancestor, and retain the same biological function to bind a ligand perceived or produced in both species. The T. podisi OBPs similar to E. heros were not orthologous to any known hymenopteran OBPs, and may have evolved independently and converged to the host OBPs, providing a possible basis for the host location of T. podisi using E. heros semiochemical cues.
Collapse
Affiliation(s)
- Luciana R. Farias
- University of Brasília, Campus Universitário Darcy Ribeiro, Brasília-DF, 70910–900, Brazil
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770–917, Brazil
| | - Pedro H. C. Schimmelpfeng
- University of Brasília, Campus Universitário Darcy Ribeiro, Brasília-DF, 70910–900, Brazil
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770–917, Brazil
| | - Roberto C. Togawa
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770–917, Brazil
| | - Marcos M. C. Costa
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770–917, Brazil
| | - Priscila Grynberg
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770–917, Brazil
| | - Natália F. Martins
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770–917, Brazil
| | - Miguel Borges
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770–917, Brazil
| | - Maria Carolina Blassioli-Moraes
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770–917, Brazil
| | - Raul A. Laumann
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770–917, Brazil
| | - Sônia N. Báo
- University of Brasília, Campus Universitário Darcy Ribeiro, Brasília-DF, 70910–900, Brazil
| | - Débora P. Paula
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770–917, Brazil
- * E-mail:
| |
Collapse
|
46
|
Li ZQ, Zhang S, Luo JY, Wang SB, Wang CY, Lv LM, Dong SL, Cui JJ. Identification and expression pattern of candidate olfactory genes in Chrysoperla sinica by antennal transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 15:28-38. [PMID: 26072463 DOI: 10.1016/j.cbd.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/15/2015] [Accepted: 05/27/2015] [Indexed: 11/28/2022]
Abstract
Chrysoperla sinica is one of the most prominent natural enemies of many agricultural pests. Host seeking in insects is strongly mediated by olfaction. Understanding the sophisticated olfactory system of insect antennae is crucial for studying the physiological bases of olfaction and could also help enhance the effectiveness of C. sinica in biological control. Obtaining olfactory genes is a research priority for investigating the olfactory system in this species. However, no olfaction sequence information is available for C. sinica. Consequently, we sequenced female- and male-antennae transcriptome of C. sinica. Many candidate chemosensory genes were identified, including 12 odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 37 odorant receptors (ORs), and 64 ionotropic receptors from C. sinica. The expression patterns of 12 OBPs, 19 CSPs and 37 ORs were determined by RT-PCR, and demonstrated antennae-dominantly expression of most OBP and OR genes. Our finding provided large scale genes for further investigation on the olfactory system of C. sinica at the molecular level.
Collapse
Affiliation(s)
- Zhao-Qun Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jun-Yu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Si-Bao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Yi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Li-Min Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin-Jie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| |
Collapse
|
47
|
Li ZQ, Zhang S, Luo JY, Wang SB, Dong SL, Cui JJ. Odorant-binding proteins display high affinities for behavioral attractants and repellents in the natural predator Chrysopa pallens. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:51-7. [PMID: 25810363 DOI: 10.1016/j.cbpa.2015.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 01/13/2023]
Abstract
Chrysopa pallens is an important natural predator of various pests in many different cropping systems. Understanding the sophisticated olfactory system of insect antennae is crucial for studying the physiological bases of olfaction and could also help enhance the effectiveness of C. pallens in biological control. However, functional studies of the olfactory genes in C. pallens are still lacking. In this study, we cloned five odorant-binding protein (OBP) genes from C. pallens (CpalOBPs). Quantitative RT-PCR results indicated that the five CpalOBPs had different tissue expression profiles. Ligand-binding assays showed that farnesol, farnesene, cis-3-hexenyl hexanoate, geranylacetone, beta-ionone, octyl aldehyde, decanal, nerolidol (Ki<20 μM), and especially 2-pentadecanone (Ki=1.19 μM) and 2-hexyl-1-decanol (Ki=0.37 μM) strongly bound to CpalOBP2. CpalOBP15 exhibited high binding affinities for beta-ionone, 2-tridecanone, trans-nerolidol, and dodecyl aldehyde. Behavioral trials using the 14 compounds exhibiting high binding affinities for the CpalOBPs revealed that nine were able to elicit significant behavioral responses from C. pallens. Among them, farnesene and its corresponding alcohol, farnesol, elicited remarkable repellent behavioral responses from C. pallens. Our study provides several compounds that could be selected to develop slow-release agents that attract/repel C. pallens and to improve the search for strategies to eliminate insect pests.
Collapse
Affiliation(s)
- Zhao-Qun Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Henan 455000, China; College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Shuai Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Henan 455000, China
| | - Jun-Yu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Henan 455000, China
| | - Si-Bao Wang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Shuang-Lin Dong
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China.
| | - Jin-Jie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Henan 455000, China.
| |
Collapse
|
48
|
Zhang S, Pang B, Zhang L. Novel odorant-binding proteins and their expression patterns in grasshopper, Oedaleus asiaticus. Biochem Biophys Res Commun 2015; 460:274-80. [PMID: 25778868 DOI: 10.1016/j.bbrc.2015.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/05/2015] [Indexed: 12/11/2022]
Abstract
Insects use olfaction to detect exogenous odors and adapt to environments. In their olfaction systems, odorant-binding proteins (OBPs) are believed to be a key component. The unique OBP system of each species reflects the evolution of chemosensation of insects with habits. Here, we for the first time identified 15 OBPs, OasiOBP1-15, of a grasshopper, Oedaleus asiaticus, that lives in the grasslands of Northern China and is closely related to the locust, Locusta migratoria. OasiOBP9 and OasiOBP10 are specifically expressed in the antennae. Other OBPs are expressed in the antennae as well as other chemosensory organs, such as the mouthparts and wings. Significantly more OasiOBP7 was detected in male than female antennae, but there are 9 OBPs that were more expressed in female than male antennae by quantitative real-time PCR. Phylogenetic analysis indicated that most of the O. asiaticus OBPs are similar to those of L. migratoria, but some are substantially different. This indicates that the OBPs originally evolved in a common ancestor, but their unique chemosensory systems are adapted to different ecosystems.
Collapse
Affiliation(s)
- Shuo Zhang
- Research Center for Grassland Entomology, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia 010019, China
| | - Baoping Pang
- Research Center for Grassland Entomology, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia 010019, China.
| | - Long Zhang
- Key Lab for Biological Control of The Ministry of Agriculture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
49
|
Liu S, Rao XJ, Li MY, Feng MF, He MZ, Li SG. Identification of candidate chemosensory genes in the antennal transcriptome of Tenebrio molitor (Coleoptera: Tenebrionidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:44-51. [DOI: 10.1016/j.cbd.2015.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/25/2014] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
|