1
|
Gu J, Mi H, Ren M, Huang D, Aboseif AM, Liang H, Zhang L. Research on Function of Ribosomal Protein S6 Kinases, 1α and β, Based on Molecular Cloning and siRNA-Based Interference in Juvenile Blunt Snout Bream ( Megalobrama amblycephala). BIOLOGY 2024; 13:875. [PMID: 39596830 PMCID: PMC11591792 DOI: 10.3390/biology13110875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
The aim of this study was to investigate the effects of S6K1α and β on the expression of glycolysis- and gluconeogenesis-related genes in juvenile blunt snout bream. Two isoforms, α and β, of ribosomal protein S6 kinase 1 in blunt snout bream were cloned and characterized, and their expression patterns were examined in vivo. The sequence analysis showed that s6k1α and s6k1β contain open reading frames of 2217 and 1497 bp, encoding 738 and 498 amino acids, respectively. Both S6K1α and S6K1β consist of an S_TKc domain and an extended S_TK_X domain. s6k1α and s6k1β were abundantly expressed in the heart and gonads. siRNAs were designed, and the experiment showed that α-siRNA inhibited s6k1α and s6k1β expression, but β-siRNA exclusively inhibited s6k1α expression (p < 0.05). α-siRNA upregulated the expression levels of gk and pk, while β-siRNA upregulated pepck and g6p expression (p < 0.05). The expression of g6pdh was found to be downregulated, but the gs mRNA level was overexpressed after treatment with α-siRNA and β-siRNA (p < 0.05). In the present experiment, S6K1α was more intimately involved in the regulation of gluconeogenesis when only S6K1α was inhibited, whereas the inhibition of both S6K1α and S6K1β collectively co-regulated glycolysis.
Collapse
Affiliation(s)
- Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Ahmed Mohamed Aboseif
- National Institute of Oceanography and Fisheries (NIOF), Academy of Scientific Research and Technology (ASRT), Cairo 11796, Egypt
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| |
Collapse
|
2
|
Cui X, Huang X, Chen X, Li H, Wu Y, Yang Z, Liu Z, Feng R, Xu J, Wei C, Ding Z, Cheng H. Influence of Starvation on Biochemical, Physiological, Morphological, and Transcriptional Responses Associated with Glucose and Lipid Metabolism in the Liver of Javelin Goby ( Synechogobius hasta). Animals (Basel) 2024; 14:2734. [PMID: 39335323 PMCID: PMC11429288 DOI: 10.3390/ani14182734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, the influence of fasting on hepatic glucose and lipid metabolism was explored by examining biochemical, antioxidative, and morphological indicators and transcriptional expression in the liver of javelin goby (Synechogobius hasta) after 0, 3, 7, or 14 days of starvation. Marked reductions in hepatic glycogen and triglycerides occurred from the seventh day of starvation until the end of the trial (p < 0.05). However, no alterations in hepatic cholesterol or protein were detected throughout the entire experiment (p > 0.05). During fasting, the activities of pyruvate kinase, lactate dehydrogenase, and glycogen phosphorylase a all rose firstly and then fell (p < 0.05). The activities of hepatic fatty acid synthase and acetyl-CoA carboxylase were minimized to their lowest levels at the end of food deprivation (p < 0.05), while lipase was elevated after 7-14 days of fasting (p < 0.05). Catalase, glutathione, and the total antioxidative capacity were increased and maintained their higher values in the later stage of fasting (p < 0.05), whereas malondialdehyde was not significantly changed (p > 0.05). Hepatic vein congestion, remarkable cytoplasmic vacuoles, and irregular cell shape were present in S. hasta which endured 3-7 days of fasting and were less pronounced when food shortage was prolonged. In terms of genes associated with glucose and lipid metabolism, the hepatic phosphofructokinase gene was constantly up-regulated during fasting (p < 0.05). However, the mRNA levels of glycogen synthase and glucose-6-phosphatase were obviously lower when the food scarcity extended to 7 days or more (p < 0.05). Fatty acid synthase, stearoyl-CoA desaturase 1, and peroxisome proliferator-activated receptor γ were substantially down-regulated in S. hasta livers after 7-14 days of food deprivation (p < 0.05). However, genes involved in lipolysis and fatty acid transport were transcriptionally enhanced to varying extents and peaked at the end of fasting (p < 0.05). Overall, starvation lasting 7 days or more could concurrently mobilize hepatic carbohydrates and fat as energy resources and diminished their hepatic accumulation by suppressing biosynthesis and enhancing catabolism and transport, ultimately metabolically and structurally perturbing the liver in S. hasta. This work presents preliminary data on the dynamic characteristics of hepatic glucose and lipid metabolism in S. hasta in response to starvation, which may shed light on the sophisticated mechanisms of energetic homeostasis in fish facing nutrient unavailability and may benefit the utilization/conservation of S. hasta.
Collapse
Affiliation(s)
- Xiangyu Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyang Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Honghui Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yanru Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zikui Yang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
| | - Rui Feng
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chaoqing Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
3
|
Sun M, Ye C, Wang Z, Gao X, Feng S, Hu T, Mu W. Transcriptome, histology, and enzyme activities analysis of liver in Phoxinus lagowskii to the low temperature stress and recovery. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101317. [PMID: 39241494 DOI: 10.1016/j.cbd.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Assessing the response and resilience of fish to low temperatures over different time scales can provide valuable insights into their mechanisms of adaptation to cold conditions. Farmed Amur minnows (Phoxinus lagowskii) frequently encounter low temperatures, especially during winter. However, the specific responses of P. lagowskii to low-temperature stress remain largely unexplored. In this study, we examined serum glucose and cortisol levels, histological changes, enzymes associated with phosphate and carbohydrate metabolism, triglyceride levels, and liver transcriptomics under various conditions: control (CK), short-term cold exposure (6 days, SC), prolonged cold exposure (14 days, PC), and recovery (RY) from cold exposure at 2 °C. Liver vacuolation was observed during short-term cold exposure. Additionally, we analyzed the enzymatic activity related to carbohydrate and lipid metabolism in serum and liver. Liver transcriptomic data revealed that the PPAR signaling pathway and autophagy-related genes were enriched during short-term cold exposure. Carbohydrate metabolism-related pathways, including the AMPK and MAPK signaling pathways, were significantly enriched after prolonged cold exposure. Metabolic pathways such as fat digestion and absorption, glycine, serine, and threonine metabolism, and arginine and proline metabolism were significantly enriched in the recovery group. Rapid warming after prolonged cold stress allowed P. lagowskii to recover quickly. These findings suggest that P. lagowskii has a strong adaptive capacity for energy metabolism during prolonged cold exposure and the ability to recover rapidly from cold stress. A comprehensive examination of the histological, physiological, biochemical, and molecular responses of P. lagowskii to low temperatures is crucial for developing effective strategies for cultivating this species in challenging environments.
Collapse
Affiliation(s)
- Mingyang Sun
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Cunrun Ye
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Zhen Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xinran Gao
- China Medical University, Shenyang 110122, China
| | - Shibo Feng
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Tingting Hu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
4
|
Chen J, Yan Z, Lin Z, Fan Y, Bao X, Chen X, Zheng A. I-FABP protein/mRNA and IL-6 as biomarkers of intestinal barrier dysfunction in neonates with necrotizing enterocolitis and SPF BALB/c mouse models. J Int Med Res 2024; 52:3000605241254788. [PMID: 38867509 PMCID: PMC11179468 DOI: 10.1177/03000605241254788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024] Open
Abstract
OBJECTIVE Neonatal necrotizing enterocolitis (NEC) is a serious intestinal inflammatory disease. We investigated intestinal fatty acid binding protein (I-FABP), I-FABP mRNA, and interleukin-6 (IL-6) as potential diagnostic biomarkers in NEC. METHODS Forty mice were subjected to hypoxic-ischemic intestinal injury, and then serum I-FABP protein and mRNA levels were quantified. Ileal tissue pathological scores were determined by hematoxylin and eosin staining. I-FABP expression levels and translocation in these tissues were detected using western blotting and immunofluorescence, respectively. Samples from 30 human neonates with NEC and 30 healthy neonates had serum I-FABP protein/mRNA and IL-6 levels measured. RESULTS The mouse ileal tissue pathological score and I-FABP levels, as well as serum I-FABP and I-FABP mRNA levels, were significantly higher in the model group than in the control group. Serum I-FABP, I-FABP mRNA, and IL-6 levels were significantly higher in human neonates with NEC than in the healthy group. Logistic regression and receiver operating curve analyses revealed that I-FABP protein/mRNA and IL-6 levels could be diagnostic biomarkers for NEC. CONCLUSIONS I-FABP protein/mRNA and IL-6 levels are useful biomarkers of intestinal ischemic injury in neonates with NEC. The combined detection of I-FABP protein/mRNA and IL-6 is recommended rather than using a single biomarker.
Collapse
MESH Headings
- Enterocolitis, Necrotizing/metabolism
- Enterocolitis, Necrotizing/blood
- Enterocolitis, Necrotizing/pathology
- Enterocolitis, Necrotizing/genetics
- Enterocolitis, Necrotizing/diagnosis
- Animals
- Fatty Acid-Binding Proteins/blood
- Fatty Acid-Binding Proteins/genetics
- Fatty Acid-Binding Proteins/metabolism
- Interleukin-6/blood
- Interleukin-6/genetics
- Infant, Newborn
- Humans
- Biomarkers/blood
- Biomarkers/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/blood
- Disease Models, Animal
- Mice
- Male
- Female
- Mice, Inbred BALB C
- Animals, Newborn
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Ileum/metabolism
- Ileum/pathology
- Case-Control Studies
- ROC Curve
Collapse
Affiliation(s)
- Jun Chen
- Department of Paediatrics, Fuzhou First General Hospital Affiliated with Fujian Medical University, No. 190 Dadao Road, Fuzhou, Fujian Province, China
| | - Zheng Yan
- Department of Paediatrics, Fuzhou First General Hospital Affiliated with Fujian Medical University, No. 190 Dadao Road, Fuzhou, Fujian Province, China
| | - Zhibing Lin
- Department of Clinical Laboratory, Fuzhou First General Hospital Affiliated with Fujian Medical University, No. 190 Dadao Road, Fuzhou, Fujian Province, China
| | - Yong Fan
- Department of Clinical Laboratory, Fuzhou First General Hospital Affiliated with Fujian Medical University, No. 190 Dadao Road, Fuzhou, Fujian Province, China
| | - Xuan Bao
- Department of Paediatrics, Fuzhou First General Hospital Affiliated with Fujian Medical University, No. 190 Dadao Road, Fuzhou, Fujian Province, China
| | - Xiaolin Chen
- Department of Paediatrics, Fuzhou First General Hospital Affiliated with Fujian Medical University, No. 190 Dadao Road, Fuzhou, Fujian Province, China
| | - Airu Zheng
- Department of Paediatrics, Fuzhou First General Hospital Affiliated with Fujian Medical University, No. 190 Dadao Road, Fuzhou, Fujian Province, China
| |
Collapse
|
5
|
Analyses of regulatory network and discovery of potential biomarkers for Korean rockfish (Sebastes schlegelii) in responses to starvation stress through transcriptome and metabolome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101061. [PMID: 36796184 DOI: 10.1016/j.cbd.2023.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Whether in aquaculture or in nature, starvation stress limits the growth of fish. The purpose of the study was to clarify the detailed molecular mechanisms underlying starvation stress in Korean rockfish (Sebastes schlegelii) through liver transcriptome and metabolome analysis. Transcriptome results showed that liver genes associated with cell cycle and fatty acid synthesis were down-regulated, whereas those related to fatty acid decomposition were up-regulated in the experimental group (EG; starved for 72 days) compared to the control group (CG; feeding). Metabolomic results showed that there were significant differences in the levels of metabolites related to nucleotide metabolism and energy metabolism, such as purine metabolism, histidine metabolism and oxidative phosphorylation. Five fatty acids (C22:6n-3; C22:5n-3; C20:5n-3; C20:4n-3; C18:3n-6) were selected as possible biomarkers of starvation stress from the differential metabolites of metabolome. Subsequently, correlation between these differential genes of lipid metabolism and cell cycle and differential metabolites were analyzed, and observed that these five fatty acids were significantly correlated with the differential genes. These results provide new clues for understanding the role of fatty acid metabolism and cell cycle in fish under starvation stress. It also provides a reference for promoting the biomarker identification of starvation stress and stress tolerance breeding research.
Collapse
|
6
|
Chen X, Xu Y, Cui X, Zhang S, Zhong X, Ke J, Wu Y, Liu Z, Wei C, Ding Z, Xu J, Cheng H. Starvation Affects the Muscular Morphology, Antioxidant Enzyme Activity, Expression of Lipid Metabolism-Related Genes, and Transcriptomic Profile of Javelin Goby ( Synechogobius hasta). AQUACULTURE NUTRITION 2022; 2022:7057571. [PMID: 36860464 PMCID: PMC9973160 DOI: 10.1155/2022/7057571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/03/2022] [Indexed: 06/18/2023]
Abstract
Fish in natural and cultivated environments can be challenged by starvation. However, inducing starvation in a controlled manner cannot only reduce feed consumption but also reduces aquatic eutrophication and even improves farmed fish quality. This study investigated the effects of starvation on the muscular function, morphology, and regulatory signaling in javelin goby (Synechogobius hasta) by evaluating the biochemical, histological, antioxidant, and transcriptional changes in the musculature of S. hasta subjected to 3, 7, and 14 days fasting. The muscle glycogen and triglyceride levels in S. hasta were gradually reduced under starvation, reaching their lowest at the end of the trial (P < 0.05). The levels of glutathione and superoxide dismutase were significantly elevated after 3-7 days of starvation (P < 0.05), but later returned to the level of the control group. The muscle of starved S. hasta developed structural abnormalities in some areas after 7 days of food deprivation, and more vacuolation and more atrophic myofibers were observed in 14-day fasted fish. The transcript levels of stearoyl-CoA desaturase 1 (scd1), the key gene involved in the biosynthesis of monounsaturated fatty acids, were markedly lower in the groups starved for 7 or more days (P < 0.05). However, the relative expressions of genes associated with lipolysis were decreased in the fasting experiment (P < 0.05). Similar declines in the transcriptional response to starvation were found in muscle fatp1 and ppar γ abundance (P < 0.05). Furthermore, the de novo transcriptome of muscle tissue from the control, 3-day and 14-day starved S. hasta generated 79,255 unigenes. The numbers of differentially expressed genes (DEGs) identified by pairwise comparisons among three groups were 3276, 7354, and 542, respectively. The enrichment analysis revealed that the DEGs were primarily involved in metabolism-related pathways, including ribosome, TCA pathway, and pyruvate metabolism. Moreover, the qRT-PCR results of 12 DEGs validated the expression trends observed in the RNA-seq data. Taken together, these findings demonstrated the specific phenotypical and molecular responses of muscular function and morphology in starved S. hasta, which may offer preliminary reference data for optimizing operational strategies incorporating fasting/refeeding cycles in aquaculture.
Collapse
Affiliation(s)
- Xiangning Chen
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yili Xu
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangyu Cui
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Siying Zhang
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangqi Zhong
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juntao Ke
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuze Wu
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
| | - Chaoqing Wei
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
7
|
Li ZY, Wu G, Qiu C, Zhou ZJ, Wang YP, Song GH, Xiao C, Zhang X, Deng GL, Wang RT, Yang YL, Wang XL. Mechanism and therapeutic strategy of hepatic TM6SF2-deficient non-alcoholic fatty liver diseases via in vivo and in vitro experiments. World J Gastroenterol 2022; 28:2937-2954. [PMID: 35978872 PMCID: PMC9280743 DOI: 10.3748/wjg.v28.i25.2937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/15/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The lack of effective pharmacotherapies for nonalcoholic fatty liver disease (NAFLD) is mainly attributed to insufficient research on its pathogenesis. The pathogenesis of TM6SF2-efficient NAFLD remains unclear, resulting in a lack of therapeutic strategies for TM6SF2-deficient patients.
AIM To investigate the role of TM6SF2 in fatty acid metabolism in the context of fatty liver and propose possible therapeutic strategies for NAFLD caused by TM6SF2 deficiency.
METHODS Liver samples collected from both NAFLD mouse models and human participants (80 cases) were used to evaluate the expression of TM6SF2 by using western blotting, immunohistochemistry, and quantitative polymerase chain reaction. RNA-seq data retrieved from the Gene Expression Omnibus database were used to confirm the over-expression of TM6SF2. Knockdown and overexpression of TM6SF2 were performed to clarify the mechanistic basis of hepatic lipid accumulation in NAFLD. MK-4074 administration was used as a therapeutic intervention to evaluate its effect on NAFLD caused by TM6SF2 deficiency.
RESULTS Hepatic TM6SF2 levels were elevated in patients with NAFLD and NAFLD mouse models. TM6SF2 overexpression can reduce hepatic lipid accumulation, suggesting a protective role for TM6SF2 in a high-fat diet (HFD). Downregulation of TM6SF2, simulating the TM6SF2 E167K mutation condition, increases intracellular lipid deposition due to dysregulated fatty acid metabolism and is characterized by enhanced fatty acid uptake and synthesis, accompanied by impaired fatty acid oxidation. Owing to the potential effect of TM6SF2 deficiency on lipid metabolism, the application of an acetyl-CoA carboxylase inhibitor (MK-4074) could reverse the NAFLD phenotypes caused by TM6SF2 deficiency.
CONCLUSION TM6SF2 plays a protective role in the HFD condition; its deficiency enhanced hepatic lipid accumulation through dysregulated fatty acid metabolism, and MK-4074 treatment could alleviate the NAFLD phenotypes caused by TM6SF2 deficiency.
Collapse
Affiliation(s)
- Zu-Yin Li
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing 100034, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Zhengzhou 450003, Henan Province, China
| | - Chen Qiu
- Institute of Gallstone Disease, Shanghai East Hospital, Shanghai 200120, China
| | - Zhi-Jie Zhou
- Department of General Surgery, Huashan Hospital North, Shanghai 201907, China
| | - Yu-Peng Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guo-He Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chao Xiao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200041, China
| | - Xin Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Gui-Long Deng
- Department of General Surgery, Shanghai General Hospital, Shanghai 201600, China
| | - Rui-Tao Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai 201600, China
| | - Yu-Long Yang
- Institute of Gallstone Disease, Center of Gallbladder Disease, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Liang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
8
|
Zhong X, Gu J, Zhang S, Chen X, Zhang J, Miao J, Ding Z, Xu J, Cheng H. Dynamic transcriptome analysis of the muscles in high-fat diet-induced obese zebrafish (Danio rerio) under 5-HT treatment. Gene 2022; 819:146265. [PMID: 35121026 DOI: 10.1016/j.gene.2022.146265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
Abstract
Peripheral 5-hydroxytryptamine (5-HT, also called serotonin) is reportedly a potential therapeutic target in obesity-related metabolic diseases due to its regulatory role in energy homeostasis in mammals. However, information on the detailed effect of peripheral 5-HT on the energy metabolism in fishes, especially the lipid metabolism, and the underlying mechanism remains elusive. In this study, a diet-induced obesity model was developed in the zebrafish (Danio rerio), a prototypical animal model for metabolic disorders. The zebrafish were fed a high-fat diet for 8 weeks and were simultaneously injected with PBS, 0.1 mM and 10 mM 5-HT, intraperitoneally. The body weight was significantly lower in the zebrafish injected with 0.1 mM 5-HT (P < 0.05), however, there was no change in body length (P > 0.05) at the end of the 8-week treatment. The muscle tissues from the zebrafish treated with PBS and 5-HT were collected for transcriptomic analysis and the RNA-seq revealed 1134, 3713, and 2535 genes were screened out compared to the muscular DEGs among three groups. The enrichment analysis revealed DEGs to be significantly associated with multiple metabolic pathways, including ribosome, oxidative phosphorylation, proteasome, PPAR signaling pathway, and ferroptosis. Additionally, the qRT-PCR validated 12 DEGs out of which 10 genes exhibited consistent trends. Taken together, this data provided useful information on the transcriptional characteristics of the muscle tissue in the obese zebrafish exposed to 5-HT, offering important insights into the regulatory effect of peripheral 5-HT in teleosts, as well as novel approaches for preventing and treating obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Xiangqi Zhong
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiaze Gu
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Siying Zhang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingjing Zhang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jintao Miao
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|