1
|
Ibrahim RE, Farag MFM, Sobh MS, Abdelwarith AA, Younis EM, Bazeed SM, Elgamal A, Khamis T, Davies SJ, Rahman ANA. Ameliorative potential of Populus alba leaf powder against hexaflumuron exposure in Nile tilapia: immune-antioxidant, biochemical, histological, and transcriptomic analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:67. [PMID: 40085298 DOI: 10.1007/s10695-025-01465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/04/2025] [Indexed: 03/16/2025]
Abstract
Contamination of the aquatic bodies with pesticides is a serious issue that hinders the aquaculture industry worldwide. Preventing aquatic pollution is a challenge, and finding eco-friendly strategies could help to overcome such a problem. Herein, we studied the antagonistic potential of dietary fortification of white poplar (Populus alba; PA) leaf powder against chronic hexaflumuron (HX) toxicity in Nile tilapia (Oreochromis niloticus). Fish (n = 200; 36.20 ± 1.55 g) were eventually grouped into four groups with five replicates and kept for 60 days. The C (control) and PA groups were fed basal diets fortified with 0 and 6 g PA/kg diet, respectively, without toxicant exposure. Additionally, the HX and PA + HX groups were exposed to 1/10 of 96-h lethal concentration 50 (96-h LC50) of HX (0.72 mg/L) and given the same diets as those of the C and PA groups, respectively. The biochemical, immune-antioxidant, survival, splenic gene expression, and tissue microstructure were assessed at the end of the exposure time. The outcomes of this research showed that exposure to HX resulted in biochemical disorders (elevated blood glucose, cortisol, alanine aminotransferase, aspartate aminotransferase, and creatinine) in Nile tilapia. Immune suppression (lowered complement 3 and immunoglobulin M) and oxidative stress (lowered superoxide dismutase and catalase activity and higher malondialdehyde) were consequences of HX toxicity. The splenic expression of nuclear factor-kappa β65, kelch-like ECH-associated protein 1, and heme oxygenase-1 was down-regulated by HX exposure. Various pathological changes were noted as consequences of HX exposure in the liver, kidney, and spleen tissues. By feeding on the PA diet, the fish survivability was increased (90%) compared to the non-fed group (76%). Additionally, the biochemical disorders were modulated, and immune responses were enhanced due to PA feeding. Amelioration of the oxidative stress condition (by improving the antioxidant enzyme activity and lowering malondialdehyde) and the immune gene expression were noticed when the HX-exposed Nile tilapia were fed on the PA diet. A noticeable soothing effect was noticed by feeding on the PA diet against the pathological changes in the Nile tilapia tissues. Overall, feeding on a 6 g PA/kg diet ameliorates the detrimental consequences of HX toxicity in Nile tilapia.
Collapse
Affiliation(s)
- Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| | - Mohamed F M Farag
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Mohammed S Sobh
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Shefaa M Bazeed
- Department of Biochemistry and Animal Physiology, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, College of Science and Engineering, Carna Research Station, Ryan Institute, University of Galway, Galway, H91V8Y1, Ireland
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| |
Collapse
|
2
|
Karataş B. Effects of Chlorella sp. and Schizochytrium sp. extracts on growth indices, body composition, and gene expression profiles in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2025; 276:111047. [PMID: 39551361 DOI: 10.1016/j.cbpb.2024.111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
This study assessed the impact of dietary Chlorella sp. and Schizochytrium sp. extracts on growth performance, feed utilization, body composition, and gene expression related to growth, digestion, antioxidant defense, and immune response in rainbow trout (Oncorhynchus mykiss). A total of 180 fish (average weight 8.92 ± 0.04 g) were randomly distributed into 12 fiberglass tanks (400 L, 15 fish per tank, three replicates per treatment). Fish were divided into four dietary groups for 60 days: 0 % (Control), 0.5 % Chlorella sp. extract (CH), 0.5 % Schizochytrium sp. extract (SC), and a combined 0.25 % Chlorella sp. and 0.25 % Schizochytrium sp. (CH + SC). At trial end, fish in the CH + SC group had a final weight (FW) of 27.06 ± 0.28 g, significantly higher than other groups (P < 0.05), with improved growth parameters (P < 0.05). While body composition showed no differences in moisture, lipid, or ash content, crude protein was significantly higher in CH + SC (P < 0.05). Gene expression analysis showed upregulation of the growth hormone GH-I gene in the CH + SC group (P < 0.05). Genes related to digestive enzymes (trypsin, lipase, amylase) were also upregulated in all microalgae groups, with the highest levels in CH + SC (P < 0.05). Additionally, antioxidant genes (SOD, CAT, GPx) and immune-related genes (LYZII, TNF-α, IL-1β) showed elevated expression in CH + SC (P < 0.05). This study demonstrated that a diet containing Chlorella sp. and Schizochytrium sp. extracts supports growth, enhances nutrient utilization, and upregulates genes related to antioxidant and immune function in rainbow trout. Further research is recommended to assess functional immune responses and enzyme activities to confirm these physiological effects.
Collapse
Affiliation(s)
- Boran Karataş
- Department of Aquaculture, Faculty of Fisheries, Van Yüzüncü Yıl University, Van, Türkiye.
| |
Collapse
|
3
|
Elabd H, Mahboub HH, Hamed HS, Abdelwarith AA, Younis EM, Kamel S, Ramah A, Orabi SH, Shawky SM, Davies SJ, Hassan Z. Dietary deacetylated chitin nanoparticles confer protection against diazinon toxicity in male African catfish: evaluation of immune-biochemical, antioxidant, and reproductive profiles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:32. [PMID: 39821854 DOI: 10.1007/s10695-024-01414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/14/2024] [Indexed: 01/19/2025]
Abstract
Currently, deacetylated chitin (chitosan) nanoparticles (CNPs) are successfully utilized in aquaculture practices. This trial demonstrates the efficacy of CNPs in combating diazinon (DZN) toxicity in African catfish, Clarias gariepinus, via monitoring hepato-renal function, serum immune trait, hormonal function, and hepato-renal antioxidant activity. Four groups were allocated as follows: a control group, a CNPs group (0.66 ml/L CNPs), a DZN exposed group (0.598 ppm, 1/10 LC50), and a DZN + CNPs group (0.598 ppm DZN + 0.66 ml/L CNPs), all for 30 days. Exposure to 0.598 PPm DZN resulted in a severe decline in the immune parameters (albumin, globulin, immunoglobulins (IgG, IgM), and total proteins), neurological indicator, acetylcholinesterase (AchE), reproductive hormones (Testosterone (T.) and Luteinizing Hormone (LH)), and the superoxide dismutase (SOD) and total antioxidant capacity (TAC) readings in both hepatic and renal samples. Moreover, a clear increment in hepatic and renal indicators (AST, ALT, urea, and creatinine), lipid peroxidation (LPO), and some reproductive indices including follicle stimulating hormone (FSH) and serum 17-β estradiol (E2) was clearly increased. Interestingly, the dietary inclusion of CNPs markedly palliated the toxicity by DZN with significant improvement in the immune-reproductive indices, plus normalizing the values of hepato-renal function and augmenting the activity of antioxidant parameters. Thus, the present study demonstrates the efficacy of CNPs in mitigating low-dose DZN toxicity, resulting in significant improvements in physiological, biochemical, and reproductive parameters. This highlights the promising potential of CNPs as a viable strategy for enhancing the health of C. gariepinus, thereby promoting the sustainability of the aquaculture industry and safeguarding human health.
Collapse
Affiliation(s)
- Hiam Elabd
- Department of Aquatic Animals' Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt
| | - Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Heba S Hamed
- Department of Zoology, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo, 11757, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Samar Kamel
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, PO Box 41522, Ismailia, Egypt
| | - Amany Ramah
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki, 889-2192, Japan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Sahar H Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Sherif M Shawky
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, College of Science and Engineering, Carna Research Station, Ryan Institute, University of Galway, Galway, H91V8Y1, Ireland
| | - Zeinab Hassan
- Fish Disease Department, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| |
Collapse
|
4
|
Mansour AT, Ali AA, Almanaa TN, Altohamy DE, Ezz-Eldin RMM, Sobh MS, Abdelazim AM, Heikal HS, Mahboub HH, Aref M. Effects of tea tree oil and cefepime treatments on morphological, genetic, histopathological, immunohistochemistry, and biochemical assessments in liver and kidney of Escherichia coli infected rats. Tissue Cell 2024; 91:102581. [PMID: 39423695 DOI: 10.1016/j.tice.2024.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The current study evaluated the influence of the treatment with tea tree oil and cefepime on morpho- genetic, histo-immunohistochemical, and biochemical assessments in rats experimentally challenged with Escherichia coli ATCC 4157™. Thirty adult male rats were divided into control, E. coli infected positive group (1×108CFU/I/P/once), E. coli with cefepime-supplemented group (45 mg/kg bw/I/M/day), E. coli with tea tree oil treated group (1.5 ml/per os/day), and the E. coli-challenged group that received a combination of tea tree oil and cefepime. E. coli infection induced morphological changes in color and texture of both liver and kidney. The transcription levels of the PHLPP2 and Nrf2 genes were noticeably lowered in all treated groups related to the E. coli group. Regarding the TLR4 expression, it was clearly up-regulated in the E. coli group in comparison to other groups, while CD14 gene decreased clearly in all treated groups compared to the positive group. The findings revealed that RBC, HGB, and PCV were clearly higher in the positive group compared to all treated groups. AST, ALT, and ALP, total bilirubin and its fractions, urea, and creatinine maximized in the positive group and decreased by the treatment, especially in the E+CF+oil treated group. Regarding the redox balance, MDA levels of MDA were notably reduced in the E+CF+oil treated group compared to the positive and the other treated groups. GSH, SOD, and GPX were significantly induced in the E. coil-treated group and decreased significantly with treatment. Overall, cefepime is highly safe especially when dually supplied with tea tree oil for mitigating E. coli adverse impact.
Collapse
Affiliation(s)
- Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt.
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha, Al Nakhil 61922, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dalia E Altohamy
- Department of Pharmacology, Central Laboratory, Faculty of Veterinary Medicine, Zagazig University, Zagazig PO Box 44511, Egypt
| | - Rasha M M Ezz-Eldin
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig PO Box 44511, Egypt
| | - Mohammed S Sobh
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig PO Box 44511, Egypt
| | - Aaser M Abdelazim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha, Al Nakhil 61922, Saudi Arabia
| | - Hanim S Heikal
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia PO Box 44511, Egypt.
| | - Mohamed Aref
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| |
Collapse
|
5
|
Ahmed SAA, Ibrahim RE, Younis EM, Abdelwarith AA, Faroh KY, El Gamal SA, Badr S, Khamis T, Mansour AT, Davies SJ, ElHady M. Antagonistic Effect of Zinc Oxide Nanoparticles Dietary Supplementation Against Chronic Copper Waterborne Exposure on Growth, Behavioral, Biochemical, and Gene Expression Alterations of African Catfish, Clarias gariepinus (Burchell, 1822). Biol Trace Elem Res 2024; 202:5697-5713. [PMID: 38416342 DOI: 10.1007/s12011-024-04115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The harmful impact of waterborne copper (Cu) as a common abiotic stressor in aquatic environments has gained much more interest. The present study aimed to investigate the utilization of zinc oxide nanoparticles (ZnONPs) dietary supplementation to mitigate the chronic toxicity of Cu in African catfish (Clarias gariepinus). Two hundred and forty fish (92.94 ± 0.13 g) were assigned into six groups for 60 days. Control (C), ZnONPs20, and ZnONPs30 groups were fed on basal diets fortified with 0, 20, and 30 mg kg-1 ZnONPs without Cu exposure. Cu, Cu + ZnONPs20, and Cu + ZnONPs30 groups were exposed to Cu at a dose of 10 mg L-1 and fed on basal diets fortified with 0, 20, and 30 mg kg-1 ZnONPs, respectively. The results revealed that the Cu-exposed fish experienced abnormal clinical signs and behavioral changes. The growth indices and acetylcholine esterase activity were significantly decreased (P < 0.05) in the Cu group. Meanwhile, hepatorenal and serum stress indices (P < 0.05) were significantly elevated with chronic Cu exposure. In addition, a higher expression of stress (P < 0.05) (heat shock protein 60 and hypoxia-inducible factor-1 alpha) and apoptotic-related genes (C/EBP homologous protein, caspase-3, and Bcl-2 Associated X-protein) with down-regulation (P < 0.05) of the anti-apoptotic-related genes (B-cell lymphoma 2 and proliferating cell nuclear antigen) was noticed in the Cu-exposed fish. Histopathological alterations in the gills, liver, kidney, and spleen were markedly reported in the Cu-exposed group. The dietary supplementation with ZnONPs significantly alleviated the negative impacts of chronic waterborne-Cu exposure on growth performance, physiological changes, gene expression, and tissue architecture, especially at 30 mg kg-1 diet level. In particular, the inclusion of ZnONPs at the 30 mg kg-1 diet level produced better outcomes than the 20 mg kg-1 diet. Overall, ZnONPs could be added as a feed supplement in the C. gariepinus diet to boost the fish's health and productivity and alleviate the stress condition brought on by Cu exposure.
Collapse
Affiliation(s)
- Shaimaa A A Ahmed
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Khaled Yehia Faroh
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center (ARC), P.O. Box 12619, Giza, Egypt
| | - Samar A El Gamal
- Department of Fish Diseases, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Giza, Egypt
| | - Shereen Badr
- Department of Clinical Pathology, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Giza, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Abdallah Tageldein Mansour
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, H91V8Y1, Ireland
| | - Mohamed ElHady
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
6
|
El-Houseiny W, Abdelaziz R, Mansour AT, Alqhtani HA, Bin-Jumah MN, Bayoumi Y, Arisha AH, Al-Sagheer AA, El-Murr AE. Effects of α-sitosterol on growth, hematobiochemical profiles, immune-antioxidant resilience, histopathological features and expression of immune apoptotic genes of Nile tilapia, Oreochromis niloticus, challenged with Candida albicans. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111035. [PMID: 39313020 DOI: 10.1016/j.cbpb.2024.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
In this study, the effect of the Streptomyces misakiensis metabolite (α- sitosterol, 0, 20, 40, 60, and 80 mg/kg) dietary supplementation on growth performance, antioxidant-immune stability and Candida albicans resistance of Nile tilapia was evaluated. The results revealed that the incorporation of α-sitosterol at doses of 60 and 80 mg/kg into the diet significantly improved the growth rate of Nile tilapia. The fish receiving 80 mg/kg showed an increased level of high-density lipoprotein, total protein, globulin, and albumin, and significantly reduced levels of indicators of hepato-renal damage, glucose, triglycerides, low-density lipoprotein, and total cholesterol. Dietary α-sitosterol induced a considerable increase in hepatopancreas glutathione peroxidase, superoxide dismutase and catalase activities and a significant drop in malondialdehyde levels. Supplementing the diet with 80 mg/kg of α-sitosterol increased nitric oxide, complement-3, nitro blue tetrazolium levels, lysozyme, and phagocytic activities. In particular, supplementing with α-sitosterol at 60-80 mg/kg of diet significantly enhanced the expression of pro/anti-inflammatory markers (il1b, il10, tgfb, ifng, tnfa and il8) after the C. albicans challenge. Also, there was a decrease in cumulative mortality percent, pro-apoptotic markers (casp3, bax and hsp70) and an increase in anti-apoptotic indicators (bcl2). Interestingly, following the C. albicans challenge, fish that received 0 and 20 mg α-sitosterol/kg exhibited significant inflammation in the hepatopancreas, spleen, and intestine. On the other hand, inflammation could be alleviated by feeding 60-80 mg α-sitosterol/kg. Due to these findings, α-sitosterol could be an innovative option to enhance growth, general physiological status, immune service, and antifungal resistance of Nile tilapia against C. albicans.
Collapse
Affiliation(s)
- Walaa El-Houseiny
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Rewan Abdelaziz
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and FoodSciences, King Faisal University, Al-Ahsa, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha, Alexandria University, Alexandria, Egypt.
| | - Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - May Nasser Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Yasmin Bayoumi
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University Zagazig, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Adham A Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Abd Elhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Rahman ANA, Mahboub HH, Elshopakey GE, Darwish MIM, Gharib HSAR, Shaalan M, Fahmy EM, Abdel-Ghany HM, Ismail SH, Elsheshtawy HM. Pseudomonas putida infection induces immune-antioxidant, hepato-renal, ethological, and histopathological/immunohistochemical disruptions in Oreochromis niloticus: the palliative role of titanium dioxide nanogel. BMC Vet Res 2024; 20:127. [PMID: 38561720 PMCID: PMC10983678 DOI: 10.1186/s12917-024-03972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Mahmoud I M Darwish
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, PO Box 44511, Sharkia, Egypt
| | - Heba Said Abdel-Rahman Gharib
- Department of Behaviour and Management of Animal, Poultry, and Aquatics, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
- Polymer Institute, Slovak academy of sciences, Dúbravská cesta 9, 845 41, Bratislava, Slovakia.
| | - Esraa M Fahmy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Heba M Abdel-Ghany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, PO Box 12588, Sheikh Zayed City, Giza, Egypt
| | - Hassnaa Mahmoud Elsheshtawy
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, PO Box 41522, Ismailia, Egypt
| |
Collapse
|
8
|
Zhu P, Zheng J, Yan J, Li Z, Li X, Geng H. Design, Synthesis, and Biological Evaluation of N'-Phenylhydrazides as Potential Antifungal Agents. Int J Mol Sci 2023; 24:15120. [PMID: 37894800 PMCID: PMC10606473 DOI: 10.3390/ijms242015120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Fifty-two kinds of N'-phenylhydrazides were successfully designed and synthesized. Their antifungal activity in vitro against five strains of C. albicans (Candida albicans) was evaluated. All prepared compounds showed varying degrees of antifungal activity against C. albicans and their MIC80 (the concentration of tested compounds when their inhibition rate was at 80%), TAI (total activity index), and TSI (total susceptibility index) were calculated. The inhibitory activities of 27/52 compounds against fluconazole-resistant fungi C. albicans 4395 and 5272 were much better than those of fluconazole. The MIC80 values of 14/52 compounds against fluconazole-resistant fungus C. albicans 5122 were less than 4 μg/mL, so it was the most sensitive fungus (TSIB = 12.0). A11 showed the best inhibitory activity against C. albicans SC5314, 4395, and 5272 (MIC80 = 1.9, 4.0, and 3.7 μg/mL). The antifungal activities of B14 and D5 against four strains of fluconazole-resistant fungi were better than those of fluconazole. The TAI values of A11 (2.71), B14 (2.13), and D5 (2.25) are the highest. Further exploration of antifungal mechanisms revealed that the fungus treated with compound A11 produced free radicals and reactive oxygen species, and their mycelium morphology was damaged. In conclusion, the N'-phenylhydrazide scaffold showed potential in the development of antifungal lead compounds. Among them, A11, B14, and D5 demonstrated particularly promising antifungal activity and held potential as novel antifungal agents.
Collapse
Affiliation(s)
- Panpan Zhu
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Northwest A & F University, Yangling 712100, China
| | - Jinshuo Zheng
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China
| | - Jin Yan
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China
| | - Zhaoxia Li
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China
| | - Xinyi Li
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China
| | - Huiling Geng
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
9
|
Salem MA, Aborehab NM, Abdelhafez MM, Ismail SH, Maurice NW, Azzam MA, Alseekh S, Fernie AR, Salama MM, Ezzat SM. Anti-Obesity Effect of a Tea Mixture Nano-Formulation on Rats Occurs via the Upregulation of AMP-Activated Protein Kinase/Sirtuin-1/Glucose Transporter Type 4 and Peroxisome Proliferator-Activated Receptor Gamma Pathways. Metabolites 2023; 13:871. [PMID: 37512578 PMCID: PMC10385210 DOI: 10.3390/metabo13070871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
White, green, and oolong teas are produced from the tea plant (Camellia sinensis (L.) Kuntze) and are reported to have anti-obesity and hypolipidemic effects. The current study aims to investigate the anti-obesity effects of a tea mixture nano-formulation by targeting the AMPK/Sirt-1/GLUT-4 axis in rats. In vitro lipase and α-amylase inhibition assays were used to determine the active sample, which was then incorporated into a nanoparticle formulation subjected to in vivo anti-obesity testing in rats by measuring the expression level of different genes implicated in adipogenesis and inflammation using qRT-PCR. Moreover, metabolomic analysis was performed for each tea extract using LC/ESI MS/MS coupled to chemometrics in an attempt to find a correlation between the constituents of the extracts and their biological activity. The in vitro pancreatic lipase and α-amylase inhibition assays demonstrated more effective activity in the tea mixture than the standards, orlistat and acarbose, respectively, and each tea alone. Thus, the herbal tea mixture and its nanoparticle formulation were evaluated for their in vivo anti-obesity activity. Intriguingly, the tea mixture significantly decreased the serum levels of glucose and triglycerides and increased the mRNA expression of GLUT-4, P-AMPK, Sirt-1, and PPAR-γ, which induce lipolysis while also decreasing the mRNA expression of TNF-α and ADD1/SREBP-1c, thereby inhibiting the inflammation associated with obesity. Our study suggests that the tea mixture nano-formulation is a promising therapeutic agent in the treatment of obesity and may also be beneficial in other metabolic disorders by targeting the AMPK/Sirt-1/Glut-4 pathway.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr Street, Shibin Elkom 32511, Menoufia, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Mai M Abdelhafez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Branch Campus, Cairo University, Sheikh Zayed, Giza 12588, Egypt
| | - Nadine W Maurice
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - May A Azzam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Maha M Salama
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, Suez Desert Road, El Sherouk City, Cairo 11837, Egypt
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| |
Collapse
|