1
|
Fodor I, Schmidt J, Svigruha R, László Z, Molnár L, Gonda S, Elekes K, Pirger Z. Chronic tributyltin exposure induces metabolic disruption in an invertebrate model animal, Lymnaea stagnalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107404. [PMID: 40354690 DOI: 10.1016/j.aquatox.2025.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Over the last 20 years, tributyltin (TBT) has been reported to cause metabolic disruption in both invertebrates and vertebrates, highlighting the need for further detailed analysis of its physiological effects. This study aimed to investigate the metabolic-disrupting effects of TBT from the behavioral to the molecular level. Adult specimens of the great pond snail (Lymnaea stagnalis) were exposed to an environmentally relevant concentration (100 ng L-1) of TBT for 21 days. After the chronic exposure, behavioral alterations as well as histological, cellular, and molecular changes were investigated in the central nervous system, kidney, and hepatopancreas. TBT exposure significantly decreased feeding activity, while locomotor activity remained unchanged. At the histological level, the cellular localization of tin was demonstrated in all tissues investigated and, in addition, characteristic morphological changes were observed in the kidney and hepatopancreas. Tissue-specific changes in lipid profiles confirmed TBT-induced disruption of lipid homeostasis in mollusks, characterized by a consistent reduction in the proportion of polyunsaturated fatty acids and a shift toward more saturated lipids. The expression of 17β-hydroxysteroid dehydrogenase type 12 (HSD17B12) enzyme, involved in lipid metabolism in vertebrates, was reduced in all three tissues after TBT exposure. Our results show that TBT induces significant multi-level metabolic changes in Lymnaea, including direct alterations in feeding activity and lipid composition. Our findings also suggest that HSD17B12 enzyme plays a key role in lipid metabolism in mollusks, as in mammals, and is likely involved in TBT-induced metabolic disruption. Overall, our study extends the findings of previous studies on mollusks by providing novel behavioral as well as tissue-specific histological and metabolic data and highlights the complexity and evolutionary conserved way of TBT-induced metabolic disruption.
Collapse
Affiliation(s)
- István Fodor
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary.
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - Réka Svigruha
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Zita László
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - László Molnár
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Sándor Gonda
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; Department of Pharmacognosy, University of Debrecen, 4002, Debrecen, Hungary; Department of Botany, University of Debrecen, 4032, Debrecen, Hungary; Institute of Environmental Science, University of Nyíregyháza, 4400, Nyíregyháza, Hungary
| | - Károly Elekes
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| |
Collapse
|
2
|
Comparative Analysis of miRNA-mRNA Regulation in the Testes of Gobiocypris rarus following 17α-Methyltestosterone Exposure. Int J Mol Sci 2023; 24:ijms24044239. [PMID: 36835651 PMCID: PMC9968023 DOI: 10.3390/ijms24044239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
17α-Methyltestosterone (17MT), a synthetic organic compound commonly found in sewage waters, can affect reproduction in aquatic animals, such as tilapia and yellow catfish. In the present study, male Gobiocypris rarus were exposed to 25, 50, and 100 ng/L of 17α-methyltestosterone (17MT) for 7 days. We first analyzed miRNA- and RNA-seq results to determine miRNA-target gene pairs and then developed miRNA-mRNA interactive networks after 17MT administration. Total weights, total lengths, and body lengths were not significantly different between the test groups and control groups. The paraffin slice method was applied to testes of G. rarus in the MT exposure and control groups. We found that there were more mature sperm (S) and fewer secondary spermatocytes (SSs) and spermatogonia (SGs) in the testes of control groups. As 17MT concentration increased, fewer and fewer mature sperm (S) were observed in the testes of male G. rarus. The results showed that FSH, 11-KT, and E2 were significantly higher in individuals exposed to 25 ng/L 17MT compared with the control groups. VTG, FSH, LH, 11-KT, and E2 were significantly lower in the 50 ng/L 17MT exposure groups compared to the control groups. VTG, FSH, LH, 11-KT, E2, and T were significantly lower in the groups exposed to 100 ng/L 17MT. High-throughput sequencing revealed 73,449 unigenes, 1205 known mature miRNAs, and 939 novel miRNAs in the gonads of G. rarus. With miRNA-seq, 49 (MT25-M vs. Con-M), 66 (MT50-M vs. Con-M), and 49 (MT100-M vs. Con-M) DEMs were identified in the treatment groups. Five mature miRNAs (miR-122-x, miR-574-x, miR-430-y, lin-4-x, and miR-7-y), as well as seven differentially expressed genes (soat2, inhbb, ihhb, gatm, faxdc2, ebp, and cyp1a1), which may be associated with testicular development, metabolism, apoptosis, and disease response, were assayed using qRT-PCR. Furthermore, miR-122-x (related to lipid metabolism), miR-430-y (embryonic development), lin-4-x (apoptosis), and miR-7-y (disease) were differentially expressed in the testes of 17MT-exposed G. rarus. This study highlights the role of miRNA-mRNA pairs in the regulation of testicular development and immune response to disease and will facilitate future studies on the miRNA-RNA-associated regulation of teleost reproduction.
Collapse
|
3
|
Zapata-Restrepio LM, Hauton C, Hudson MD, Williams ID, Hauton D. Toxicity of tributyltin to the European flat oyster Ostrea edulis: Metabolomic responses indicate impacts to energy metabolism, biochemical composition and reproductive maturation. PLoS One 2023; 18:e0280777. [PMID: 36745593 PMCID: PMC9901812 DOI: 10.1371/journal.pone.0280777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/10/2023] [Indexed: 02/07/2023] Open
Abstract
Tri-Butyl Tin (TBT) remains as a legacy pollutant in the benthic environments. Although the toxic impacts and endocrine disruption caused by TBT to gastropod molluscs have been established, the changes in energy reserves allocated to maintenance, growth, reproduction and survival of European oysters Ostrea edulis, a target species of concerted benthic habitat restoration projects, have not been explored. This study was designed to evaluate the effect of TBT chloride (TBTCl) on potential ions and relevant metabolomic pathways and its association with changes in physiological, biochemical and reproductive parameters in O. edulis exposed to environmental relevant concentrations of TBTCl. Oysters were exposed to TBTCl 20 ng/L (n = 30), 200 ng/L (n = 30) and 2000 ng/L (n = 30) for nine weeks. At the end of the exposure, gametogenic stage, sex, energy reserve content and metabolomic profiling analysis were conducted to elucidate the metabolic alterations that occur in individuals exposed to those compounds. Metabolite analysis showed significant changes in the digestive gland biochemistry in oysters exposed to TBTCl, decreasing tissue ATP concentrations through a combination of the disruption of the TCA cycle and other important molecular pathways involved in homeostasis, mitochondrial metabolism and antioxidant response. TBTCl exposure increased mortality and caused changes in the gametogenesis with cycle arrest in stages G0 and G1. Sex determination was affected by TBTCl exposure, increasing the proportion of oysters identified as males in O. edulis treated at 20ng/l TBTCl, and with an increased proportion of inactive stages in oysters treated with 2000 ng/l TBTCl. The presence and persistence of environmental pollutants, such as TBT, could represent an additional threat to the declining O. edulis populations and related taxa around the world, by increasing mortality, changing reproductive maturation, and disrupting metabolism. Our findings identify the need to consider additional factors (e.g. legacy pollution) when identifying coastal locations for shellfish restoration.
Collapse
Affiliation(s)
- Lina M. Zapata-Restrepio
- School of Geography and Environmental Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
- * E-mail:
| | - Chris Hauton
- Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Malcolm D. Hudson
- School of Geography and Environmental Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
| | - Ian D. Williams
- Faculty of Engineering and Physical Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
| | - David Hauton
- Metabolomics Research Group, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Wang Q, Miao J, Zhao A, Wu M, Pan L. Use of GAL4 factor-based yeast assay to quantify the effects of xenobiotics on RXR homodimer and RXR/PPAR heterodimer in scallop Chlamys farreri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158526. [PMID: 36063929 DOI: 10.1016/j.scitotenv.2022.158526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Retinoid X receptor (RXR) and peroxisome proliferators-activated receptors (PPAR) have been shown as important targets of endocrine disrupting effects caused by organotin compounds (OTCs). In vitro methods for non-model species are instrumental in revealing not only mechanism of toxicity but also basic biology. In the present study, we constructed the GAL4 factor-based recombinant yeast systems of RXRα/RXRα (RR), RXRα/PPARα (RPα) and RXRα/PPARγ (RPγ) of the scallop Chlamys farreri to investigate their transcriptional activity under the induction of OTCs (tributyltin chloride, triphenyltin chloride, tripropyltin chloride and bis(tributyltin)oxide), their spiked sediments and five other non‑tin compounds (Wy14643, rosiglitazone, benzyl butyl phthalate, dicyclohexyl phthalate and bis(2-ethylhexyl) phthalate). The results showed that the natural ligand of RXR, 9-cis-retinoic acid (9cRA), induces transcriptional activity in all three systems, while four OTCs induced the transcriptional activity of the RR and RPα systems. None of the five potential non‑tin endocrine disruptors induced effects on the RPα and RPγ systems. The spiked sediment experiment demonstrated the feasibility of the recombinant yeast systems constructed in this study for environmental sample detection. These results suggest that OTCs pose a threat to affect function of RXRα and PPARα of bivalve mollusks. The newly developed GAL4 factor-based yeast two-hybrid system can be used as a valuable tool for identification and quantification of compounds active in disturbing RXR and PPAR of bivalves.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Anran Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Manni Wu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
5
|
Zhang X, Yu R, Xie Y, Yu RQ, Wu Y. Organotins Remain a Serious Threat to the Indo-Pacific Humpback Dolphins in the Pearl River Estuary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13046-13057. [PMID: 36031938 DOI: 10.1021/acs.est.2c02780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Marine mammals often accumulate high levels of environmental contaminants, even those that are globally regulated regarding usage, raising concerns about their health status. Here, we conducted the first investigation of tissue distribution, spatiotemporal trends, and potential risks of six organotin compounds (OTs) in Indo-Pacific humpback dolphins (n = 101) from the northern South China Sea during 2003-2021. We detected the highest level of hepatic triphenyltin in these humpback dolphins compared with the results reported in cetaceans globally, and the liver accumulated the highest OT concentrations than other analyzed tissues. Despite the downward trend of butyltins in humpback dolphins after the global ban on the use of OTs as antifouling paints, levels of phenyltins have continued to increase over the past 20 years, suggesting that the other applications of phenyltins in South China remain prevalent. In vitro and in vivo analyses revealed that tissue-relevant doses of OTs could induce agonistic effects on the dolphin peroxisome proliferator-activated receptor γ as a master regulator of lipid homeostasis and altered the dolphin fatty acid profiles. Our results highlight the lipid-disrupting effects of current OT exposure in humpback dolphins and emphasize the need for further efforts to eliminate OT contamination in South China.
Collapse
Affiliation(s)
- Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Ronglan Yu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Ri-Qing Yu
- Department of Biology, Center for Environment, Biodiversity and Conservation, The University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
6
|
Capitão AMF, Lopes-Marques M, Páscoa I, Sainath SB, Hiromori Y, Matsumaru D, Nakanishi T, Ruivo R, Santos MM, Castro LFC. An ancestral nuclear receptor couple, PPAR-RXR, is exploited by organotins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149044. [PMID: 34303232 DOI: 10.1016/j.scitotenv.2021.149044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Environmental chemicals have been reported to greatly disturb the endocrine and metabolic systems of multiple animal species. A recent example involves the exploitation of the nuclear receptor (NR) heterodimeric pair composed by PPAR/RXR (peroxisome proliferator-activated receptor/retinoid X receptor), which shows lipid perturbation in mammalian species. While gene orthologues of both of these receptors have been described outside vertebrates, no functional characterization of PPAR has been carried in protostome lineages. We provide the first functional analysis of PPAR in Patella sp. (Mollusca), using model obesogens such as tributyltin (TBT), triphenyltin (TPT), and proposed natural ligands (fatty acid molecules). To gain further insights, we used site-directed mutagenesis to PPAR and replaced the tyrosine 277 by a cysteine (the human homologous amino acid and TBT anchor residue) and an alanine. Additionally, we explored the alterations in the fatty acid profiles after an exposure to the model obesogen TBT, in vivo. Our results show that TBT and TPT behave as an antagonist of Patella sp. PPAR/RXR and that the tyrosine 277 is important, but not essential in the response to TBT. Overall, these results suggest a relation between the response of the mollusc PPAR-RXR to TBT and the lipid profile alterations reported at environmentally relevant concentrations. Our findings highlight the importance of comparative analysis between protostome and deuterostome lineages to decipher the differential impact of environmental chemicals.
Collapse
Affiliation(s)
- Ana M F Capitão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), University of Porto (U.Porto), Department of Biology, Porto, Portugal
| | - Mónica Lopes-Marques
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Inês Páscoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - S B Sainath
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Department of Biotechnology, Vikrama Simhapuri University, Nellore 524 003, AP, India
| | - Youhei Hiromori
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Miguel M Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), University of Porto (U.Porto), Department of Biology, Porto, Portugal.
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), University of Porto (U.Porto), Department of Biology, Porto, Portugal.
| |
Collapse
|
7
|
Ip JCH, Leung PTY, Qiu JW, Lam PKS, Wong CKC, Chan LL, Leung KMY. Transcriptomics reveal triphenyltin-induced molecular toxicity in the marine mussel Perna viridis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148040. [PMID: 34091345 DOI: 10.1016/j.scitotenv.2021.148040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Triphenyltin (TPT) is widely used as an active ingredient in antifouling paints and fungicides, and continuous release of this highly toxic endocrine disruptor has caused serious pollution to coastal marine ecosystems and organisms worldwide. Using bioassays and transcriptome sequencing, this study comprehensively investigated the molecular toxicity of TPT chloride (TPTCl) to the marine mussel Perna viridis which is a commercially important species and a common biomonitor for marine pollution in Southeast Asia. Our results indicated that TPTCl was highly toxic to adult P. viridis, with a 96-h LC10 and a 96-h EC10 at 18.7 μg/L and 2.7 μg/L, respectively. A 21-day chronic exposure to 2.7 μg/L TPTCl revealed a strong bioaccumulation of TPT in gills (up to 36.48 μg/g dry weight) and hepatopancreas (71.19 μg/g dry weight) of P. viridis. Transcriptome analysis indicated a time course dependent gene expression pattern in both gills and hepatopancreas. Higher numbers of differentially expressed genes were detected at Day 21 (gills: 1686 genes; hepatopancreas: 1450 genes) and at Day 28 (gills: 628 genes; hepatopancreas: 238 genes) when compared with that at Day 7 (gills: 104 genes, hepatopancreas: 112 genes). Exposure to TPT strongly impaired the endocrine system through targeting on nuclear receptors and putative steroid metabolic genes. Moreover, TPT widely disrupted cellular functions, including lipid metabolism, xenobiotic detoxification, immune response and endoplasmic-reticulum-associated degradation expression, which might have caused the bioaccumulation of TPT in the tissues and aggregation of peptides and proteins in cells that further activated the apoptosis process in P. viridis. Overall, this study has advanced our understanding on both ecotoxicity and molecular toxic mechanisms of TPT to marine mussels, and contributed empirical toxicity data for risk assessment and management of TPT contamination.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jian-Wen Qiu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Chris K C Wong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Leo L Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
| |
Collapse
|
8
|
Capitão A, Lopes-Marques M, Páscoa I, Ruivo R, Mendiratta N, Fonseca E, Castro LFC, Santos MM. The Echinodermata PPAR: Functional characterization and exploitation by the model lipid homeostasis regulator tributyltin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114467. [PMID: 32278212 DOI: 10.1016/j.envpol.2020.114467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 05/06/2023]
Abstract
The wide ecological relevance of lipid homeostasis modulators in the environment has been increasingly acknowledged. Tributyltin (TBT), for instance, was shown to cause lipid modulation, not only in mammals, but also in fish, molluscs, arthropods and rotifers. In vertebrates, TBT is known to interact with a nuclear receptor heterodimer module, formed by the retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR). These modulate the expression of genes involved in lipid homeostasis. In the present work, we isolated for the first time the complete coding region of the Echinodermata (Paracentrotus lividus) gene orthologues of PPAR and RXR and evaluated the ability of a model lipid homeostasis modulator, TBT, to interfere with the lipid metabolism in this species. Our results demonstrate that TBT alters the gonadal fatty acid composition and gene expression patterns: yielding sex-specific responses in fatty acid levels, including the decrease of eicosapentaenoic acid (C20:5 n-3, EPA) in males, and increase of arachidonic acid (20:4n-6, ARA) in females, and upregulation of long-chain acyl-CoA synthetase (acsl), ppar and rxr. Furthermore, an in vitro test using COS-1 cells as host and chimeric receptors with the ligand binding domain (LBD) of P. lividus PPAR and RXR shows that organotins (TBT and TPT (Triphenyltin)) suppressed activity of the heterodimer PPAR/RXR in a concentration-dependent manner. Together, these results suggest that TBT acts as a lipid homeostasis modulator at environmentally relevant concentrations in Echinodermata and highlight a possible conserved mode of action via the PPAR/RXR heterodimer.
Collapse
Affiliation(s)
- Ana Capitão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), Department of Biology, University of Porto (U.Porto), Porto, Portugal
| | - Mónica Lopes-Marques
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Inês Páscoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Nicolau Mendiratta
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Elza Fonseca
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), Department of Biology, University of Porto (U.Porto), Porto, Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), Department of Biology, University of Porto (U.Porto), Porto, Portugal.
| | - Miguel Machado Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), Department of Biology, University of Porto (U.Porto), Porto, Portugal.
| |
Collapse
|
9
|
Regulation of fatty acid composition related to ontogenetic changes and niche differentiation of a common aquatic consumer. Oecologia 2020; 193:325-336. [PMID: 32440703 PMCID: PMC7320933 DOI: 10.1007/s00442-020-04668-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 05/06/2020] [Indexed: 11/10/2022]
Abstract
Fatty acids (FAs) are key nutrients for fitness which take part in multiple physiological processes over the ontogeny of organisms. Yet, we lack evidence on how FA nutrition mediates life-history trade-offs and ontogenetic niche shifts in natural populations. In a field study, we analyzed ontogenetic changes in the FAs of Eurasian perch (Perca fluviatilis L.), a widespread fish that goes through ontogenetic niche shifts and can have high individual niche specialization. Diet explained most of the variation in the FA composition of perch dorsal muscle over early ontogeny (28%), while the total length explained 23%, suggesting that perch significantly regulated FA composition over early ontogeny. Condition explained 1% of the remaining variation. 18:3n-3 (ALA) and 18:4n-3 (SDA) indicated planktivory; 18:1n-7, benthivory; and 22:6n-3 (DHA), piscivory in perch diet. Conversely, perch regulated long-chained polyunsaturated fatty acids (PUFAs), such as 20:5n-3 (EPA), 20:4n-6 (ARA) and 22:6n-3 (DHA) over ontogeny, emphasizing the role of such FAs in early growth and sexual maturation. Adult perch increasingly retained 16:1n-7 and 18:1n-9 suggesting higher energy storage in older perch. Furthermore, differences in DHA availability in diet correlated with intra-cohort differences in perch growth, potentially hindering the overall use of benthic resources and promoting earlier shifts to piscivory in littoral habitats. Overall, this study indicates that in addition to diet, internal regulation may be more important for FA composition than previously thought. Differences between FA needs and FA availability may lead to life-history trade-offs that affect the ecology of consumers, including their niche.
Collapse
|
10
|
Barbosa MAG, Capela R, Rodolfo J, Fonseca E, Montes R, André A, Capitão A, Carvalho AP, Quintana JB, Castro LFC, Santos MM. Linking chemical exposure to lipid homeostasis: A municipal waste water treatment plant influent is obesogenic for zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109406. [PMID: 31288122 DOI: 10.1016/j.ecoenv.2019.109406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Obesity, a risk factor for the development of type-2 diabetes, hypertension, cardiovascular disease, hepatic steatosis and some cancers, has been ranked in the top 10 health risk in the world by the World Health Organization. Despite the growing body of literature evidencing an association between the obesity epidemic and specific chemical exposure across a wide range of animal taxa, very few studies assessed the effects of chemical mixtures and environmental samples on lipid homeostasis. Additionally, the mode of action of several chemicals reported to alter lipid homeostasis is still poorly understood. Aiming to fill some of these gaps, we combined an in vivo assay with the model species zebrafish (Danio rerio) to screen lipid accumulation and evaluate expression changes of key genes involved in lipid homeostasis, alongside with an in vitro transactivation assay using human and zebrafish nuclear receptors, retinoid X receptor α and peroxisome proliferator-activated receptor γ. Zebrafish larvae were exposed from 4 th day post-fertilization until the end of the experiment (day 18), to six different treatments: experimental control, solvent control, tributyltin at 100 ng/L Sn and 200 ng/L Sn (positive control), and wastewater treatment plant influent at 1.25% and 2.5%. Exposure to tributyltin and to 2.5% influent led to a significant accumulation of lipids, with white adipose tissue deposits concentrating in the perivisceral area. The highest in vitro tested influent concentration (10%) was able to significantly transactivate the human heterodimer PPARγ/RXRα, thus suggesting the presence in the influent of HsPPARγ/RXRα agonists. Our results demonstrate, for the first time, the ability of complex environmental samples from a municipal waste water treatment plant influent to induce lipid accumulation in zebrafish larvae.
Collapse
Affiliation(s)
- Mélanie Audrey Gomes Barbosa
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Ricardo Capela
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Jorge Rodolfo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Elza Fonseca
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782, Santiago de Compostela, Spain
| | - Ana André
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Ana Capitão
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - António Paulo Carvalho
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782, Santiago de Compostela, Spain
| | - L Filipe C Castro
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Miguel Machado Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
11
|
Lee MC, Fonseca E, Park JC, Yoon DS, Choi H, Kim M, Han J, Cho HS, Shin KH, Santos ML, Jung JH, Castro LFC, Lee JS. Tributyltin Affects Retinoid X Receptor-Mediated Lipid Metabolism in the Marine Rotifer Brachionus koreanus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7830-7839. [PMID: 31244070 DOI: 10.1021/acs.est.9b01359] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To examine how tributyltin (TBT), a model obesogen, affects the lipid metabolism in the marine rotifer Brachionus koreanus, we carried out life-cycle studies and determined the in vitro and in silico interactions of retinoid X receptor (RXR) with TBT, the transcriptional levels of RXR and lipid metabolic genes, and the fatty acid content. The lethal concentration 10% (LC10) was determined to be 5.12 μg/L TBT, and negative effects on ecologically relevant end points (e.g., decreased lifespan and fecundity) were detected at 5 μg/L TBT. On the basis of these findings, subsequent experiments were conducted below 1 μg/L TBT, which did not show any negative effects on ecologically relevant end points in B. koreanus. Nile red staining analysis showed that after exposure to 1 μg/L TBT, B. koreanus stored neutral lipids and had significantly increased transcriptional levels of RXR and lipid metabolism-related genes compared to the control. However, the content of total fatty acids did not significantly change at any exposure level. In the single fatty acids profile, a significant increase in saturated fatty acids (SFAs) 14:0 and 20:0 was observed, but the contents of omega-3 and omega-6 fatty acids were significantly decreased. Also, a transactivation assay of TBT with RXR showed that TBT is an agonist of Bk-RXR with a similar fold-induction to the positive control. Taken together, these results demonstrate that TBT-modulated RXR signaling leads to increase in transcriptional levels of lipid metabolism-related genes and the synthesis of SFAs but decreases the content of polyunsaturated fatty acids (PUFAs). Our findings support a wider taxonomic scope of lipid perturbation due to xenobiotic exposure that occurs via NRs in aquatic animals.
Collapse
Affiliation(s)
- Min-Chul Lee
- Department of Biological Science, College of Science , Sungkyunkwan University , Suwon 16419 , South Korea
| | - Elza Fonseca
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Jun Chul Park
- Department of Biological Science, College of Science , Sungkyunkwan University , Suwon 16419 , South Korea
| | - Deok-Seo Yoon
- Department of Biological Science, College of Science , Sungkyunkwan University , Suwon 16419 , South Korea
| | - Hyuntae Choi
- Department of Marine and Convergence Sciences, College of Science and Technology , Hanyang University , Ansan 15588 , South Korea
| | - Moonkoo Kim
- Risk Assessment Research Center , Korea Institute of Ocean Science & Technology , Geoje 53201 , South Korea
- Department of Marine Environmental Science , Korea University of Science and Technology , Daejeon 34113 , South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science , Sungkyunkwan University , Suwon 16419 , South Korea
| | - Hyeon-Seo Cho
- College of Fisheries and Ocean Sciences , Chonnam National University , Yeosu 550-749 , South Korea
| | - Kyung-Hoon Shin
- Department of Marine and Convergence Sciences, College of Science and Technology , Hanyang University , Ansan 15588 , South Korea
| | - Miguel L Santos
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Jee-Hyun Jung
- Risk Assessment Research Center , Korea Institute of Ocean Science & Technology , Geoje 53201 , South Korea
- Department of Marine Environmental Science , Korea University of Science and Technology , Daejeon 34113 , South Korea
| | - L Filipe C Castro
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Jae-Seong Lee
- Department of Biological Science, College of Science , Sungkyunkwan University , Suwon 16419 , South Korea
| |
Collapse
|
12
|
Fang DA, Zhao CS, Jiang SL, Zhou YF, Xu DP. Toxic function of CD28 involving in the TLR/MyD88 signal pathway in the river pufferfish (Takifugu obscurus) after exposed to tributyltin chloride (TBT-Cl). Gene 2019; 688:84-92. [DOI: 10.1016/j.gene.2018.11.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/07/2018] [Accepted: 11/22/2018] [Indexed: 01/18/2023]
|
13
|
Lipidomic adaptations of the Metarhizium robertsii strain in response to the presence of butyltin compounds. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:316-326. [DOI: 10.1016/j.bbamem.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023]
|
14
|
Capitão AMF, Lopes-Marques MS, Ishii Y, Ruivo R, Fonseca ESS, Páscoa I, Jorge RP, Barbosa MAG, Hiromori Y, Miyagi T, Nakanishi T, Santos MM, Castro LFC. Evolutionary Exploitation of Vertebrate Peroxisome Proliferator-Activated Receptor γ by Organotins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13951-13959. [PMID: 30398865 DOI: 10.1021/acs.est.8b04399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Globally persistent man-made chemicals display ever-growing ecosystemic consequences, a hallmark of the Anthropocene epoch. In this context, the assessment of how lineage-specific gene repertoires influence organism sensitivity toward endocrine disruptors is a central question in toxicology. A striking example highlights the role of a group of compounds known as obesogens. In mammals, most examples involve the modulation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ). To address the structural and biological determinants of PPARγ exploitation by a model obesogen, tributyltin (TBT), in chordates, we employed comparative genomics, transactivation and ligand binding assays, homology modeling, and site-directed-mutagenesis. We show that the emergence of multiple PPARs (α, β and γ) in vertebrate ancestry coincides with the acquisition of TBT agonist affinity, as can be deduced from the conserved transactivation and binding affinity of the chondrichthyan and mammalian PPARγ. The amphioxus single-copy PPAR is irresponsive to TBT; as well as the investigated teleosts, this is a probable consequence of a specific mutational remodeling of the ligand binding pocket. Our findings endorse the modulatory ability of man-made chemicals and suggest an evolutionarily diverse setting, with impacts for environmental risk assessment.
Collapse
Affiliation(s)
- Ana M F Capitão
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - Mónica S Lopes-Marques
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Yoichiro Ishii
- Laboratory of Hygienic Chemistry and Molecular Toxicology , Gifu Pharmaceutical University , 1-25-4 Daigaku-nishi , Gifu , Gifu 501-1196 , Japan
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Elza S S Fonseca
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - Inês Páscoa
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Rodolfo P Jorge
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Mélanie A G Barbosa
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology , Gifu Pharmaceutical University , 1-25-4 Daigaku-nishi , Gifu , Gifu 501-1196 , Japan
- Faculty of Pharmaceutical Sciences , Suzuka University of Medical Science 3500-3 Minamitamagaki , Suzuka , Mie 513-8670 , Japan
| | - Takayuki Miyagi
- Laboratory of Hygienic Chemistry and Molecular Toxicology , Gifu Pharmaceutical University , 1-25-4 Daigaku-nishi , Gifu , Gifu 501-1196 , Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology , Gifu Pharmaceutical University , 1-25-4 Daigaku-nishi , Gifu , Gifu 501-1196 , Japan
| | - Miguel M Santos
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| |
Collapse
|
15
|
Zhen H, Ekman DR, Collette TW, Glassmeyer ST, Mills MA, Furlong ET, Kolpin DW, Teng Q. Assessing the impact of wastewater treatment plant effluent on downstream drinking water-source quality using a zebrafish (Danio Rerio) liver cell-based metabolomics approach. WATER RESEARCH 2018; 145:198-209. [PMID: 30142518 PMCID: PMC7017645 DOI: 10.1016/j.watres.2018.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/25/2018] [Accepted: 08/11/2018] [Indexed: 05/18/2023]
Abstract
Cell-based metabolomics was used in a proof-of-concept fashion to investigate the biological effects of contaminants as they traveled from a wastewater treatment plant (WWTP) discharge to a drinking water treatment plant (DWTP) intake in a surface-water usage cycle. Zebrafish liver (ZFL) cells were exposed to water samples collected along a surface-water flowpath, where a WWTP was located ∼14.5 km upstream of a DWTP. The sampling sites included: 1) upstream of the WWTP, 2) the WWTP effluent discharging point, 3) a proximal location downstream of the WWTP outfall, 4) a distal location downstream of the WWTP outfall, 5) the drinking water intake, and 6) the treated drinking water collected prior to discharge to the distribution system. After a 48-h laboratory exposure, the hydrophilic and lipophilic metabolites in ZFL cell extracts were analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS), respectively. Multivariate statistical analysis revealed distinct changes in metabolite profiles in response to WWTP effluent exposure. These effects on the hydrophilic metabolome gradually diminished downstream of the WWTP, becoming non-significant at the drinking water intake (comparable to upstream of the WWTP, p = 0.98). However, effects on the lipophilic metabolome increased significantly as the river flowed from the distal location downstream of the WWTP to the drinking water intake (p < 0.001), suggesting a source of bioactive compounds in this watershed other than the WWTP. ZFL cells exposed to treated drinking water did not exhibit significant changes in either the hydrophilic (p = 0.15) or lipophilic metabolome (p = 0.83) compared to the upstream site, suggesting that constituents in the WWTP effluent were efficiently removed by the drinking water treatment process. Impacts on ZFL cells from the WWTP effluent included disrupted energy metabolism, a global decrease in amino acids, and altered lipid metabolism pathways. Overall, this study demonstrated the utility of cell-based metabolomics as an effective tool for assessing the biological effects of complex pollutant mixtures, particularly when used as a complement to conventional chemical monitoring.
Collapse
Affiliation(s)
- Huajun Zhen
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA 30605, United States.
| | - Drew R Ekman
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA 30605, United States
| | - Timothy W Collette
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA 30605, United States
| | - Susan T Glassmeyer
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, United States
| | - Marc A Mills
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45268, United States
| | - Edward T Furlong
- U.S. Geological Survey, National Water Quality Laboratory, Denver Federal Center, Bldg 95, Denver, CO 80225, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States
| | - Quincy Teng
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA 30605, United States.
| |
Collapse
|
16
|
Dong-Po X, Di-An F, Chang-Sheng Z, Shu-Lun J, Hao-Yuan H. Effect of tributyltin chloride (TBT-Cl) exposure on expression of HSP90β1 in the river pufferfish (Takifugu obscurus): Evidences for its immunologic function involving in exploring process. Gene 2018; 666:9-17. [PMID: 29723535 DOI: 10.1016/j.gene.2018.04.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 01/27/2023]
Abstract
HSP90β1 (known as glyco-protein 96, GP96) is a vital endoplasmic reticulum (ER) depended chaperonin among the HSPs (heat shock proteins) family. Furthermore, it always processes and presents antigen of the tumor and keeps balance for the intracellular environment. In the present study, we explored the effect of tributyltin chloride (TBT-Cl) exposure on HSP90β1 expression in river pufferfish, Takifugu obscurus. The full length of To-HSP90β1 was gained with 2775 bp in length, with an ORF (open reading frame) encoding an 803 aa polypeptide. A phylogenetic tree was constructed and showed the close relationship to other fish species. The HSP90β1 mRNA transcript was expressed in all tissues investigated with higher level in the gill and liver. After the acute and chronic exposure of TBT-Cl, the To-HSP90β1 mRNA transcript significantly was up-regulated in gills. Moreover, the histology study indicated the different injury degree of TBT-Cl in liver and gill. Immunohistochemistry (IHC) staining results implied the cytoplasm reorganization after TBT-Cl stress and the function of immunoregulation for To-HSP90β1 to TBT-Cl exposure. All the results indicated that HSP90β1 may be involved in the resistance to the invasion of TBT-Cl for keeping autoimmune homeostasis.
Collapse
Affiliation(s)
- Xu Dong-Po
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Fang Di-An
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Zhao Chang-Sheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Jiang Shu-Lun
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Hu Hao-Yuan
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
17
|
Martínez-Paz P, Morales M, Sánchez-Argüello P, Morcillo G, Martínez-Guitarte JL. Cadmium in vivo exposure alters stress response and endocrine-related genes in the freshwater snail Physa acuta. New biomarker genes in a new model organism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1488-1497. [PMID: 27890585 DOI: 10.1016/j.envpol.2016.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
The freshwater snail Physa acuta is a sensitive organism to xenobiotics that is appropriate for toxicity testing. Cadmium (Cd) is a heavy metal with known toxic effects on several organisms, which include endocrine disruption and activation of the cellular stress responses. There is scarce genomic information on P. acuta; hence, in this work, we identify several genes related to the hormonal system, the stress response and the detoxification system to evaluate the effects of Cd. The transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), the heat shock proteins genes hsp70 and hsp90 and a metallothionein (MT) gene was analysed in P. acuta exposed to Cd. In addition, the hsp70 and hsp90 genes were also evaluated after heat shock treatment. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that Cd presence induced a significant increase in the mRNA levels of ER, ERR and RXR, suggesting a putative mode of action that could explain the endocrine disruptor activity of this heavy metal at the molecular level on Gastropoda. Moreover, the hsp70 gene was upregulated after 24-h Cd treatment, but the hsp90 gene expression was not affected. In contrast, the hsp70 and hsp90 genes were strongly upregulated during heat shock response. Finally, the MT gene expression showed a non-significant variability after Cd exposure. In conclusion, this study provides, for the first time, information about the effects of Cd on the endocrine system of Gastropoda at the molecular level and offers new putative biomarker genes that could be useful in ecotoxicological studies, risk assessment and bioremediation.
Collapse
Affiliation(s)
- Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain.
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medioambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. La Coruña km 7, 28040 Madrid, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
18
|
Tian H, Wu P, Wang W, Ru S. Disruptions in aromatase expression in the brain, reproductive behavior, and secondary sexual characteristics in male guppies (Poecilia reticulata) induced by tributyltin. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 162:117-125. [PMID: 25814056 DOI: 10.1016/j.aquatox.2015.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Although bioaccumulation of tributyltin (TBT) in fish has been confirmed, information on possible effects of TBT on reproductive system of fish is still relatively scarce, particularly at environmentally relevant levels. To evaluate the adverse effects and intrinsic toxicological properties of TBT in male fish, we studied aromatase gene expression in the brain, sex steroid contents, primary and secondary sexual characteristics, and reproductive behavior in male guppies (Poecilia reticulata) exposed to tributyltin chloride at the nominal concentrations of 5, 50, and 500 ng/L for 28 days in a semi-static exposure system. Radioimmunoassay demonstrated that treatment with 50 ng/L TBT caused an increase in systemic levels of testosterone of male guppies. Gonopodial index, which showed a positive correlation with testosterone levels, was elevated in the 5 ng/L and 50 ng/L TBT treated groups. Real-time PCR revealed that TBT exposure had inhibiting effects on expression of two isoforms of guppy aromatase in the brain, and these changes at the molecular levels were associated with a disturbance of reproductive behavior of the individuals, as measured by decreases in frequencies of posturing, sigmoid display, and chase activities when males were paired with females. This study provides the first evidence that TBT can cause abnormalities of secondary sexual characteristics in teleosts and that suppression of reproductive behavior in teleosts by TBT is due to its endocrine-disrupting action as an aromatase inhibitor targeting the nervous system.
Collapse
Affiliation(s)
- Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Peng Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China.
| |
Collapse
|
19
|
André A, Ruivo R, Gesto M, Castro LFC, Santos MM. Retinoid metabolism in invertebrates: when evolution meets endocrine disruption. Gen Comp Endocrinol 2014; 208:134-45. [PMID: 25132059 DOI: 10.1016/j.ygcen.2014.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/20/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023]
Abstract
Recent genomic and biochemical evidence in invertebrate species pushes back the origin of the retinoid metabolic and signaling modules to the last common ancestor of all bilaterians. However, the evolution of retinoid pathways are far from fully understood. In the majority of non-chordate invertebrate lineages, the ongoing functional characterization of retinoid-related genes (metabolism and signaling pathways), as well as the characterization of the endogenous retinoid content (precursors and active retinoids), is still incomplete. Despite limited, the available data supports the presence of biologically active retinoid pathways in invertebrates. Yet, the mechanisms controlling the spatial and temporal distribution of retinoids as well as their physiological significance share similarities and differences with vertebrates. For instance, retinol storage in the form of retinyl esters, a key feature for the maintenance of retinoid homeostatic balance in vertebrates, was only recently demonstrated in some mollusk species, suggesting that such ability is older than previously anticipated. In contrast, the enzymatic repertoire involved in this process is probably unlike that of vertebrates. The suggested ancestry of active retinoid pathways implies that many more metazoan species might be potential targets for endocrine disrupting chemicals. Here, we review the current knowledge about the occurrence and functionality of retinoid metabolic and signaling pathways in invertebrate lineages, paying special attention to the evolutionary origin of retinoid storage mechanisms. Additionally, we summarize existing information on the endocrine disruption of invertebrate retinoid modules by environmental chemicals. Research priorities in the field are highlighted.
Collapse
Affiliation(s)
- A André
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - R Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - M Gesto
- Laboratorio de Fisioloxía Animal, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - M M Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
20
|
Abstract
The obesogen hypothesis postulates the role of environmental chemical pollutants that disrupt homeostatic controls and adaptive mechanisms to promote adipose-dependent weight gain leading to obesity and metabolic syndrome complications. One of the most direct molecular mechanisms for coupling environmental chemical exposures to perturbed physiology invokes pollutants mimicking endogenous endocrine hormones or bioactive dietary signaling metabolites that serve as nuclear receptor ligands. The organotin pollutant tributyltin can exert toxicity through multiple mechanisms but most recently has been shown to bind, activate, and mediate RXR-PPARγ transcriptional regulation central to lipid metabolism and adipocyte biology. Data in support of long-term obesogenic effects on whole body adipose tissue are also reported. Organotins represent an important model test system for evaluating the impact and epidemiological significance of chemical insults as contributing factors for obesity and human metabolic health.
Collapse
Affiliation(s)
- Felix Grün
- The Center for Complex Biological Systems, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
21
|
Pereira-Fernandes A, Vanparys C, Hectors TLM, Vergauwen L, Knapen D, Jorens PG, Blust R. Unraveling the mode of action of an obesogen: mechanistic analysis of the model obesogen tributyltin in the 3T3-L1 cell line. Mol Cell Endocrinol 2013; 370:52-64. [PMID: 23428407 DOI: 10.1016/j.mce.2013.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/30/2022]
Abstract
Obesogenic compounds are chemicals that have an influence on obesity development. This study was designed to unravel the molecular mechanisms of the model obesogen TBT, using microarray analysis in the 3T3-L1 in vitro system, and to evaluate the use of toxicogenomics for obesogen screening. The microarray results revealed enrichment of Gene Ontology terms involved in energy and fat metabolism after 10 days of TBT exposure. Pathway analysis unveiled PPAR signalling pathway as the sole pathway significantly enriched after 1 day and the most significantly enriched pathway after 10 days of exposure. To our knowledge, this is the first study delivering an in depth mechanistic outline of the mode of action of TBT as an obesogen, combining effects on both cell physiological and gene expression level. Furthermore, our results show that combining transcriptomics with 3T3-L1 cells is a promising tool for screening of potential obesogenic compounds.
Collapse
Affiliation(s)
- Anna Pereira-Fernandes
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The environmental obesogen hypothesis postulates chemical pollutants that are able to promote obesity by altering homeostatic metabolic set-points, disrupting appetite controls, perturbing lipid homeostasis to promote adipocyte hypertrophy, or stimulating adipogenic pathways that enhance adipocyte hyperplasia during development or in adults. This review focuses on recent experimental advances for candidate obesogens that target nuclear hormone receptors when a direct link between exposure, modulation of transcriptional networks and adipogenic phenotypes can be rationalized. RECENT FINDINGS Various endocrine disrupting chemicals can disrupt hormonal signaling relevant to adipose tissue biology. In this review, progress on one identified obesogen, the organotin tributyltin, will be outlined to highlight principles and novel insights into its high-affinity nuclear hormone receptor-mediated mechanism, its effects on adipocyte biology, its potential to promote long-term obesogenic changes and its epidemiological relevance. When appropriate, important results for other suspected obesogenic ligands, including bisphenol A, phthalates, polybrominated diphenyl ethers and perfluoro-compounds, will highlight corroborating principles. SUMMARY These examples serve to provide perspective on the potential harm that man-made obesogenic pollutants pose to human health, focus attention on areas in which knowledge remains inadequate and prompt a re-evaluation of the causative risk factors driving the current changes in obesity rates.
Collapse
Affiliation(s)
- Felix Grün
- Center for Complex Biological Systems, University of California Irvine, Irvine, California 92697-2280, USA.
| |
Collapse
|
23
|
Abstract
The recent dramatic rise in obesity rates is an alarming global health trend that consumes an ever increasing portion of health care budgets in Western countries. The root cause of obesity is thought to be a prolonged positive energy balance. Hence, the major focus of preventative programs for obesity has been to target overeating and inadequate physical exercise. Recent research implicates environmental risk factors, including nutrient quality, stress, fetal environment and pharmaceutical or chemical exposure as relevant contributing influences. Evidence points to endocrine disrupting chemicals that interfere with the body's adipose tissue biology, endocrine hormone systems or central hypothalamic-pituitary-adrenal axis as suspects in derailing the homeostatic mechanisms important to weight control. This review highlights recent advances in our understanding of the molecular targets and mechanisms of action for these compounds and areas of future research needed to evaluate the significance of their contribution to obesity.
Collapse
Affiliation(s)
- Felix Grün
- Department of Developmental & Cell Biology, University of California Irvine, 92697-2300, USA
| | | |
Collapse
|
24
|
Abstract
Obesity and obesity-related disorders, such as type 2 diabetes, hypertension, and cardiovascular disease, are epidemic in Western countries, particularly the United States. The conventional wisdom holds that obesity is primarily the result of a positive energy balance, i.e. too many calories in and too few calories burned. Although it is self-evident that fat cannot be accumulated without a higher caloric intake than expenditure, recent research in a number of laboratories suggests the existence of chemicals that alter regulation of energy balance to favor weight gain and obesity. These obesogens derail the homeostatic mechanisms important for weight control, such that exposed individuals are predisposed to weight gain, despite normal diet and exercise. This review considers the evidence for obesogens, how they might act, and where future research is needed to clarify their relative contribution to the obesity epidemic.
Collapse
Affiliation(s)
- Felix Grün
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300, USA
| | | |
Collapse
|
25
|
Van den Broeck H, De Wolf H, Backeljau T, Blust R. Comparative assessment of reproductive impairment in the gastropod mollusc Littorina littorea along the Belgian North Sea coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:3063-3069. [PMID: 19223064 DOI: 10.1016/j.scitotenv.2008.12.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 05/27/2023]
Abstract
In this study we present the results of an intersex survey of Littorina littorea along the Belgian coast. Levels of female intersex and sterility were determined to assess TBT related adverse effects. In addition, we determined the levels of male penis shedding and trematode infestation and investigated the morphology of the shell. Significant differences were found for all these variables which clearly differentiated periwinkles from Zeebrugge (B2) from those at other locations. Intersex index (ISI) values were relatively low (i.e. 0.00-0.39), except at B2 where they ranged up to 3.52, the highest value ever reported in literature. Consequently, female reproductive impairment at B2 was severe. Indeed, up to 95% of female periwinkles were sterile at B2. In addition, 61% of the male periwinkles had shed their penis. Furthermore, no trematode infestation could be detected at B2 and specimens from this location had the largest and heaviest shells, which may be related to population demography and/or a different use of energy budgets.
Collapse
Affiliation(s)
- Heidi Van den Broeck
- University of Antwerp, Department of Biology, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | | | |
Collapse
|
26
|
Piña B, Boronat S, Casado M, Olivares A. Recombinant Yeast Assays and Gene Expression Assays for the Analysis of Endocrine Disruption. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2009. [DOI: 10.1007/978-3-540-36253-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
27
|
Grün F, Blumberg B. Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev Endocr Metab Disord 2007; 8:161-71. [PMID: 17657605 DOI: 10.1007/s11154-007-9049-x] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The modern world is plagued with expanding epidemics of diseases related to metabolic dysfunction. The factors that are driving obesity, diabetes, cardiovascular disease, hypertension, and dyslipidemias (collectively termed metabolic syndrome) are usually ascribed to a mismatch between the body's homeostatic nutrient requirements and dietary excess, coupled with insufficient exercise. The environmental obesogen hypothesis proposes that exposure to a toxic chemical burden is superimposed on these conditions to initiate or exacerbate the development of obesity and its associated health consequences. Recent studies have proposed a first set of candidate obesogens (diethylstilbestrol, bisphenol A, phthalates and organotins among others) that target nuclear hormone receptor signaling pathways (sex steroid, RXR-PPARgamma and GR) with relevance to adipocyte biology and the developmental origins of health and disease (DOHaD). Perturbed nuclear receptor signaling can alter adipocyte proliferation, differentiation or modulate systemic homeostatic controls, leading to long-term consequences that may be magnified if disruption occurs during sensitive periods during fetal or early childhood development.
Collapse
Affiliation(s)
- Felix Grün
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
| | | |
Collapse
|