1
|
Dos Santos Carvalho C, da Silva FH, Ferraz JVC, Fujiwara GH, de Oliveira LC, Utsunomiya HSM, Duarte ICS, do Nascimento LP. Use of biomarkers in bullfrog tadpoles Aquarana catesbeiana (Shaw 1802) for ecotoxicological evaluation of Pirajibú River (São Paulo, Brazil). ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:143-155. [PMID: 39466566 DOI: 10.1007/s10646-024-02821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
This study focused on investigating the water quality in the Pirajibú River, a relevant water body that flows through the industrial zone of Sorocaba (São Paulo/Brazil). Due to the limitations of assessing water quality based solely on standard physicochemical tests, an ecotoxicological approach was used to assess biomarker changes in the liver of bullfrog tadpoles (Aquarana catesbeiana). The animals were divided into groups and exposed to water samples collected upstream and downstream of the industrial zone. After 96 h, the upstream group presented a decrease in the enzymatic activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD) and an increase in the activity of catalase (CAT). For the downstream group, while a decreased activity was observed for SOD, an increase in CAT and glutathione S-transferase (GST) activities was noted. A decrease in lipid peroxidation (LPO) levels was observed in the downstream group, and increased carbonyl protein (PCO) levels in the upstream and downstream groups. Integrated Biomarker Response (IBR) revealed GSH and PCO as the most responsive biomarkers, despite the lack of differences noted between the groups. Regardless of whether the water quality standards of Pirajibú River were following Brazilian environmental legislation, the tadpoles presented high sensitivity when exposed to the water, even for a short period.
Collapse
Affiliation(s)
- Cleoni Dos Santos Carvalho
- Department of Biology, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - Fabio Henrique da Silva
- Department of Biology, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - João Victor Cassiel Ferraz
- Department of Biology, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - Gabriel Hiroshi Fujiwara
- Department of Biology, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - Luciana Camargo de Oliveira
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - Heidi Samantha Moraes Utsunomiya
- Department of Biology, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - Iolanda Cristina Silveira Duarte
- Department of Biology, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil
| | - Letícia Portugal do Nascimento
- Center of Sciences and Technology for Sustainability, Federal University of São Carlos, João Leme dos Santos Highway, 110 km, Postal Code 18052-780, Sorocaba, São Paulo, Brazil.
| |
Collapse
|
2
|
Cardoso-Vera JD, Islas-Flores H, Pérez-Alvarez I, Díaz-Camal N. Evidence of Oxidative Stress as a Mechanism of Pharmaceutical-Induced Toxicity in Amphibians. Antioxidants (Basel) 2024; 13:1399. [PMID: 39594540 PMCID: PMC11590872 DOI: 10.3390/antiox13111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Amphibians, which are essential components of ecosystems, are susceptible to pharmaceutical contamination, a phenomenon of increasing concern owing to the widespread consumption and detection of pharmaceutical compounds in environmental matrices. This review investigates oxidative stress (OS) as the primary mechanism of drug toxicity in these organisms. The evidence gathered reveals that various pharmaceuticals, from antibiotics to anesthetics, induce OS by altering biomarkers of oxidative damage and antioxidant defense. These findings underscore the deleterious effects of pharmaceuticals on amphibian health and development and emphasize the necessity of incorporating OS biomarkers into ecotoxicological risk assessments. Although further studies on diverse amphibian species, drug mixtures, and field studies are required, OS biomarkers offer valuable tools for identifying sublethal risks. Furthermore, the development of more refined OS biomarkers will facilitate the early detection of adverse effects, which are crucial for protecting amphibians and their ecosystems. Ultimately, this review calls for continued research and mitigation strategies to safeguard biodiversity from pharmaceutical contamination.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca 50120, Estado de México, Mexico; (I.P.-A.); (N.D.-C.)
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca 50120, Estado de México, Mexico; (I.P.-A.); (N.D.-C.)
| | | | | |
Collapse
|
3
|
Martin C, Capilla-Lasheras P, Monaghan P, Burraco P. The impact of chemical pollution across major life transitions: a meta-analysis on oxidative stress in amphibians. Proc Biol Sci 2024; 291:20241536. [PMID: 39191283 PMCID: PMC11349447 DOI: 10.1098/rspb.2024.1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Among human actions threatening biodiversity, the release of anthropogenic chemical pollutants which have become ubiquitous in the environment, is a major concern. Chemical pollution can induce damage to macromolecules by causing the overproduction of reactive oxygen species, affecting the redox balance of animals. In species undergoing metamorphosis (i.e. the vast majority of the extant animal species), antioxidant responses to chemical pollution may differ between pre- and post-metamorphic stages. Here, we meta-analysed (N = 104 studies, k = 2283 estimates) the impact of chemical pollution on redox balance across the three major amphibian life stages (embryo, tadpole, adult). Before metamorphosis, embryos did not experience any redox change while tadpoles activate their antioxidant pathways and do not show increased oxidative damage from pollutants. Tadpoles may have evolved stronger defences against pollutants to reach post-metamorphic life stages. In contrast, post-metamorphic individuals show only weak antioxidant responses and marked oxidative damage in lipids. The type of pollutant (i.e. organic versus inorganic) has contrasting effects across amphibian life stages. Our findings show a divergent evolution of the redox balance in response to pollutants across life transitions of metamorphosing amphibians, most probably a consequence of differences in the ecological and developmental processes of each life stage.
Collapse
Affiliation(s)
- Colette Martin
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, Braunschweig38106, Germany
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, Sempach6204, Switzerland
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - Pablo Burraco
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
| |
Collapse
|
4
|
Wang F. Reproductive endocrine disruption effect and mechanism in male zebrafish after life cycle exposure to environmental relevant triclosan. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106899. [PMID: 38492288 DOI: 10.1016/j.aquatox.2024.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Triclosan (TCS) is a wide-spectrum antibacterial agent that is found in various water environments. It has been reported to have estrogenic effects. However, the impact of TCS exposure on the reproductive system of zebrafish (Danio rerio) throughout their life cycle is not well understood. In this study, zebrafish fertilized eggs were exposed to 0, 10, and 50 μg/L TCS for 120 days. The study investigated the effects of TCS exposure on brain and testis coefficients, the expression of genes related to the hypothalamus-pituitary-gonadal (HPG) axis, hormone levels, vitellogenin (VTG) content, histopathological sections, and performed RNA sequencing of male zebrafish. The results revealed that life cycle TCS exposure had significant effects on zebrafish reproductive parameters. It increased the testis coefficient, while decreasing the brain coefficient. TCS exposure also led to a decrease in mature spermatozoa and altered the expression of genes related to the HPG axis. Furthermore, TCS disrupted the balance of sex hormone levels and increased VTG content of male zebrafish. Transcriptome sequencing analysis indicated that TCS affected reproductive endocrine related pathways, including PPAR signaling pathway, cell cycle, GnRH signaling pathway, steroid biosynthesis, cytokine-cytokine receptor interaction, and steroid hormone biosynthesis. Protein-protein interaction (PPI) network analysis confirmed the enrichment of hub genes in these pathways, including bub1bb, ccnb1, cdc20, cdk1, mcm2, mcm5, mcm6, plk1, and ttk in the brain, as well as fabp1b.1, fabp2, fabp6, ccr7, cxcl11.8, hsd11b2, and hsd3b1 in the testis. This study sheds light on the reproductive endocrine-disrupting mechanisms of life cycle exposure to TCS.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, No. 6 Jiqing Road, Yibin District, Luoyang 471022, China.
| |
Collapse
|
5
|
Falfushynska H, Poznanskyi D, Kasianchuk N, Horyn O, Bodnar O. Multimarker Responses of Zebrafish to the Effect of Ibuprofen and Gemfibrozil in Environmentally Relevant Concentrations. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1010-1017. [PMID: 36074127 DOI: 10.1007/s00128-022-03607-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical pollution of water bodies is among the top-notch environmental health risks all over the world. The aim of the present study was to investigate the effects of two common pharmaceuticals namely ibuprofen and gemfibrozil on zebrafish at environmentally relevant concentrations. In zebrafish liver, gemfibrozil caused a decrease in glutathione and glutathione transferase and an increase in catalase but had no effect on lipid peroxidation and protein carbonylation. Ibuprofen altered the antioxidant defense system, promoted protein carbonylation in zebrafish liver, and increased vitellogenin-like protein in the blood. Ibuprofen and particularly gemfibrozil induced lysosomes biogenesis. Lactate dehydrogenase in the blood was also found to be higher in the studied groups. Studied pharmaceuticals did not affect complex II of the electron respiratory chain. Ibuprofen affects zebrafish health status more profoundly than gemfibrozil. Our results showed that pharmaceuticals even in low, environmentally realistic concentrations, induced profound changes in the stress-responsive systems of zebrafish.
Collapse
Affiliation(s)
- Halina Falfushynska
- Ternopil Volodymyr Hnatiuk National Pedagogical University, 2, M. Kryvonosa Str, 46027, Ternopil, Ukraine.
| | - Dmytro Poznanskyi
- Ternopil Volodymyr Hnatiuk National Pedagogical University, 2, M. Kryvonosa Str, 46027, Ternopil, Ukraine
| | - Nadiia Kasianchuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, 2, M. Kryvonosa Str, 46027, Ternopil, Ukraine
| | - Oksana Horyn
- Ternopil Volodymyr Hnatiuk National Pedagogical University, 2, M. Kryvonosa Str, 46027, Ternopil, Ukraine
| | - Oksana Bodnar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, 2, M. Kryvonosa Str, 46027, Ternopil, Ukraine
| |
Collapse
|
6
|
García MG, Fernández-López C. Behavior of the Uptake of Ibuprofen in Five Varieties of Horticultural Crops Irrigated with Regenerated Water. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:253-259. [PMID: 34694445 DOI: 10.1007/s00128-021-03387-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The current use of regenerated water in agriculture has led to the emergence of new forms of pollutants, such as pharmaceutical compounds (PCs) which are not fully eliminated in wastewater treatment plants (WWTPs). Therefore, if the effluents of such WWTPs are to be used for agricultural irrigation, the presence of PCs must be analysed and their concentrations determined. The main objective of this study was to evaluate the uptake of ibuprofen (IBP) in horticultural crops irrigated with WWTP effluents and its subsequent effect on human health due to their incorporation into the food chain. The study involved five varieties of crops (lettuce, parsley, cabbage, zucchini and broccoli) grown in a greenhouse and irrigated with WWTP effluent water, in which IBP was analysed. Of the varieties of regenerated water-irrigated horticultural crops, only the leaves of mini-romaine lettuce presented detectable levels of IBP, but without meaning any risk to human health.
Collapse
Affiliation(s)
- Mariano González García
- Universidad Internacional de La Rioja, Avenida de la Paz, 137, 26006, Logroño, La Rioja, Spain
| | - Carmen Fernández-López
- University Centre of Defence at the Spanish Air Force Academy, Calle Coronel López Peña, S/N, 30720, Santiago de la Ribera, Spain.
| |
Collapse
|
7
|
Impact of Estrogens Present in Environment on Health and Welfare of Animals. Animals (Basel) 2021; 11:ani11072152. [PMID: 34359280 PMCID: PMC8300725 DOI: 10.3390/ani11072152] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Estrogens are a group of steroid hormones that recently have gained even more attention in the eyes of scientists. There is an ongoing discussion in the scientific community about their relevance as environmental contaminants and the danger they pose to animal health and welfare. In available literature we can find many examples of their negative effects and mechanisms that are involved with such phenomena. Abstract Nowadays, there is a growing interest in environmental pollution; however, knowledge about this aspect is growing at an insufficient pace. There are many potential sources of environmental contamination, including sex hormones—especially estrogens. The analyzed literature shows that estrone (E1), estradiol (E2), estriol (E3), and synthetic ethinyloestradiol (EE2) are the most significant in terms of environmental impact. Potential sources of contamination are, among others, livestock farms, slaughterhouses, and large urban agglomerations. Estrogens occurring in the environment can negatively affect the organisms, such as animals, through phenomena such as feminization, dysregulation of natural processes related to reproduction, lowering the physiological condition of the organisms, disturbances in the regulation of both proapoptotic and anti-apoptotic processes, and even the occurrence of neoplastic processes thus drastically decreasing animal welfare. Unfortunately, the amount of research conducted on the negative consequences of their impact on animal organisms is many times smaller than that of humans, despite the great richness and diversity of the fauna. Therefore, there is a need for further research to help fill the gaps in our knowledge.
Collapse
|
8
|
Aliko V, Korriku RS, Pagano M, Faggio C. Double-edged sword: Fluoxetine and ibuprofen as development jeopardizers and apoptosis' inducers in common toad, Bufo bufo, tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145945. [PMID: 33639467 DOI: 10.1016/j.scitotenv.2021.145945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Nowadays the presence of pharmaceuticals in the environment is a real problem. Ending up in aquatic environments they negatively affect non-target organisms. Considering the limited studies on the negative effects of pharmaceuticals in amphibians, a better understanding of the mechanisms underlying the sub-lethal effects of drug mixtures in wildlife is an urgent call. Representing particularly vulnerable organisms currently at risk of extinction, amphibians are perfect non-target organisms to explore the consequences of pharmaceuticals during sensitive life-stages. To address this existing research gap, the effects of two drugs, the antidepressant fluoxetine and the anti-inflammatory ibuprofen, as well as their combination has been studied. Tadpoles of Bufo bufo were exposed for seven days to two environmentally realistic concentrations of fluoxetine, ibuprofen and their mixture. The development, behavior and erythron profile were then evaluated as endpoints of exposure response. Both drugs negatively affected tadpoles' growth and development by significantly delayed their time to metamorphosis and reduced body weight. Behaviors were also impaired with a significant increase of unresponsiveness to different stimuli. Mutagenic analysis of blood revealed a significant increase in the frequency of cellular and nuclear abnormalities. Given the complexity of systems and functions affected, our work confirms the toxicological potential of fluoxetine and ibuprofen in B. bufo tadpoles by emphasizing their role as tadpole development delayers and erythrocyte apoptosis-inducers. To our knowledge, this is the first study trying to elucidate the potentially toxic effects of a mixture of an antidepressant with a non-steroidal anti-inflammatory drug using bullfrog tadpole as model organism. Both drugs interacted in impairing development and fitness in tadpoles, which might affect long-term species perpetuation and population dynamic. More in-depth research is needed to elucidate the nature of interaction and molecular mechanisms of mixed pharmaceutical compounds on non-targeted organisms.
Collapse
Affiliation(s)
- Valbona Aliko
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania
| | - Regi Subashi Korriku
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania
| | - Maria Pagano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy.
| |
Collapse
|
9
|
Falfushynska H, Horyn O, Fedoruk O, Khoma V, Rzymski P. Difference in biochemical markers in the gibel carp (Carassius auratus gibelio) upstream and downstream of the hydropower plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113213. [PMID: 31541825 DOI: 10.1016/j.envpol.2019.113213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/06/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
However the physiological stress in aquatic organisms associated with hydropower plants (HPP) ecosystems has been previously investigated, no studies have so far assessed it on biochemical level. Therefore this study evaluated an oxidative stress and toxicity in the gibel carp Carassius auratus gibelio associated with a small-scale HPP in the West Ukraine. A battery of liver, brain and blood markers was evaluated individuals inhabiting upstream and downstream of the dam of the small-scale Kasperivtci HPP (KHPP; an installed capacity of 7.5 MW), and from a reference site. Number of alterations were noted in fish from the KHPP impoundment facility including signs of oxidative stress (a decrease in superoxide dismutase (SOD) activity and an increase in protein carbonyls) and cytotoxicity (an increase in micronucleated erythrocytes and caspase-3 activity). No changes in DNA fragmentation in hepatocytes or brain cholinesterase activity were detected. As demonstrated by the integral stress index, fish associated with downstream of the dam revealed the greatest alterations reflected by the combined oppression of antioxidant system (SOD, catalase) and pro-oxidants (thiobarbituric acid reactive substances and oxyradicals), low concentration of metallothioneins, but high cathepsin D activity (as markers of lysosomal dysfunction and autophagy) and increased vitellogenin concentration in males (indicating an endocrine disruption). The study highlights that fish inhabiting ecosystems associated with HPP, particularly downstream of the dam, may face additional stresses with long-term effects yet to be evaluated.
Collapse
Affiliation(s)
| | - Oksana Horyn
- Ternopil V. Hnatiuk National Pedagogical University, Ukraine
| | - Olga Fedoruk
- Ternopil V. Hnatiuk National Pedagogical University, Ukraine
| | - Vira Khoma
- Ternopil V. Hnatiuk National Pedagogical University, Ukraine
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poland
| |
Collapse
|
10
|
López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C, Arévalo-Gallegos A, Lizarazo-Holguin LA, Barceló D, Iqbal HMN, Parra-Saldívar R. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1068-1088. [PMID: 31470472 DOI: 10.1016/j.scitotenv.2019.07.052] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
Existence of anthropogenic contaminants (ACs) in different environmental matrices is a serious and unresolved concern. For instance, ACs from different sectors, such as industrial, agricultural, and pharmaceutical, are found in water bodies with considerable endocrine disruptors potency and can damage the biotic components of the environment. The continuous ACs exposure can cause cellular toxicity, apoptosis, genotoxicity, and alterations in sex ratios in human beings. Whereas, aquatic organisms show bioaccumulation, trophic chains, and biomagnification of ACs through different entry route. These problems have been found in many countries around the globe, making them a worldwide concern. ACs have been found in different environmental matrices, such as water reservoirs for human consumption, wastewater treatment plants (WWTPs), drinking water treatment plants (DWTPs), groundwaters, surface waters, rivers, and seas, which demonstrate their free movement within the environment in an uncontrolled manner. This work provides a detailed overview of ACs occurrence in water bodies along with their toxicological effect on living organisms. The literature data reported between 2017 and 2018 is compiled following inclusion-exclusion criteria, and the obtained information was mapped as per type and source of ACs. The most important ACs are pharmaceuticals (diclofenac, ibuprofen, naproxen, ofloxacin, acetaminophen, progesterone ranitidine, and testosterone), agricultural products or pesticides (atrazine, carbendazim, fipronil), narcotics and illegal drugs (amphetamines, cocaine, and benzoylecgonine), food industry derivatives (bisphenol A, and caffeine), and personal care products (triclosan, and other related surfactants). Considering this threatening issue, robust detection and removal strategies must be considered in the design of WWTPs and DWTPs.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Carmen Salinas-Salazar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Alejandra Arévalo-Gallegos
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Laura A Lizarazo-Holguin
- Universidad de Antioquia, School of Microbiology, Cl. 67 #53 - 108, Medellín, Antioquia, Colombia
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| |
Collapse
|
11
|
Song Y, Chai T, Yin Z, Zhang X, Zhang W, Qian Y, Qiu J. Stereoselective effects of ibuprofen in adult zebrafish (Danio rerio) using UPLC-TOF/MS-based metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:730-739. [PMID: 29908497 DOI: 10.1016/j.envpol.2018.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Ibuprofen (IBU), as a commonly used non-steroidal anti-inflammatory drug (NSAID) and pharmaceutical and personal care product (PPCP), is frequently prescribed by doctors to relieve pain. It is widely released into environmental water and soil in the form of chiral enantiomers by the urination and defecation of humans or animals and by sewage discharge from wastewater treatment plants. This study focused on the alteration of metabolism in the adult zebrafish (Danio rerio) brain after exposure to R-(-)-/S-(+)-/rac-IBU at 5 μg L-1 for 28 days. A total of 45 potential biomarkers and related pathways, including amino acids and their derivatives, purine and its derivatives, nucleotides and other metabolites, were observed with untargeted metabolomics. To validate the metabolic disorders induced by IBU, 22 amino acids and 3 antioxidant enzymes were selected to be quantitated and determined using targeted metabolomics and enzyme assay. Stereoselective changes were observed in the 45 identified biomarkers from the untargeted metabolomics analysis. The 22 amino acids quantitated in targeted metabolomics and 3 antioxidant enzymes determined in enzyme assay also showed stereoselective changes after R-(-)-/S-(+)-/rac-IBU exposure. Results showed that even at a low concentration of R-(-)-/S-(+)-/rac-IBU, disorders in metabolism and antioxidant defense systems were still induced with stereoselectivity. Our study may enable a better understanding of the risks of chiral PPCPs in aquatic organisms in the environment.
Collapse
Affiliation(s)
- Yue Song
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Tingting Chai
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China; College of Agriculture and Food Science, Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Lin'an, Zhejiang 311300, China
| | - Zhiqiang Yin
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Xining Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Wei Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
12
|
Pérez-Alvarez I, Islas-Flores H, Gómez-Oliván LM, Barceló D, López De Alda M, Pérez Solsona S, Sánchez-Aceves L, SanJuan-Reyes N, Galar-Martínez M. Determination of metals and pharmaceutical compounds released in hospital wastewater from Toluca, Mexico, and evaluation of their toxic impact. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:330-341. [PMID: 29751329 DOI: 10.1016/j.envpol.2018.04.116] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 05/25/2023]
Abstract
Due to the activities inherent to medical care units, the hospital effluent released contains diverse contaminants such as tensoactives, disinfectants, metals, pharmaceutical products and chemical reagents, which are potentially toxic to the environment since they receive no treatment or are not effectively removed by such treatment before entering the drain. They are incorporated into municipal wastewater, eventually entering water bodies where they can have harmful effects on organisms and can result in ecological damage. To determine the toxicological risk induced by this type of eflluents, eight metals and 11 pharmaceuticals were quantified, in effluent from a hospital. Developmental effects, teratogenesis and oxidative stress induction were evaluated in two bioindicator species: Xenopus laevis and Lithobates catesbeianus. FETAX (frog embryo teratogenesis assay-Xenopus) was used to obtain the median lethal concentration (LC50), effective concentration inducing 50% malformation (EC50), teratogenic index (TI), minimum concentration to inhibit growth (MCIG), and the types of malformation induced. Twenty oocytes in midblastula transition were exposed to six concentrations of effluent (0.1, 0.3, 0.5, 0.7, 0.9, 1%) and negative and positive (6-aminonicotinamide) controls. After 96 h of exposure, diverse biomarkers of oxidative damage were evaluated: hydroperoxide content, lipid peroxidation, protein carbonyl content, and the antioxidant enzymes superoxide dismutase and catalase. TI was 3.8 in X. laevis and 4.0 in L. catesbeianus, both exceed the value in the FETAX protocol (1.2), indicating that this effluent is teratogenic to both species. Growth inhibition was induced as well as diverse malformation including microcephaly, cardiac and facial edema, eye malformations, and notochord, tail, fin and gut damage. Significant differences relative to the control group were observed in both species with all biomarkers. This hospital effluent contains contaminants which represents a toxic risk, since these substances are teratogenic to the bioindicators used. The mechanism of damage induction may be associated with oxidative stress.
Collapse
Affiliation(s)
- Itzayana Pérez-Alvarez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017 Barcelona, Spain
| | - Miren López De Alda
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017 Barcelona, Spain
| | - Sandra Pérez Solsona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017 Barcelona, Spain
| | - Livier Sánchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Delegación Gustavo a. Madero, México, DF, C.P. 07738, Mexico
| |
Collapse
|
13
|
Analysis of ibuprofen and its main metabolites in roots, shoots, and seeds of cowpea (Vigna unguiculata L. Walp) using liquid chromatography-quadrupole time-of-flight mass spectrometry: uptake, metabolism, and translocation. Anal Bioanal Chem 2017; 410:1163-1176. [DOI: 10.1007/s00216-017-0796-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 01/06/2023]
|