1
|
Paravani EV, Bianchi M, Querubín Pereyra PL, Acosta MG, Odetti L, Simoniello MF, Poletta G. DNA damage, alterations in the expression of antioxidant enzyme genes and in the histoarchitecture of gill cells of zebrafish exposed to 17-α-ethinylestradiol. Drug Chem Toxicol 2024; 47:60-66. [PMID: 36912201 DOI: 10.1080/01480545.2023.2188441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Endocrine disruptors, such as estrogen, are chemical substances with the potential to alter the hormonal balance of organisms. Their origin can be natural or artificial, and they can act at very low doses. The estrogen 17α-ethinylestradiol (EE2) is used worldwide as an oral contraceptive and is a potential contaminant in aquatic ecosystems. It is well documented that these environmental pollutants can act directly or indirectly on the reproductive system, impairing development and fertility. However, little is known about the alteration of the cell oxidative status induced by EE2. The main objective of this study was to evaluate the effect on the gill cells of adult zebrafish exposed in vivo to EE2, analyzing cell histology, DNA damage and the expression levels of genes encoding the main enzymes involved in oxidative stress pathways. The histological study showed that EE2 produces moderate to high damage to the gill tissue, an increase in gill cell DNA damage and the mRNA levels of the genes corresponding to the manganese superoxide dismutase (Mn-sod) and catalase (cat) after exposure to 5 ng/L EE2. The results indicate that EE2 causes tissue alterations, DNA damage and oxidative stress. EE2 produced important alterations in the gills, a fundamental organ for the survival of fish. There is a clear need for further research on the ecological consequences of EDCs on non-target organisms.
Collapse
Affiliation(s)
- E V Paravani
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
- Cátedra de Biología Celular y Molecular, Universidad Autónoma de Entre Ríos, Oro Verde, Argentina
| | - M Bianchi
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - P L Querubín Pereyra
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - M G Acosta
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - L Odetti
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - M F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
| | - G Poletta
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| |
Collapse
|
2
|
Weiserova Z, Blahova J, Dobukova V, Marsalek P, Hodkovicova N, Lenz J, Tichy F, Franek R, Psenicka M, Franc A, Svobodova Z. Does dietary exposure to 17α-ethinylestradiol alter biomarkers related with endocrine disruption and oxidative stress in the adult triploid of Danio rerio? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161911. [PMID: 36731576 DOI: 10.1016/j.scitotenv.2023.161911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
This study was conducted to investigate a comprehensive effect of 17α-ethinylestradiol (EE2) in zebrafish (Danio rerio) with the emphasis on endocrine disruption, oxidative stress and detoxification processes at different levels. Adult male triploid zebrafish were exposed to EE2 administered in feed at two concentrations - 10 and 1000 μg/kg for six weeks. The estrogenic potential of EE2 was evaluated using an analysis of vitellogenin, gene expression focused on reproductive disorders and gonad histological examination. The alterations in antioxidant and detoxification status were assessed using analyses of enzyme activities and changes in transcriptional levels of selected genes. The most significant changes were observed especially in fish exposed to a high concentration of EE2 (i.e., 1000 μg/kg). Such high concentration caused extensive mortality (25 %) mainly in the second half of the experiment followed by a highly significant decrease in the length and body weight. Similarly, highly significant induction of vitellogenin level and vtg1 mRNA expression (about 43,000-fold compared to the control) as well as a significant downregulation of gonad aromatase expression (cyp19a1a) and histological changes in testicular tissue were confirmed in this group. In the group exposed to environmentally relevant concentration of EE2 (i.e., 10 μg/kg), no significant differences in vitellogenin were observed, although all fish were positive in the detection of vitellogenin compared to control, where only 40 % of individuals were positive. In addition, the high concentration of EE2 resulted in significant alterations in most monitored antioxidant and detoxifying enzymes with the exception of catalase, followed by strongly significant upregulation in mRNA expression of gsr, gpx1a, cat and cyp1a genes. Furthermore, a significant decrease in the glutathione reductase activity was recorded in fish exposed to 10 μg EE2/kg. To our knowledge, this is the first study which reports the effects of subchronic per oral exposure to EE2 in adult triploid zebrafish.
Collapse
Affiliation(s)
- Zuzana Weiserova
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic.
| | - Veronika Dobukova
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Jiri Lenz
- Department of Pathology and Anatomy, Znojmo Hospital, MU Dr. Jana Janskeho 11, 669 02 Znojmo, Czech Republic; Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Roman Franek
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Martin Psenicka
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Ales Franc
- Department of Pharmaceutical Technology, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| |
Collapse
|
3
|
Cohen A, Popowitz J, Delbridge-Perry M, Rowe CJ, Connaughton VP. The Role of Estrogen and Thyroid Hormones in Zebrafish Visual System Function. Front Pharmacol 2022; 13:837687. [PMID: 35295340 PMCID: PMC8918846 DOI: 10.3389/fphar.2022.837687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Visual system development is a highly complex process involving coordination of environmental cues, cell pathways, and integration of functional circuits. Consequently, a change to any step, due to a mutation or chemical exposure, can lead to deleterious consequences. One class of chemicals known to have both overt and subtle effects on the visual system is endocrine disrupting compounds (EDCs). EDCs are environmental contaminants which alter hormonal signaling by either preventing compound synthesis or binding to postsynaptic receptors. Interestingly, recent work has identified neuronal and sensory systems, particularly vision, as targets for EDCs. In particular, estrogenic and thyroidogenic signaling have been identified as critical modulators of proper visual system development and function. Here, we summarize and review this work, from our lab and others, focusing on behavioral, physiological, and molecular data collected in zebrafish. We also discuss different exposure regimes used, including long-lasting effects of developmental exposure. Overall, zebrafish are a model of choice to examine the impact of EDCs and other compounds targeting estrogen and thyroid signaling and the consequences of exposure in visual system development and function.
Collapse
Affiliation(s)
- Annastelle Cohen
- Department of Biology, American University, Washington, DC, WA, United States
| | - Jeremy Popowitz
- Department of Biology, American University, Washington, DC, WA, United States
| | | | - Cassie J. Rowe
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States,*Correspondence: Victoria P. Connaughton,
| |
Collapse
|