1
|
Cirla A, Andreani V, Giannuzzi AP, Ventura L, Barsotti G. Variations in the tear film lipid layer by age in healthy brachycephalic dogs. Res Vet Sci 2025; 191:105684. [PMID: 40347598 DOI: 10.1016/j.rvsc.2025.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/08/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
This cross-sectional study evaluates the morphological and qualitative changes in the meibomian glands (MGs) and tear film lipid layer (TFLL) associated with aging and sex in canine brachycephalic breeds. One hundred and eleven brachycephalic dogs with normal eyes were included. Dogs were divided into three age groups: ≤4 years (G1), >4 and < 10 years (G2) and ≥ 10 years (G3). Schirmer test I (STT I), upper eyelid MGs noncontact infrared meibography (NIM), tear interferometry (TFI) and tear film breakup time (TFBUT) were performed in each eye. Loss of MGs and lid margin abnormalities (LMAs), as well as TFI patterns were scored from 0 to 3 depending on severity. Normality was assessed with the Shapiro-Wilk test. The Kruskal-Wallis test was used for the analysis of variance among groups. Pearson's or Spearman's correlation coefficient was used to assess the correlation between MG loss and STT I values. Significance was set at p < 0.05. Forty-four Shih-Tzus, 37 Pugs and 30 French Bulldogs were enrolled in the study. Median age was 39.5 months (range 30-48 months) in G1, 94.5 months (range 65-118 months) in G2, 154.5 months (range 120-201 months) in G3. Loss of MGs was statistically higher in G2 and G3 (p < 0.001) and was associated with a reduction in TFI scores (p < 0.001) and STT I (p < 0.001). Loss of MGs was then negatively correlated with TFBUT. No statistical differences were associated with sex (p > 0.05) or breed (p > 0.05). The tear film lipid layer appears to be negatively affected by age in brachycephalic dogs.
Collapse
Affiliation(s)
- Alessandro Cirla
- Department of Ophthalmology, San Marco Veterinary Clinic and Laboratory, Veggiano, PD, Italy.
| | | | | | - Laura Ventura
- Department of Statistical Science, University of Padova, Padova, Italy
| | - Giovanni Barsotti
- Department of Veterinary Science, University of Pisa, San Piero a Grado, PI, Italy
| |
Collapse
|
2
|
Gijs M, van de Sande N, Bonnet C, Schmeetz J, Fernandes R, Travé-Huarte S, Huertas-Bello M, Bo Chiang JC, Boychev N, Sharma S. A comprehensive scoping review of methodological approaches and clinical applications of tear fluid biomarkers. Prog Retin Eye Res 2025; 106:101338. [PMID: 39954936 DOI: 10.1016/j.preteyeres.2025.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Tear fluid is an emerging source of disease biomarkers, drawing attention due to its quick, inexpensive, and non-invasive collection. The advancements in detection techniques enable the measurement of ultra-low biomarker levels from small sample volumes typical of tear fluid. The lack of standardized protocols for collection, processing, and analysis of tear fluid remains a significant challenge. To address this, we convened the Tear Research Network Review Taskforce in 2022 to review protocols from the past three decades, providing a comprehensive overview of the methodologies used in tear fluid biomarker research. A total of 1484 articles published from January 1974 to May 2024 from two electronic databases, Embase and Ovid MEDLINE, were reviewed. An exponential increase in the number of articles on tear fluid biomarkers was observed from 2015 onwards. The two most commonly reported collection methods were; glass capillaries (45.2%), and Schirmer's strips (25%), with glass capillary tube collection remaining the most frequent method until 2019, when Schirmer's strips became the leading method. Most articles analyzed tear fluid proteins (65%) and focused on a single analyte (32.3%). In recent years, an increase was observed in the type and number of examined analytes. The differences in the reported methodologies and protocols underscore the need for standardization and harmonization within the field of tear fluid biomarkers to minimize methodological differences and reduce variability in clinical outcomes. Consistent and detailed reporting is essential for improving the reproducibility and validity of tear fluid studies, in order to advance their potential clinical applications.
Collapse
Affiliation(s)
- Marlies Gijs
- University Eye Clinic, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands.
| | - Nienke van de Sande
- University Eye Clinic, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Clémence Bonnet
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jente Schmeetz
- University Eye Clinic, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3004-561, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548, Coimbra, Portugal
| | - Sònia Travé-Huarte
- Optometry and Vision Science Research Group, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Marcela Huertas-Bello
- Bascon Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeremy Chung Bo Chiang
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK; School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Nikolay Boychev
- Department of Clinical Education and Clinical Sciences, New England College of Optometry, Boston, USA; Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Schepens Eye Research Institute, Boston, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA; Department of Ophthalmology, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
3
|
Hanson J, Khorrami R, Kanamoto K, Strawbridge J, Miller KM, Lin SR. Evaluating the Protective Effects of a Dispersive Ophthalmic Viscosurgical Device Versus Balanced Salt Solution on the Cornea During Cataract Surgery. Eye Contact Lens 2025; 51:165-170. [PMID: 39901353 DOI: 10.1097/icl.0000000000001161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 02/05/2025]
Abstract
OBJECTIVES To compare intraoperative and postoperative effects of applying a viscosurgical device versus balanced salt solution (BSS) during cataract surgery. METHODS Single-center retrospective case-control pilot study. Reviewed 27 patients who received Viscoat (Alcon Laboratories, Inc. Fort Worth, TX) or BSS on the cornea during uncomplicated cataract surgery. Surgeries were analyzed for time when the microscope light reflection was indistinct on the cornea while instruments were in the eye. Postoperative data included patient pain ratings, National Eye Institute score, and Ocular Surface Disease Index (OSDI) scores. RESULTS Compared with BSS, Viscoat application resulted in a significant increase in time with a clear light reflex during surgery ( P <0.001). With BSS, average time without a clear light reflex while instruments were in the eye was 82.69±50.14 sec, or 17.56%±12.00% of the surgery, compared with 0% with Viscoat. There was no significant difference in postoperative pain and National Eye Institute score between groups. However, OSDI score two about grittiness was significantly lower with Viscoat application ( P =0.01) and approaching significance for OSDI score three, about painful or sore eyes ( P =0.09). CONCLUSIONS Viscoat provided greater optical clarity during surgery with a single application and was associated with less sensation of grittiness compared with BSS.
Collapse
Affiliation(s)
- Justin Hanson
- Department of Ophthalmology, David Geffen School of Medicine, Stein Eye Institute and Doheny Eye Institute, University of California, Los Angeles, CA
| | | | | | | | | | | |
Collapse
|
4
|
Comito R, Ciavarella C, Astolfi G, Conti M, Porru E, Violante FS, Versura P. Tear Sampling and Biomarker Discovery: A Robust Workflow for Routine Clinical Applications Using UHPLC-MS/MS and Schirmer Strips. Int J Mol Sci 2025; 26:2041. [PMID: 40076661 PMCID: PMC11900304 DOI: 10.3390/ijms26052041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Human tear analysis is gaining increasing attention as a non-invasive tool for several applications such as proteomics and biomarker identification in various diseases, including cancer. The choice of the correct sampling method determines the result of the analysis. In this study, we developed and validated a robust method for tear protein quantification using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Tear samples were collected with Schirmer strips, a low-cost and practical tool for tear collection. It is the first time that internal standards have been used to enhance the analytical performance of a method based on Schirmer strips for tear sampling, overcoming the issues widely reported in the literature regarding protein extraction and data reproducibility. Non-human proteins were used for method development, ensuring improved accuracy and analytical precision. The method demonstrated excellent recovery, high sensitivity, and reproducibility. The use of Schirmer strips, combined with this advanced analytical method, highlights their potential as a reliable support for tear protein quantification and biomarker discovery. This study provides a cost-effective and reliable workflow for tear proteome analysis and contributes to the growing field of tear-based diagnostics, making it suitable for routine clinical and research applications in precision medicine.
Collapse
Affiliation(s)
- Rossana Comito
- Division of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (R.C.); (F.S.V.)
| | - Carmen Ciavarella
- Ophthalmology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy; (C.C.); (G.A.); (P.V.)
| | - Gloria Astolfi
- Ophthalmology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy; (C.C.); (G.A.); (P.V.)
| | - Matteo Conti
- Department of Public Health, Health Service of the Emilia-Romagna Region, 40026 Imola, Italy;
| | - Emanuele Porru
- Biostructures and Biosystems National Institute “INBB”, 00136 Rome, Italy
- Occupational Medicine Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Francesco Saverio Violante
- Division of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (R.C.); (F.S.V.)
- Occupational Medicine Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Piera Versura
- Ophthalmology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy; (C.C.); (G.A.); (P.V.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
5
|
Kishore A, Jain A, Asthana N, Milan R, Mohanalakshmi S, Gupta M, Mahor AK, Kanoujia J. Selection Criteria for Oils, Surfactants, and Co-Surfactants in Ocular Nanoemulsion Formulation: A Mini Review. Curr Pharm Des 2025; 31:1259-1269. [PMID: 39819415 DOI: 10.2174/0113816128350573241202105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025]
Abstract
The ocular nanoemulsions (NE) are biphasic systems mainly composed of oil and water emulsified by surfactants/cosurfactants. The extensive surface area of ocular NE enhances corneal contact, leading to improved drug penetration and making it a preferable delivery system. They can also increase the solubility of drugs across the ocular barrier with improved residence time. Oils, surfactants, and co-surfactants used in formulating ocular NEs present a significant challenge in developing safe, stable, less irritant, more permeable, improved residence time, and highly bioavailable products. The choice of oil, surfactant, and co-surfactant significantly impacts the development of ocular Nano emulsions (NE) with desirable characteristics, such as small globule size, enhanced penetration, high drug content, and prolonged retention in the eye. This mini-review aims to contribute valuable insights into the selection criteria of oils, surfactants, and co-surfactants for ocular NE. Finally, the correlation between the properties of ocular NEs and the choice of oils, surfactants, and co-surfactants with emphasis on sterilization and stability aspects are considered in short.
Collapse
Affiliation(s)
- Ankita Kishore
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior 474005, Madhya Pradesh, India
| | - Adarsh Jain
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior 474005, Madhya Pradesh, India
| | - Navdeep Asthana
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior 474005, Madhya Pradesh, India
| | - Rhytham Milan
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior 474005, Madhya Pradesh, India
| | - Sabapathi Mohanalakshmi
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior 474005, Madhya Pradesh, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | | | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior 474005, Madhya Pradesh, India
| |
Collapse
|
6
|
Song C, Guo J, Wang Y, Xiang H, Yang Y. Electrochemical Glucose Sensors: Classification, Catalyst Innovation, and Sampling Mode Evolution. Biotechnol J 2024; 19:e202400349. [PMID: 39385538 DOI: 10.1002/biot.202400349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Glucose sensors are essential tools for monitoring blood glucose concentration in diabetic patients. In recent years, with the increasing number of individuals suffering from diabetes, blood glucose monitoring has become extremely necessary, which expedites the iteration and upgrade of glucose sensors greatly. Currently, two main types of glucose sensors are available for blood glucose testing: enzyme-based glucose sensor (EBGS) and enzyme-free glucose sensor (EFGS). For EBGS, several progresses have been made to comprehensively improve detection performance, ranging from enhancing enzyme activity, thermostability, and electron transfer properties, to introducing new materials with superior properties. For EFGS, more and more new metallic materials and their oxides are being applied to further optimize its blood glucose monitoring. Here the latest progress of electrochemical glucose sensors, their manufacturing methods, electrode materials, electrochemical parameters, and applications were summarized, the development glucose sensors with various noninvasive sampling modes were also compared.
Collapse
Affiliation(s)
- Chenyang Song
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Jian Guo
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Yuhan Wang
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Hongying Xiang
- Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yufeng Yang
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| |
Collapse
|
7
|
Zhou Y, Li L, Tong J, Chen X, Deng W, Chen Z, Xiao X, Yin Y, Zhou Q, Gao Y, Hu X, Wang Y. Advanced nanomaterials for electrochemical sensors: application in wearable tear glucose sensing technology. J Mater Chem B 2024; 12:6774-6804. [PMID: 38920094 DOI: 10.1039/d4tb00790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In the last few decades, tear-based biosensors for continuous glucose monitoring (CGM) have provided new avenues for the diagnosis of diabetes. The tear CGMs constructed from nanomaterials have been extensively demonstrated by various research activities in this field and are gradually witnessing their most prosperous period. A timely and comprehensive review of the development of tear CGMs in a compartmentalized manner from a nanomaterials perspective would greatly broaden this area of research. However, to our knowledge, there is a lack of specialized reviews and comprehensive cohesive reports in this area. First, this paper describes the principles and development of electrochemical glucose sensors. Then, a comprehensive summary of various advanced nanomaterials recently reported for potential applications and construction strategies in tear CGMs is presented in a compartmentalized manner, focusing on sensing properties. Finally, the challenges, strategies, and perspectives used to design tear CGM materials are emphasized, providing valuable insights and guidance for the construction of tear CGMs from nanomaterials in the future.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiale Tong
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xiaoli Chen
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yong Yin
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Qingsong Zhou
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yongli Gao
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
8
|
Ponzini E. Tear biomarkers. Adv Clin Chem 2024; 120:69-115. [PMID: 38762243 DOI: 10.1016/bs.acc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
An extensive exploration of lacrimal fluid molecular biomarkers in understanding and diagnosing a spectrum of ocular and systemic diseases is presented. The chapter provides an overview of lacrimal fluid composition, elucidating the roles of proteins, lipids, metabolites, and nucleic acids within the tear film. Pooled versus single-tear analysis is discussed to underline the benefits and challenges associated with both approaches, offering insights into optimal strategies for tear sample analysis. Subsequently, an in-depth analysis of tear collection methods is presented, with a focus on Schirmer's test strips and microcapillary tubes methods. Alternative tear collection techniques are also explored, shedding light on their applicability and advantages. Variability factors, including age, sex, and diurnal fluctuations, are examined in the context of their impact on tear biomarker analysis. The main body of the chapter is dedicated to discussing specific biomarkers associated with ocular discomfort and a wide array of ocular diseases. From dry eye disease and thyroid-associated ophthalmopathy to keratoconus, age-related macular degeneration, diabetic retinopathy, and glaucoma, the intricate relationship between molecular biomarkers and these conditions is thoroughly dissected. Expanding beyond ocular pathologies, the chapter explores the applicability of tear biomarkers in diagnosing systemic diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and cancer. This broader perspective underscores the potential of lacrimal fluid analysis in offering non-invasive diagnostic tools for conditions with far-reaching implications.
Collapse
Affiliation(s)
- Erika Ponzini
- Department of Materials Science, University of Milano Bicocca, Milan, Italy; COMiB Research Center, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
9
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
10
|
Mimura T, Sunarya WA, Tsuji K, Uchio E, Fukagawa K, Inoue Y, Mizota A. Cleaning effects of eyewashes on ocular surface symptoms caused by air pollution in a single-center, two-arm, nonrandomized trial in Indonesia: first report from Jakarta study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10967-10975. [PMID: 38212562 DOI: 10.1007/s11356-024-31982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
PURPOSE Air pollutants, such as Asian sand and particulate matter (PM) 2.5, have become a global concern for causing ocular inflammation and allergic symptoms. This study, as part of an international investigation, examined the effects of eyewashes for ocular damage caused by air pollution in Indonesia. METHODS This was a single-center, patient- and-evaluator-blinded, parallel two-arm, nonrandomized trial. In Jakarta, Indonesia, 30 eyes of 15 car commuters and 30 eyes of 15 motorcycle commuters were recruited from healthy volunteers. After commuting to work, both eyes were washed with a commercial eyewash. Before and after eyewashing, eight items of ocular surface symptoms and four items of rhinitis subjective symptoms were scored using a modified Japanese Allergic Conjunctival Disease Quality-of-Life Questionnaire. RESULTS Five of the 12 subjective symptom scores before eyewashing were higher in motorcycle commuters than in car commuters (p < 0.05). Motorcycle commuters showed improvement in the five symptom scores of "itchy eyes, foreign body sensation, eye mucus, dryness, and eye strain" after eyewashing compared to before eyewashing (p < 0.05). In all patients, sootlike particles and ocular mucus were found in the solutions collected after eyewashing. CONCLUSION These findings indicate that eyewashing for ocular symptoms caused by airborne particles may be effective in removing foreign particles from the ocular surface and relieving subjective symptoms.
Collapse
Affiliation(s)
- Tatsuya Mimura
- Department of Ophthalmology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | | | | | - Eichi Uchio
- Department of Ophthalmology, Fukuoka University School of Medicine, Jounan-ku, Fukuoka, Japan
| | - Kazumi Fukagawa
- Ryogoku Eye Clinic, Sumida-ku, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yuji Inoue
- Department of Ophthalmology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Atsushi Mizota
- Department of Ophthalmology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
11
|
Zhong W, Zhang H, Ran H. Advances in imaging of the lacrimal gland in Sjögren's syndrome: A narrative review. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:68-77. [PMID: 37907965 DOI: 10.1002/jcu.23596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Due to lymphocytic infiltration of the salivary and lacrimal glands, Sjogren's syndrome (SS), a systemic autoimmune illness that mostly affects the exocrine glands, causes dry mouth (xerostomia) and dry eyes (xerophthalmia). Additionally, SS is associated with various comorbidities such as cardiovascular diseases, infections, musculoskeletal diseases, and cancers. Among patients with SS, xerophthalmia frequently arises as a complication, leading to insufficient tear production or rapid tear evaporation, thereby causing discomfort, irritation, and a gritty sensation in the eyes. This article aims to examine recent advancements in the imaging of the lacrimal gland in Sjögren's syndrome and briefly discusses the utilization of various imaging examinations for the lacrimal gland in this particular disease.
Collapse
Affiliation(s)
- Wenxing Zhong
- Department of Ultrasonography, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Ultrasonography, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Ran
- Department of Ultrasonography, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Hou J, Zhang N, Li X, Wang Z, Wang J. The Effects of Spectacles or Orthokeratology on the Tear Film in Children and Adolescents. Ophthalmol Ther 2023; 12:1913-1927. [PMID: 37140875 PMCID: PMC10287878 DOI: 10.1007/s40123-023-00719-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION Myopia prevalence among adolescents is increasing annually. While orthokeratology (OK) is effective for controlling myopia progression, it may also be detrimental. We investigated tear film parameters [including tear mucin 5AC (MUC5AC) concentration] in children and adolescents with myopia treated with spectacles or OK compared with those with emmetropia. METHODS This prospective case-control study enrolled children (aged 8-12 years; 29 and 39 with myopia treated with OK and spectacles, respectively, and 25 with emmetropia) and adolescents (aged 13-18 years; 38 and 30 with myopia treated with OK and spectacles, respectively, and 18 with emmetropia). We recorded the ocular surface disease index (OSDI), visual analog scale (VAS) score, tear meniscus height (TMH), noninvasive tear breakup time (NIBUT), meibomian gland score (meiboscore), ocular redness score, and tear MUC5AC concentration in the emmetropia, spectacle (after 12 months of spectacle wearing), and OK (baseline, and after 1-, 3-, 6-, and 12-month use) groups. We observed changes from baseline to 12 months in the OK group and compared parameters among the spectacle, 12-month OK, and emmetropia groups. RESULTS The 12-month OK group differed significantly from the spectacle and emmetropia groups in most indicators among children and adolescents (P < 0.05). Differences were not noticeable between the spectacle and emmetropia groups (only PVAS < 0.05 among the children). In the OK group, the 12-month NIBUT was significantly decreased (P < 0.05) in both age groups; the upper meiboscore was increased at 6 and 12 months (both P < 0.05) among children; ocular redness scores were higher at 12 months than at baseline (P = 0.007), 1 month (P < 0.001), and 3 months (P = 0.007) among children; and the MUC5AC concentration was decreased at 6 and 12 months among adolescents, but only at 12 months among children (all P < 0.05). CONCLUSIONS Long-term OK can negatively influence the tear film in children and adolescents. Moreover, changes are masked by spectacle wearing. TRIAL REGISTRATION This trial is registered with "ChiCTR2100049384."
Collapse
Affiliation(s)
- Jingjing Hou
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Ningna Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Xueyan Li
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Zijun Wang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jing Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China.
| |
Collapse
|
13
|
Zhang K, Di G, Bai Y, Liu A, Bian W, Chen P. Aquaporin 5 in the eye: Expression, function, and roles in ocular diseases. Exp Eye Res 2023; 233:109557. [PMID: 37380095 DOI: 10.1016/j.exer.2023.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/26/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
As a water channel protein, aquaporin 5 (AQP5) is essential for the maintenance of the normal physiological functions of ocular tissues. This review provides an overview of the expression and function of AQP5 in the eye and discusses their role in related eye diseases. Although AQP5 plays a vital role in ocular functions, such as maintaining corneal and lens transparency, regulating water movement, and maintaining homeostasis, some of its functions in ocular tissues are still unclear. Based on the key role of AQP5 in eye function, this review suggests that in the future, eye diseases may be treated by regulating the expression of aquaporin.
Collapse
Affiliation(s)
- Kaier Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Ying Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Anxu Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wenhan Bian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, Shandong Province, China.
| |
Collapse
|
14
|
Dualde P, Miralles P, Peris-Martínez C, Yusà V, Coscollà C. Untargeted analysis and tentative identification of unknown substances in human tears by ultra-high performance liquid chromatography-high resolution mass spectrometry: Pilot study. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123832. [PMID: 37478724 DOI: 10.1016/j.jchromb.2023.123832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/16/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
In this work, a new approach for the identification of unknown compounds in human tears has been developed and validated using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) linked to an intelligent data acquisition mode (AcquireX DS-dd-MS2) coupled to an automated data processing software (Compound Discoverer™ 3.2). As a pilot research study, four human tear samples from volunteers were analyzed. Data were acquired in both positive and negative ionization modes and exact mass, isotope pattern, and MS2 spectra match were used for the tentative identification. Following this approach, 58 substances were identified, 47 in positive mode and 11 in negative mode, with an estimated concentration ranging from 0.1 to 9000 ng mL-1. Most of them were amino acids, hormones, metabolites, and pharmaceuticals. In order to validate the proposed method, the system suitability was evaluated and 29 commercial analytical standards of the tentatively identified substances were analyzed, of which 28 were confirmed obtaining a high identification accuracy (96.6 %). These results confirm that the screening tool presented in this work can facilitate the discovery of new metabolites, novel potential biomarkers, and substances to which the person is exposed, such as pollutants.
Collapse
Affiliation(s)
- Pablo Dualde
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Valencia, Spain
| | - Pablo Miralles
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Valencia, Spain.
| | - Cristina Peris-Martínez
- FISABIO-Medical Ophthalmology (FOM), Valencia, Spain; Department of Surgery (Ophthalmology), University of Valencia, Valencia, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Valencia, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Valencia, Spain
| |
Collapse
|
15
|
VURAL B, ULUDAĞ İ, İNCE B, ÖZYURT C, ÖZTÜRK F, SEZGİNTÜRK MK. Fluid-based wearable sensors: a turning point in personalized healthcare. Turk J Chem 2023; 47:944-967. [PMID: 38173754 PMCID: PMC10760819 DOI: 10.55730/1300-0527.3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/31/2023] [Accepted: 05/22/2023] [Indexed: 01/05/2024] Open
Abstract
Nowadays, it has become very popular to develop wearable devices that can monitor biomarkers to analyze the health status of the human body more comprehensively and accurately. Wearable sensors, specially designed for home care services, show great promise with their ease of use, especially during pandemic periods. Scientists have conducted many innovative studies on new wearable sensors that can noninvasively and simultaneously monitor biochemical indicators in body fluids for disease prediction, diagnosis, and management. Using noninvasive electrochemical sensors, biomarkers can be detected in tears, saliva, perspiration, and skin interstitial fluid (ISF). In this review, biofluids used for noninvasive wearable sensor detection under four main headings, saliva, sweat, tears, and ISF-based wearable sensors, were examined in detail. This report analyzes nearly 50 recent articles from 2017 to 2023. Based on current research, this review also discusses the evolution of wearable sensors, potential implementation challenges, and future prospects.
Collapse
Affiliation(s)
- Berfin VURAL
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - İnci ULUDAĞ
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Bahar İNCE
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Canan ÖZYURT
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Funda ÖZTÜRK
- Department of Chemistry, Faculty of Arts and Sciences, Tekirdağ Namık Kemal University, Tekirdağ,
Turkiye
| | - Mustafa Kemal SEZGİNTÜRK
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| |
Collapse
|
16
|
Hussain A, Sheikh Z, Subramanian M. The Eye as a Diagnostic Tool for Alzheimer’s Disease. Life (Basel) 2023; 13:life13030726. [PMID: 36983883 PMCID: PMC10052959 DOI: 10.3390/life13030726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder impacting cognition, function, and behavior in the elderly population. While there are currently no disease-modifying agents capable of curing AD, early diagnosis and management in the preclinical stage can significantly improve patient morbidity and life expectancy. Currently, the diagnosis of Alzheimer’s disease is a clinical one, often supplemented by invasive and expensive biomarker testing. Over the last decade, significant advancements have been made in our understanding of AD and the role of ocular tissue as a potential biomarker. Ocular biomarkers hold the potential to provide noninvasive and easily accessible diagnostic and monitoring capabilities. This review summarizes current research for detecting biomarkers of Alzheimer’s disease in ocular tissue.
Collapse
|
17
|
Dammak A, Pastrana C, Martin-Gil A, Carpena-Torres C, Peral Cerda A, Simovart M, Alarma P, Huete-Toral F, Carracedo G. Oxidative Stress in the Anterior Ocular Diseases: Diagnostic and Treatment. Biomedicines 2023; 11:biomedicines11020292. [PMID: 36830827 PMCID: PMC9952931 DOI: 10.3390/biomedicines11020292] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
The eye is a metabolically active structure, constantly exposed to solar radiations making its structure vulnerable to the high burden of reactive oxygen species (ROS), presenting many molecular interactions. The biomolecular cascade modification is caused especially in diseases of the ocular surface, cornea, conjunctiva, uvea, and lens. In fact, the injury in the anterior segment of the eye takes its origin from the perturbation of the pro-oxidant/antioxidant balance and leads to increased oxidative damage, especially when the first line of antioxidant defence weakens with age. Furthermore, oxidative stress is related to mitochondrial dysfunction, DNA damage, lipid peroxidation, protein modification, apoptosis, and inflammation, which are involved in anterior ocular disease progression such as dry eye, keratoconus, uveitis, and cataract. The different pathologies are interconnected through various mechanisms such as inflammation, oxidative stress making the diagnostics more relevant in early stages. The end point of the molecular pathway is the release of different antioxidant biomarkers offering the potential of predictive diagnostics of the pathology. In this review, we have analysed the oxidative stress and inflammatory processes in the front of the eye to provide a better understanding of the pathomechanism, the importance of biomarkers for the diagnosis of eye diseases, and the recent treatment of anterior ocular diseases.
Collapse
|
18
|
Monteiro de Barros MR, Chakravarti S. Pathogenesis of keratoconus: NRF2-antioxidant, extracellular matrix and cellular dysfunctions. Exp Eye Res 2022; 219:109062. [PMID: 35385756 PMCID: PMC12056795 DOI: 10.1016/j.exer.2022.109062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/19/2022] [Accepted: 03/30/2022] [Indexed: 11/04/2022]
Abstract
Keratoconus (KC) is a degenerative disease associated with cell and extracellular matrix (ECM) loss that causes gradual thinning and steepening of the cornea and loss of vision. Collagen cross linking with ultraviolet light treatment can strengthen the ECM and delay weakening of the cornea, but severe cases require corneal transplantation. KC is multifactorial and multigenic, but its pathophysiology is still an enigma. Multiple approaches are being pursued to elucidate the molecular changes that underlie the corneal phenotype to identify relevant genes for tailored candidate searches and to develop potential biomarkers and targets for therapeutic interventions. Recent proteomic and transcriptomic studies suggest dysregulations in oxidative stress, NRF2-regulated antioxidant programs, WNT-signaling, TGF-β, ECM and matrix metalloproteinases. This review aims to provide a broad update on the transcriptomic and proteomic studies of KC with a focus on findings that relate to oxidative stress, and dysregulations in cellular and extracellular matrix functions.
Collapse
Affiliation(s)
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, NY, 10016, USA; Department of Pathology, NYU Grossman School of Medicine, NY, 10016, USA.
| |
Collapse
|
19
|
Elsherif M, Moreddu R, Alam F, Salih AE, Ahmed I, Butt H. Wearable Smart Contact Lenses for Continual Glucose Monitoring: A Review. Front Med (Lausanne) 2022; 9:858784. [PMID: 35445050 PMCID: PMC9013844 DOI: 10.3389/fmed.2022.858784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Diabetes mellitus is a chronic disease requiring a careful management to prevent its collateral complications, such as cardiovascular and Alzheimer's diseases, retinopathy, nephropathy, foot and hearing impairment, and neuropathy. Self-monitoring of blood glucose at point-of-care settings is an established practice for diabetic patients. However, current technologies for glucose monitoring are invasive, costly, and only provide single snapshots for a widely varying parameter. On the other hand, tears are a source of physiological information that mirror the health state of an individual by expressing different concentrations of metabolites, enzymes, vitamins, salts, and proteins. Therefore, the eyes may be exploited as a sensing site with substantial diagnostic potential. Contact lens sensors represent a viable route for targeting minimally-invasive monitoring of disease onset and progression. Particularly, glucose concentration in tears may be used as a surrogate to estimate blood glucose levels. Extensive research efforts recently have been devoted to develop smart contact lenses for continual glucose detection. The latest advances in the field are reviewed herein. Sensing technologies are described, compared, and the associated challenges are critically discussed.
Collapse
Affiliation(s)
- Mohamed Elsherif
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
- *Correspondence: Mohamed Elsherif
| | | | - Fahad Alam
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
| | - Ahmed E. Salih
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
| | - Israr Ahmed
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
| | - Haider Butt
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
- Haider Butt
| |
Collapse
|
20
|
Model Systems for Evidencing the Mediator Role of Riboflavin in the UVA Cross-Linking Treatment of Keratoconus. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010190. [PMID: 35011421 PMCID: PMC8746477 DOI: 10.3390/molecules27010190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022]
Abstract
Riboflavin under UVA radiation generates reactive oxygen species (ROS) that can induce various changes in biological systems. Under controlled conditions, these processes can be used in some treatments for ocular or dermal diseases. For instance, corneal cross-linking (CXL) treatment of keratoconus involves UVA irradiation combined with riboflavin aiming to induce the formation of new collagen fibrils in cornea. To reduce the damaging effect of ROS formed in the presence of riboflavin and UVA, the CXL treatment is performed with the addition of polysaccharides (dextran). Hyaluronic acid is a polysaccharide that can be found in the aqueous layer of the tear film. In many cases, keratoconus patients also present dry eye syndrome that can be reduced by the application of topical solutions containing hyaluronic acid. This study presents physico-chemical evidence on the effect of riboflavin on collagen fibril formation revealed by the following methods: differential scanning microcalorimetry, rheology, and STEM images. The collagen used was extracted from calf skin that contains type I collagen similar to that found in the eye. Spin trapping experiments on collagen/hyaluronic acid/riboflavin solutions evidenced the formation of ROS species by electron paramagnetic resonance measurements.
Collapse
|
21
|
Zhan X, Li J, Guo Y, Golubnitschaja O. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J 2021; 12:449-475. [PMID: 34876936 PMCID: PMC8639411 DOI: 10.1007/s13167-021-00265-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022]
Abstract
Over the last two decades, a large number of non-communicable/chronic disorders reached an epidemic level on a global scale such as diabetes mellitus type 2, cardio-vascular disease, several types of malignancies, neurological and eye pathologies-all exerted system's enormous socio-economic burden to primary, secondary, and tertiary healthcare. The paradigm change from reactive to predictive, preventive, and personalized medicine (3PM/PPPM) has been declared as an essential transformation of the overall healthcare approach to benefit the patient and society at large. To this end, specific biomarker panels are instrumental for a cost-effective predictive approach of individualized prevention and treatments tailored to the person. The source of biomarkers is crucial for specificity and reliability of diagnostic tests and treatment targets. Furthermore, any diagnostic approach preferentially should be noninvasive to increase availability of the biomaterial, and to decrease risks of potential complications as well as concomitant costs. These requirements are clearly fulfilled by tear fluid, which represents a precious source of biomarker panels. The well-justified principle of a "sick eye in a sick body" makes comprehensive tear fluid biomarker profiling highly relevant not only for diagnostics of eye pathologies but also for prediction, prognosis, and treatment monitoring of systemic diseases. One prominent example is the Sicca syndrome linked to a cascade of severe complications that include dry eye, neurologic, and oncologic diseases. In this review, protein profiles in tear fluid are highlighted and corresponding biomarkers are exemplified for several relevant pathologies, including dry eye disease, diabetic retinopathy, cancers, and neurological disorders. Corresponding analytical approaches such as sample pre-processing, differential proteomics, electrophoretic techniques, high-performance liquid chromatography (HPLC), enzyme-linked immuno-sorbent assay (ELISA), microarrays, and mass spectrometry (MS) methodology are detailed. Consequently, we proposed the overall strategies based on the tear fluid biomarkers application for 3P medicine practice. In the context of 3P medicine, tear fluid analytical pathways are considered to predict disease development, to target preventive measures, and to create treatment algorithms tailored to individual patient profiles.
Collapse
Affiliation(s)
- Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, 250117 Shandong China
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People’s Republic of China
| | - Jiajia Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Yuna Guo
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
| |
Collapse
|
22
|
Nättinen J, Aapola U, Nukareddy P, Uusitalo H. Looking deeper into ocular surface health: an introduction to clinical tear proteomics analysis. Acta Ophthalmol 2021; 100:486-498. [PMID: 34750985 DOI: 10.1111/aos.15059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Ocular surface diseases are becoming more prevalent worldwide. Reasons for this include the ongoing population ageing and increasing use of digital displays, although ophthalmologists have a wide selection of tools, which can be implemented in the evaluation of the ocular surface health, methods, which enable the in-depth study of biological functions are gaining more interest. These new approaches are needed, since the individual responses to ocular surface diseases and treatments can vary from person to person, and the correlations between clinical signs and symptoms are often low. Modern mass spectrometry (MS) methods can produce information on hundreds of tear proteins, which in turn can provide valuable information on the biological effects occurring on the ocular surface. In this review article, we will provide an overview of the different aspects, which are part of a successful tear proteomics study design and equip readers with a better understanding of the methods most suited for their MS-based tear proteomics study in the field of ophthalmology and ocular surface.
Collapse
Affiliation(s)
- Janika Nättinen
- SILK Department of Ophthalmology Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Ulla Aapola
- SILK Department of Ophthalmology Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Praveena Nukareddy
- SILK Department of Ophthalmology Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Hannu Uusitalo
- SILK Department of Ophthalmology Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Tays Eye Centre Tampere University Hospital Tampere Finland
| |
Collapse
|
23
|
Yasui T, Miyata K, Nakatsuka C, Tsukise A, Gomi H. Morphological and histochemical characterization of the secretory epithelium in the canine lacrimal gland. Eur J Histochem 2021; 65. [PMID: 34726360 PMCID: PMC8581551 DOI: 10.4081/ejh.2021.3320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
In the present study, the expression of secretory components and vesicular transport proteins in the canine lacrimal gland was examined and morphometric analysis was performed. The secretory epithelium consists of two types of secretory cells with different morphological features. The secretory cells constituting acinar units (type A cells) exhibited higher levels of glycoconjugates, including β-GlcNAc, than the other cell type constituting tubular units (type T cells). Immunoblot analysis revealed that antimicrobial proteins, such as lysozyme, lactoferrin and lactoperoxidase, Rab proteins (Rab3d, Rab27a and Rab27b) and soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins (VAMP2, VAMP4, VAMP8, syntaxin-1, syntaxin-4 and syntaxin-6), were expressed at various levels. We immunohistochemically demonstrated that the expression patterns of lysozyme, lactoferrin, Rab27a, Rab27b, VAMP4, VAMP8 and syntaxin-6 differed depending on the secretory cell type. Additionally, in type T cells, VAMP4 was confined to a subpopulation of secretory granules, while VAMP8 was detected in almost all of them. The present study displayed the morphological and histochemical characteristics of the secretory epithelium in the canine lacrimal gland. These findings will help elucidate the species-specific properties of this gland.
Collapse
Affiliation(s)
- Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| | - Kenya Miyata
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| | - Chie Nakatsuka
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| | - Azuma Tsukise
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| | - Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Kanagawa.
| |
Collapse
|
24
|
Kovaļčuka L, Šarpio L, Mālniece A. Schirmer tear test and strip meniscometry in healthy cats. Open Vet J 2021; 11:695-699. [PMID: 35070866 PMCID: PMC8770198 DOI: 10.5455/ovj.2021.v11.i4.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/15/2021] [Indexed: 11/04/2022] Open
Abstract
Background: The surface of the eye is covered by the preocular tear film, which is critical for maintaining a normal, healthy, visual, and comfortable vision. The Schirmer tear test (STT) and, more recently, strip meniscometry (SM) are used to evaluate tear production. Aim: To establish the normal values for STT and SM in healthy cats and to discover the correlation between these tests. Methods: A total of 25 mixed breed cats, aging from 8 months to 13 years of both genders (10 females and 15 males) were included in the study. All the cats were assigned to the study as being both clinically and ophthalmologically healthy. For the SM test, the tip of the strip was used to evaluate the meniscus without touching the eyelid or the cornea for 5 seconds. After a full tear washout period of 10 minutes, the STT was performed using a standard STT strip. Results: In the right eyes, the mean ± standard deviation (SD) of SM was 4.32 ± 2.27 mm/5 seconds, and in the left eyes it was 5.04 ± 2.24 mm/5 seconds (for both eyes combined: 4.68 ± 2.26 mm/5 seconds), with a median of 4 in both eyes; the reference values ranged from 4.04 to 5.32 mm/5 seconds. No significant differences were recorded in the SM between the right and left eyes of the cats when using the SM (p > 0.05). When the STT was used, the mean ± SD for the cats’ right eyes was 12.16 ± 4.04 mm/minute, and for the left eyes, it was 12.76 ± 4.1 mm/minute (for both eyes combined: 12.46 ± 4.20 mm/minute), with a median of 13.50 for both eyes. Reference values were calculated and ranged from 11.27 to 13.65 mm/minute. No significant differences were recorded between the STT for the right and left eyes (p > 0.05). Conclusion: Both tests can, therefore, be used to assess tear production in cats. For more precise results, SM should be evaluated according to the cat’s eye position—whether it is a brachiocephalic cat or a normaloid cat—and according to the age. In all cases, STT and SM should be evaluated according to the animal’s clinical status and the results of other diagnostic tools.
Collapse
Affiliation(s)
- Līga Kovaļčuka
- Faculty of Veterinary Medicine, Clinical Institute, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Līga Šarpio
- Faculty of Veterinary Medicine, Clinical Institute, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Aija Mālniece
- Faculty of Veterinary Medicine, Clinical Institute, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| |
Collapse
|
25
|
Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, Sun Y, Manche EE, Ta CN, Flowers CW. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int J Pharm 2021; 607:120924. [PMID: 34324989 PMCID: PMC8579814 DOI: 10.1016/j.ijpharm.2021.120924] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023]
Abstract
Research in the development of ophthalmic drug formulations and innovative technologies over the past few decades has been directed at improving the penetration of medications delivered to the eye. Currently, approximately 90% of all ophthalmic drug formulations (e.g. liposomes, micelles) are applied as eye drops. The major challenge of topical eye drops is low bioavailability, need for frequent instillation due to the short half-life, poor drug solubility, and potential side effects. Recent research has been focused on improving topical drug delivery devices by increasing ocular residence time, overcoming physiological and anatomical barriers, and developing medical devices and drug formulations to increase the duration of action of the active drugs. Researchers have developed innovative technologies and formulations ranging from sub-micron to macroscopic size such as prodrugs, enhancers, mucus-penetrating particles (MPPs), therapeutic contact lenses, and collagen corneal shields. Another approach towards the development of effective topical drug delivery is embedding therapeutic formulations in microdevices designed for sustained release of the active drugs. The goal is to optimize the delivery of ophthalmic medications by achieving high drug concentration with prolonged duration of action that is convenient for patients to administer.
Collapse
Affiliation(s)
| | - Behnam Abdi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, CA, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Yang Sun
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Edward E Manche
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Christopher N Ta
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Charles W Flowers
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Chen S, Qi J, Fan S, Qiao Z, Yeo JC, Lim CT. Flexible Wearable Sensors for Cardiovascular Health Monitoring. Adv Healthc Mater 2021; 10:e2100116. [PMID: 33960133 DOI: 10.1002/adhm.202100116] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases account for the highest mortality globally, but recent advances in wearable technologies may potentially change how these illnesses are diagnosed and managed. In particular, continuous monitoring of cardiovascular vital signs for early intervention is highly desired. To this end, flexible wearable sensors that can be comfortably worn over long durations are gaining significant attention. In this review, advanced flexible wearable sensors for monitoring cardiovascular vital signals are outlined and discussed. Specifically, the functional materials, configurations, mechanisms, and recent advances of these flexible sensors for heart rate, blood pressure, blood oxygen saturation, and blood glucose monitoring are highlighted. Different mechanisms in bioelectric, mechano-electric, optoelectric, and ultrasonic wearable sensors are presented to monitor cardiovascular vital signs from different body locations. Present challenges, possible strategies, and future directions of these wearable sensors are also discussed. With rapid development, these flexible wearable sensors will potentially be applicable for both medical diagnosis and daily healthcare use in tackling cardiovascular diseases.
Collapse
Affiliation(s)
- Shuwen Chen
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
| | - Jiaming Qi
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Shicheng Fan
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Zheng Qiao
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Joo Chuan Yeo
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
- Mechanobiology Institute National University of Singapore Singapore 117411 Singapore
| |
Collapse
|
27
|
Sedlak L, Świerczyńska M, Borymska W, Zych M, Wyględowska-Promieńska D. Impact of dorzolamide, benzalkonium-preserved dorzolamide and benzalkonium-preserved brinzolamide on selected biomarkers of oxidative stress in the tear film. BMC Ophthalmol 2021; 21:319. [PMID: 34470600 PMCID: PMC8411550 DOI: 10.1186/s12886-021-02079-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background Long-term use of topical, especially benzalkonium chloride (BAC)-preserved, antiglaucoma medications can cause a negative impact on the ocular surface. The aim of the study was to assess the effect of topical carbonic anhydrase inhibitors (CAIs) on selected oxidative stress biomarkers in the tear film. Methods The patients were divided into four sex-matched groups: group C (n = 25) – control group – subjects who did not use topical antiglaucoma medications, group DL (n = 14) – patients using preservative-free dorzolamide, group DL + BAC (n = 16) – patients using topical BAC-preserved dorzolamide, group BL + BAC (n = 17) – patients using BAC-preserved brinzolamide. Subjects in all the study groups have been using the eye drops two times daily for 6–12 months. The oxidative stress biomarkers in the tear film samples were measured: total protein (TP) concentration, advanced oxidation protein products (AOPP) content, total sulfhydryl (-SH) groups content, the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as Total Oxidant Status (TOS), Total Antioxidant Response (TAR), and Oxidative Stress Index (OSI). Results The advanced oxidation protein products content, Total Oxidant Status as well as superoxide dismutase and catalase activities in the group DL + BAC and BL + BAC were higher in comparison with the group C. The total sulfhydryl groups content was lower in the group DL + BAC and BL + BAC when compared to group C. Oxidative Stress Index was higher in the groups DL + BAC and BL + BAC in comparison with the groups DL and C. Conclusions Use of topical benzalkonium chloride-preserved carbonic anhydrase inhibitors increases oxidative stress in the tear film.
Collapse
Affiliation(s)
- Lech Sedlak
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.,Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia in Katowice, Katowice, Poland
| | - Marta Świerczyńska
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland. .,Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia in Katowice, Katowice, Poland.
| | - Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Dorota Wyględowska-Promieńska
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.,Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
28
|
Nishida T, Sugioka K, Fukuda K, Murakami J. Pivotal Role of Corneal Fibroblasts in Progression to Corneal Ulcer in Bacterial Keratitis. Int J Mol Sci 2021; 22:ijms22168979. [PMID: 34445684 PMCID: PMC8396668 DOI: 10.3390/ijms22168979] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/05/2023] Open
Abstract
The shape and transparency of the cornea are essential for clear vision. However, its location at the ocular surface renders the cornea vulnerable to pathogenic microorganisms in the external environment. Pseudomonas aeruginosa and Staphylococcus aureus are two such microorganisms and are responsible for most cases of bacterial keratitis. The development of antimicrobial agents has allowed the successful treatment of bacterial keratitis if the infection is diagnosed promptly. However, no effective medical treatment is available after progression to corneal ulcer, which is characterized by excessive degradation of collagen in the corneal stroma and can lead to corneal perforation and corneal blindness. This collagen degradation is mediated by both infecting bacteria and corneal fibroblasts themselves, with a urokinase-type plasminogen activator (uPA)-plasmin-matrix metalloproteinase (MMP) cascade playing a central role in collagen destruction by the host cells. Bacterial factors stimulate the production by corneal fibroblasts of both uPA and pro-MMPs, released uPA mediates the conversion of plasminogen in the extracellular environment to plasmin, and plasmin mediates the conversion of secreted pro-MMPs to the active form of these enzymes, which then degrade stromal collagen. Bacterial factors also stimulate expression by corneal fibroblasts of the chemokine interleukin-8 and the adhesion molecule ICAM-1, both of which contribute to recruitment and activation of polymorphonuclear neutrophils, and these cells then further stimulate corneal fibroblasts via the secretion of interleukin-1. At this stage of the disease, bacteria are no longer necessary for collagen degradation. In this review, we discuss the pivotal role of corneal fibroblasts in corneal ulcer associated with infection by P. aeruginosa or S. aureus as well as the development of potential new modes of treatment for this condition.
Collapse
Affiliation(s)
- Teruo Nishida
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan;
- Division of Cornea and Ocular Surface, Ohshima Eye Hospital, Fukuoka 812-0036, Japan
| | - Koji Sugioka
- Department of Ophthalmology, Kindai University Nara Hospital, Ikoma, Nara 630-0293, Japan;
| | - Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
- Correspondence:
| | - Junko Murakami
- Division of Ophthalmology, Sakibana Hospital, Izumi, Osaka 594-1105, Japan;
| |
Collapse
|
29
|
Zhu B, Li X, Zhou L, Su B. An Overview of Wearable and Implantable Electrochemical Glucose Sensors. ELECTROANAL 2021. [DOI: 10.1002/elan.202100273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Boyu Zhu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Xinru Li
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Lin Zhou
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Bin Su
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| |
Collapse
|
30
|
Lebrun SJ, Chavez S, Chan R, Nguyen L, Jester JV. Modeling the antioxidant properties of the eye reduces the false-positive rate of a nonanimal eye irritation test (OptiSafe). Toxicol In Vitro 2021; 76:105208. [PMID: 34216722 DOI: 10.1016/j.tiv.2021.105208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/17/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
We recently identified a group of chemicals that are misclassified by most, if not all, in vitro alternative ocular irritation tests, suggesting that nonanimal tests may not fully model the ocular environment in which these chemicals interact. To address this, we evaluated the composition of tears, the first defense against foreign substances, and identified the presence of antioxidants that could detoxify reactive chemicals that otherwise may be falsely identified as irritants in alternative irritation tests. In this study, we evaluated the effects of tear antioxidants on the ocular irritation scoring of commonly overclassified chemicals (false positives) using the OptiSafe™ ocular irritation test. Six tear-related antioxidants were individually added to the OptiSafe formulation, and the effects on test outcome were determined. Ascorbic acid, the most abundant water-soluble antioxidant in tears, specifically reduced the OptiSafe false-positive rate. Titration curves showed that this reduction occurs at in vivo concentrations and is specific to chemicals identified either as producing reactive oxygen species or as crosslinkers. Importantly, the addition of tear antioxidants did not impact the detection of true negatives, true positives, or other false positives unassociated with reactive oxygen species or crosslinking. These results suggest that the addition of tear antioxidants to in vitro alternative test systems may substantially reduce the false-positive rate and improve ocular irritant detection.
Collapse
Affiliation(s)
| | - Sara Chavez
- Lebrun Labs LLC, Anaheim, CA, United States of America
| | - Roxanne Chan
- Lebrun Labs LLC, Anaheim, CA, United States of America
| | - Linda Nguyen
- Lebrun Labs LLC, Anaheim, CA, United States of America
| | - James V Jester
- Department of Ophthalmology and Biomedical Engineering, University of California Irvine, Irvine, CA, United States of America
| |
Collapse
|
31
|
Sussadee M, Rucksaken R, Havanapan PO, Reamtong O, Thayananuphat A. Changes in tear protein profile in dogs with keratoconjunctivitis sicca following topical treatment using cyclosporine A. Vet World 2021; 14:1711-1717. [PMID: 34316222 PMCID: PMC8304416 DOI: 10.14202/vetworld.2021.1711-1717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Keratoconjunctivitis sicca (KCS) is a chronic inflammatory ocular disease that occurs in many dog breeds worldwide. This study aimed to investigate the tear protein pattern of healthy dogs, KCS dogs, and KCS dogs after treatment with cyclosporine A (CsA). Materials and Methods Twenty-eight dogs of any breed were enrolled in the study. The subjects were divided into three groups: Healthy, KCS, and CsA-treated dogs. Tear samples were collected using Schirmer strips. Tear proteins extracted from the strips were analyzed using two-dimensional electrophoresis. For the first dimension, total protein from tears was separated by isoelectric focusing. The second dimension was performed using 12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gel images were analyzed and the protein spots of differential expression were manually cut for protein annotation using mass spectrometry. Results In total, 12 protein spots were excised and subjected to protein identification. Associated with KCS, six protein spots were a downregulated protein, namely, lysozyme. The other six protein spots were upregulated in KCS dogs, consisting of heat shock protein beta-1, protein S100-A12, and keratin type II cytoskeletal 1 and 5. After treatment with CsA for 45 days, the lysozyme protein was still decreasing and the inflammation protein (S100-A12) was not identified. Conclusion Inflammatory tear proteins and proteins involved in cellular stress were present in KCS dogs and appeared to be reduced in medicated eyes. Treatment with topical CsA in the short term may not improve the activity of antibacterial proteins. Changes in the expression patterns of these four proteins might be useful for disease severity and progression assessment, as well as for exploring a novel method for dry eye management in dogs.
Collapse
Affiliation(s)
- Metita Sussadee
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Rucksak Rucksaken
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Phattara-Orn Havanapan
- Institute of Molecular Biosciences, Mahidol University, Salaya campus, Nakhonpathom, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aree Thayananuphat
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
32
|
Abstract
ABSTRACT Sjögren syndrome (SS) is a chronic inflammatory autoimmune disease of the lacrimal and salivary glands. Salivary gland biopsy is still one of the most valuable and acceptable diagnostic tests for SS, which however, is an invasive test. Therefore, noninvasive diagnostic biomarkers with high specificity and sensitivity are required for the diagnosis and assessment of SS. Because ophthalmological testing constitutes to an important part for the diagnosis of SS. Tears harbor biomarkers with a high potential to be used for differential diagnosis and assessment of treatment in many systemic disorders, including SS. This review aims to summarize recent advances in the identification of tear biomarkers of SS, trying to identify reliable, sensitive, and specific biomarkers that can be used to guide treatment decisions.
Collapse
Affiliation(s)
- Cem Simsek
- Department of Ophthalmology (C.S.), Mugla Sitki Kocman University School of Medicine, Mugla, Turkey ; and Department of Ophthalmology (M.D.), Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
33
|
Affiliation(s)
- Ulrike Stahl
- Vision Cooperative Research Centre, Sydney, Australia
- School of Optometry and Vision Sciences, University of New South Wales, Sydney, Australia
| | - Mark Willcox
- Vision Cooperative Research Centre, Sydney, Australia
- School of Optometry and Vision Sciences, University of New South Wales, Sydney, Australia
- Institute for Eye Research, Sydney, Australia. E‐mail:
| | - Fiona Stapleton
- Vision Cooperative Research Centre, Sydney, Australia
- School of Optometry and Vision Sciences, University of New South Wales, Sydney, Australia
- Institute for Eye Research, Sydney, Australia. E‐mail:
| |
Collapse
|
34
|
Walther H, Lorentz H, Heynen M, Kay L, Jones LW. The Impact of Incubation Conditions on In Vitro Phosphatidylcholine Deposition on Contact Lens Materials. Optom Vis Sci 2021; 98:341-349. [PMID: 33828039 DOI: 10.1097/opx.0000000000001680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SIGNIFICANCE Previous in vitro measurements of contact lenses commonly investigate the impact of nonpolar tear film lipids (i.e., sterols). Polar lipids, however, are equally important stabilizing components of the tear film. This research explores and presents further knowledge about various aspects of polar lipid uptake that may impact contact lens performance. PURPOSE This study evaluated the impact of incubation time, lipid concentration, and replenishment of an artificial tear solution (ATS) on the uptake of phosphatidylcholine (PC) onto conventional hydrogel (CH) and silicone hydrogel (SH) contact lens materials. METHODS Four SHs and two CH lens materials (n = 4) were soaked in a complex ATS containing radioactive 14C-PC as a probe molecule. Phosphatidylcholine uptake was monitored at various incubation time points (1, 3, 7, 14, and 28 days), with different ATS lipid concentrations (0.5×, 1×, 2×) and with and without regular replenishment of the ATS. Phosphatidylcholine was extracted from the lenses, processed, and counted by a β counter, and accumulated PC (μg/lens) was extrapolated from standard lipid calibration curves. RESULTS All materials exhibited increasing PC deposition over time. Conventional hydrogel materials showed significantly lower PC uptake rates (P < .001) than any of the SH materials. Increasing lipid concentration in the ATS resulted in increased PC binding onto the contact lens materials (P < .001). Replenishing the ATS every other day, however, impacted the PC deposition differently, showing increased binding (P < .001) on CHs and reduced PC deposition for SH materials (P < .001). CONCLUSIONS Length of incubation, lipid concentration in the ATS, and renewal of the incubation solution all influenced the amount of PC that sorbed onto various lens materials and therefore need to be considered when conducting future in vitro deposition studies.
Collapse
Affiliation(s)
| | | | - Miriam Heynen
- Centre for Ocular Research & Education, School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Lise Kay
- Centre for Ocular Research & Education, School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
35
|
Determination of copper by AAS in tear fluid of patients with keratoconus. Anal Biochem 2021; 623:114174. [PMID: 33766579 DOI: 10.1016/j.ab.2021.114174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022]
Abstract
Keratoconus (KC) is the most common degenerative corneal disease and no single biomarker for KC has been discovered. Its causes have not yet been clarified and this work aims to be a contribution to the deepening of the knowledge of this disease and a preliminary data to the evaluation of the possibility of the use of copper (Cu) concentration in the tear fluid as a specific marker. A tear fluid sampling and Cu determination by spectrometric atomic absorption method was optimized to determine Cu levels in the tear fluid of patients with KC compared to that of healthy patients. Results demonstrate that in the KC subjects (n = 6) the concentration of Cu ions was 325.5 ± 110.7 ng/ml, while in the control group was 141.3 ± 71.1 ng/ml. A significant increase in Cu ion levels in the tear fluid was observed in the KC group compared to the control group (p value < 0.001).
Collapse
|
36
|
Badugu R, Szmacinski H, Reece EA, Jeng BH, Lakowicz JR. Sodium-Sensitive Contact Lens for Diagnostics of Ocular Pathologies. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 331:129434. [PMID: 33551571 PMCID: PMC7861470 DOI: 10.1016/j.snb.2021.129434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability to measure all the electrolyte concentrations in tears would be valuable in ophthalmology for research and diagnosis of dry eye disease (DED) and other ocular pathologies. However, tear samples are difficult to collect and analyze because the total volume is small and the chemical composition changes rapidly. Measurements of electrolytes in tears is challenging because typical clinical assays for proteins and other biomarkers cannot be used to detect ion concentrations tears. Here, we report the contact lens which is sensitive to sodium ion (Na+), one of the dominant electrolytes in tears. The Na ions in tears is diagnostic for DED. Three sodium-sensitive fluorophores (SG-C16, SG-LPE and SG-PL) were synthesized by derivatizing the sodium green with 1-hexadecyl amine, 1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine or poly-L-lysine, respectively. These probes were bound to modern silicone hydrogel (SiHG) contact lens, Biofinity from Cooper Vision. Doped lenses were tested for sodium ion dependent spectral properties of probes within the contact lens. The probes displayed changes in intensity and lifetime in response to Na+ concentration, were completely reversible, no significant probe wash-out from the lenses, were not affected by proteins in tears and were not removed after repeated washing. These results are the first step to our long-term goal, which is a lens sensitive to all the electrolytes in tears. We presented design, synthesis and implementation of three new sodium sensitive probes within a silicon hydrogel lens. Contact lenses to measure the other electrolytes in tears can be developed using the same approach by synthesis and testing of new ion-sensitive fluorophores.
Collapse
Affiliation(s)
- Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD 21201, USA
| | - Henryk Szmacinski
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD 21201, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Md 21201, USA
| | - Bennie H Jeng
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, 419 W. Redwood Street, Baltimore, Md 21201, USA
| | - Joseph R Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD 21201, USA
| |
Collapse
|
37
|
Álvarez-Barrios A, Álvarez L, García M, Artime E, Pereiro R, González-Iglesias H. Antioxidant Defenses in the Human Eye: A Focus on Metallothioneins. Antioxidants (Basel) 2021; 10:89. [PMID: 33440661 PMCID: PMC7826537 DOI: 10.3390/antiox10010089] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
The human eye, the highly specialized organ of vision, is greatly influenced by oxidants of endogenous and exogenous origin. Oxidative stress affects all structures of the human eye with special emphasis on the ocular surface, the lens, the retina and its retinal pigment epithelium, which are considered natural barriers of antioxidant protection, contributing to the onset and/or progression of eye diseases. These ocular structures contain a complex antioxidant defense system slightly different along the eye depending on cell tissue. In addition to widely studied enzymatic antioxidants, including superoxide dismutase, glutathione peroxidase, catalase, peroxiredoxins and selenoproteins, inter alia, metallothioneins (MTs) are considered antioxidant proteins of growing interest with further cell-mediated functions. This family of cysteine rich and low molecular mass proteins captures and neutralizes free radicals in a redox-dependent mechanism involving zinc binding and release. The state of the art of MTs, including the isoforms classification, the main functions described to date, the Zn-MT redox cycle as antioxidant defense system, and the antioxidant activity of Zn-MTs in the ocular surface, lens, retina and its retinal pigment epithelium, dependent on the number of occupied zinc-binding sites, will be comprehensively reviewed.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Montserrat García
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| | - Enol Artime
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Rosario Pereiro
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| |
Collapse
|
38
|
Woodward AM, Senchyna M, Argüeso P. Short-Term Reproducibility of MUC5AC Measurement in Human Tear Fluid. Diagnostics (Basel) 2021; 11:diagnostics11010057. [PMID: 33401679 PMCID: PMC7824712 DOI: 10.3390/diagnostics11010057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/13/2023] Open
Abstract
The assessment of tear fluid components is a common and valuable approach to understanding ocular surface disease and testing the efficacy of novel therapeutic strategies. However, the interpretation and utility of the findings can be limited by changes in the composition of the tear film, particularly in studies requiring repetitive patient sampling. Here, tear samples were collected twice within a one-hour interval to evaluate the short-term reproducibility of an immunoassay aimed to measure the amount of MUC5AC mucin. We found no statistical difference in total protein or MUC5AC content between the two consecutive collections of tear fluid, although the inter-individual variability in each group was high, with coefficients of variation exceeding 30% and 50%, respectively. Scatterplots showed a significant correlation in both protein and MUC5AC following collection within a one-hour interval. These data indicate that, regardless of the high inter-individual variability, repeated collection of tear fluid within an hour interval produces reproducible intra-individual data in terms of MUC5AC mucin content, and suggest that the normal mucin composition of the tear fluid can be re-established within an hour of the initial collection.
Collapse
Affiliation(s)
- Ashley M. Woodward
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | | | - Pablo Argüeso
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
- Correspondence: ; Tel.: +1-617-912-0249
| |
Collapse
|
39
|
Abstract
The precorneal tear film keeps the eye surface moist and helps to maintain normal eye function. The outermost lipid layer of the tear film, which attenuates tear film evaporation, contains meibum secreted from the meibomian gland. Most meibum lipids are neutral, including wax esters (WEs), cholesteryl esters (CEs), and diesters (DEs), along with some polar lipids including free fatty acids (FFAs), O-acyl-ω-hydroxy fatty acids (OAHFAs), and trace phospholipids. Detection of neutral lipids by mass spectrometry (MS) is challenging due to interference from impurities, particularly when working with minute-volume meibum samples. Here, we describe procedures for sample preparation and MS analysis of these elusive meibum lipids that can be used to examine dry eye disease mechanisms. Because the method described here minimizes impurity peaks for lipids generally, neutral and otherwise, it may be applied to high-sensitivity analysis of other biological samples.
Collapse
Affiliation(s)
- Jianzhong Chen
- Department of Optometry and Vision Science, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
40
|
Badugu R, Szmacinski H, Reece EA, Jeng BH, Lakowicz JR. Fluorescent contact lens for continuous non-invasive measurements of sodium and chloride ion concentrations in tears. Anal Biochem 2020; 608:113902. [PMID: 32800702 DOI: 10.1016/j.ab.2020.113902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 11/17/2022]
Abstract
Rapid and non-invasive measurement of hydration status is medically important because even mild levels of dehydration can have a significant impact on physical and cognitive performance. Despite the potential value of determining whole-body hydration based on the electrolytes found in tears, very few tests are available. An area of intense interest is the development of a contact lens which could measure ion concentrations in tears, specifically that of sodium (Na+) and chloride (Cl-) ions, the dominant electrolytes in blood plasma and tears. Here, we describe a method to make fluorescent contact lenses which allow determination of Na+ and Cl- ion concentrations in tears. Fluorophores known to be sensitive to Na+ and Cl- were derivatized to bind non-covalently to two commercially-available silicone hydrogel (SiHG) contact lenses-the Biofinity (Comfilcon A) or MyDay (Stenfilcon A) lenses. The sodium- and chloride-sensitive fluorophores displayed spectral changes in the physiological range for Na+ and Cl- ions in tears. The lenses for both Na+ and Cl- ions were completely reversible. The sodium responses were not sensitive to protein interference including human lysozyme, human serum albumin and mucin type 2. The chloride sensitivity was similar with both lenses, but the sodium-sensitive range was different in the Biofinity and MyDay lenses. We also fabricated a lens with both the Na+ and Cl- probes in a single MyDay lens resulting in a contact lens that independently measured Na+ and Cl- concentrations without physical separation of the fluorophores. Our findings indicated that a sodium and chloride-sensitive contact lens (NaCl-lens) could be used for rapid non-invasive detection of whole-body hydration, as well as associated diseases or other infections.
Collapse
Affiliation(s)
- Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD, 21201, USA.
| | - Henryk Szmacinski
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD, 21201, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Md, 21201, USA; Department of Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Md, 21201, USA
| | - Bennie H Jeng
- Department of Ophthalmology & Visual Sciences, University of Maryland School of Medicine, 419 W. Redwood Street, Baltimore, Md, 21201, USA
| | - Joseph R Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD, 21201, USA.
| |
Collapse
|
41
|
Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem Soc Rev 2020; 49:7671-7709. [PMID: 33020790 DOI: 10.1039/d0cs00304b] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While over half a century has passed since the introduction of enzyme glucose biosensors by Clark and Lyons, this important field has continued to be the focus of immense research activity. Extensive efforts during the past decade have led to major scientific and technological innovations towards tight monitoring of diabetes. Such continued progress toward advanced continuous glucose monitoring platforms, either minimal- or non-invasive, holds considerable promise for addressing the limitations of finger-prick blood testing toward tracking glucose trends over time, optimal therapeutic interventions, and improving the life of diabetes patients. However, despite these major developments, the field of glucose biosensors is still facing major challenges. The scope of this review is to present the key scientific and technological advances in electrochemical glucose biosensing over the past decade (2010-present), along with current obstacles and prospects towards the ultimate goal of highly stable and reliable real-time minimally-invasive or non-invasive glucose monitoring. After an introduction to electrochemical glucose biosensors, we highlight recent progress based on using advanced nanomaterials at the electrode-enzyme interface of three generations of glucose sensors. Subsequently, we cover recent activity and challenges towards next-generation wearable non-invasive glucose monitoring devices based on innovative sensing principles, alternative body fluids, advanced flexible materials, and novel platforms. This is followed by highlighting the latest progress in the field of minimally-invasive continuous glucose monitoring (CGM) which offers real-time information about interstitial glucose levels, by focusing on the challenges toward developing biocompatible membrane coatings to protect electrochemical glucose sensors against surface biofouling. Subsequent sections cover new analytical concepts of self-powered glucose sensors, paper-based glucose sensing and multiplexed detection of diabetes-related biomarkers. Finally, we will cover the latest advances in commercially available devices along with the upcoming future technologies.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
42
|
Lyu L, Hu L, Han L, Zhang J, Sun J, Wan X, Wang L, Yan H, Che C. Lacrimal androgen-binding proteins protect against Aspergillus fumigatus keratitis in mice. Int Immunopharmacol 2020; 88:106940. [PMID: 32916626 DOI: 10.1016/j.intimp.2020.106940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
AIM To clarify the regulatory mechanisms of lacrimal androgen-binding proteins (ABPs) in mice with keratitis caused by Aspergillus fumigatus (A. fumigatus). METHODS Mouse models of A. fumigatus keratitis were established. Lacrimal glands were removed after 24 h for general and histological comparison. Lacrimal ABPs were detected by qRT-PCR and quantitative proteomic analysis, or were detected by qRT-PCR after subconjunctival or lacrimal gland injection with dexamethasone. Unique inflammatory factors were detected by qRT-PCR, Western blot and/or immunofluorescence. Interleukin-1β (IL-1β) was injected into the lacrimal gland to explore the relationship between IL-1β and lacrimal ABPs. RESULTS The lacrimal glands of mice with fungal keratitis were larger than normal mice and these structures became disorganized. Moreover, the expression of ABP ε and ABP δ were increased. Subconjunctival injection with dexamethasone could reduce the size of the lacrimal gland and increase the expression of ABP ε and ABP δ, while lacrimal gland injection with dexamethasone had no obvious effects. The expression of IL-1β in the lacrimal gland of mice with A. fumigatus keratitis was increased. When IL-1β was injected into the lacrimal gland, the lacrimal gland enlarged and the expression of ABP ε and ABP δ decreased. CONCLUSION Lacrimal glands contributed to protection in fungal keratitis, which was not due to the involvement of inflammatory cells in mice. ABP δ and ABP ε of mice were involved in reducing the severity of corneal damage in mice with A. fumigatus keratitis. Moreover, the expression of IL-1β and ABP δ and ABP ε were intrinsically linked.
Collapse
Affiliation(s)
- Leyu Lyu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lin Han
- Gout Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jintao Sun
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaomei Wan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Limei Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Haijing Yan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chengye Che
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
43
|
Thacker M, Tseng CL, Chang CY, Jakfar S, Chen HY, Lin FH. Mucoadhesive Bletilla striata Polysaccharide-Based Artificial Tears to Relieve Symptoms and Inflammation in Rabbit with Dry Eyes Syndrome. Polymers (Basel) 2020; 12:polym12071465. [PMID: 32629860 PMCID: PMC7407882 DOI: 10.3390/polym12071465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/13/2020] [Accepted: 06/27/2020] [Indexed: 12/13/2022] Open
Abstract
Dry eye syndrome (DES) is a multifactorial disorder of the ocular surface affecting many people all over the world. However, there have been many therapeutic advancements for the treatment of DES, substantial long-term treatment remains a challenge. Natural plant-based polysaccharides have gained much importance in the field of tissue engineering for their excellent biocompatibility and unique physical properties. In this study, polysaccharides from a Chinese ground orchid, Bletilla striata, were successfully extracted and incorporated into the artificial tears for DES treatment due to its anti-inflammatory and mucoadhesive properties. The examination for physical properties such as refractive index, pH, viscosity and osmolality of the Bletilla striata polysaccharide (BSP) artificial tears fabricated in this study showed that it was in close association with that of the natural human tears. The reactive oxygen species (ROS) level and inflammatory gene expression tested in human corneal epithelium cells (HCECs) indicated that the low BSP concentrations (0.01–0.1% v/v) could effectively reduce inflammatory cytokines (TNF, IL8) and ROS levels in HCECs, respectively. Longer retention of the BSP-formulated artificial tears on the ocular surface is due to the mucoadhesive nature of BSP allowing lasting lubrication. Additionally, a rabbit’s DES model was created to evaluate the effect of BSP for treating dry eye. Schirmer test results exhibited the effectiveness of 0.1% (v/v) BSP-containing artificial tears in enhancing the tear volume in DES rabbits. This work combines the effectiveness of artificial tears and anti-inflammatory herb extract (BSP) to moisturize ocular surface and to relieve the inflammatory condition in DES rabbit, which further shows great potential of BSP in treating ocular surface diseases like DES in clinics in the future.
Collapse
Affiliation(s)
- Minal Thacker
- Graduate Institute of Biomedical Engineering, National Taiwan University, No.49, Fanglan Road, Daan District, Taipei 10051, Taiwan; (M.T.); (C.-Y.C.); (S.J.); (H.Y.C.)
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan;
| | - Chih-Yen Chang
- Graduate Institute of Biomedical Engineering, National Taiwan University, No.49, Fanglan Road, Daan District, Taipei 10051, Taiwan; (M.T.); (C.-Y.C.); (S.J.); (H.Y.C.)
| | - Subhaini Jakfar
- Graduate Institute of Biomedical Engineering, National Taiwan University, No.49, Fanglan Road, Daan District, Taipei 10051, Taiwan; (M.T.); (C.-Y.C.); (S.J.); (H.Y.C.)
| | - Hsuan Yu Chen
- Graduate Institute of Biomedical Engineering, National Taiwan University, No.49, Fanglan Road, Daan District, Taipei 10051, Taiwan; (M.T.); (C.-Y.C.); (S.J.); (H.Y.C.)
| | - Feng-Huei Lin
- Graduate Institute of Biomedical Engineering, National Taiwan University, No.49, Fanglan Road, Daan District, Taipei 10051, Taiwan; (M.T.); (C.-Y.C.); (S.J.); (H.Y.C.)
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
- Correspondence: ; Tel.: +886-928260400
| |
Collapse
|
44
|
Pflugfelder SC, Stern ME. Biological functions of tear film. Exp Eye Res 2020; 197:108115. [PMID: 32561483 DOI: 10.1016/j.exer.2020.108115] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Tears have a vital function to protect and lubricate the ocular surface. Tear production, distribution and clearance is tightly regulated by the lacrimal functional unit (LFU) to meet ocular surface demands. The tear film consists of an aqueous-mucin layer, containing fluid and soluble factors produced by the lacrimal glands and mucin secreted by the goblet cells, that is covered by a lipid layer. The array of proteins, glycoproteins and lipids in tears function to maintain a stable, well-lubricated and smooth optical surface. Tear factors also promote wound healing, suppress inflammation, scavenge free radicals, and defend against microbial infection. Disease and dysfunction of the LFU leads to tear instability, increased evaporation, inflammation, and blurred and fluctuating vision. The function of tear components and the consequences of tear deficiency on the ocular surface are reviewed.
Collapse
Affiliation(s)
- Stephen C Pflugfelder
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States.
| | - Michael E Stern
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States; ImmunEyez, Mission Viejo, CA, United States.
| |
Collapse
|
45
|
Raposo AC, Portela RD, Aldrovani M, Barral TD, Cury D, Oriá AP. Comparative Analysis of Tear Composition in Humans, Domestic Mammals, Reptiles, and Birds. Front Vet Sci 2020; 7:283. [PMID: 32528986 PMCID: PMC7256680 DOI: 10.3389/fvets.2020.00283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Tears are an important component of the ocular surface protection mechanism and are in close contact with the corneal epithelium and the environment. Their composition is well-known in humans; however, there are few investigations on the composition and function of tears in reptiles, birds and others mammals, which would elucidate the mechanisms governing the maintenance of ocular homeostasis. In this work, electrophoretic profiles and an evaluation of total protein, albumin, urea, glucose, and cholesterol concentrations in tears of semi-aquatic, terrestrial, and marine reptiles (Caiman latirostris, Chelonia mydas, Caretta caretta, Eretmochelys imbricata, Lepidochelys olivacea, and Chelonoidis carbonaria), birds (Tyto furcata, Rupornis magnirostris and Ara ararauna), and mammals (Equus caballus and Canis lupus familiaris) were apresented. Human tear components and respective blood serum samples were used as references. The electrophoretic analysis revealed similarities whithin same Classes. The results of the tear-blood serum relationship and the comparison to human tear components showed particularities that are potentially derived from a homeostatic response to the environment. When the tear compositions of animals belonging to different ecological clusters were compared, marked differences were observed in total protein and urea concentrations. Thus, reptile, bird, and mammalian tears are complex fluids with differing concentrations of biochemical components that are potentially a result of the animals' adaptation to different environments.
Collapse
Affiliation(s)
- Ana Cláudia Raposo
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| | | | - Marcela Aldrovani
- Post-Graduation Program in Animal Science, Franca University, Franca, Brazil
| | | | - Dayse Cury
- Brazilian Institute of Ophthalmology and Blindness Prevention, Bahia School of Medicine and Public Health, Salvador, Brazil
| | - Arianne Pontes Oriá
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
46
|
Levels of lactoferrin, lysozyme and albumin in the tear film of keratoconus patients and their correlations with important parameters of the disease. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: Despite the fact that keratoconus has been tipically defined as a noninflammatory condition, recent research has promoted the role of inflammatory factors and protein changes of tear film in disease progression.
Aims: to determine the level of serum albumin, lactoferrin and lyzozyme in tears of keratoconic patients and their correlations with corneal biomechanical properties.
Subjects and methods: 16 eyes of keratoconus patients and 14 eyes of control cases were enrolled in an observational prospective study. We performed a complete ophthalmological examination on all participants. In order to determine the concentration of tear film proteins, a minimum of 20 microlitres of tears from the lower conjunctival fornix were collected from each subject and measured by enzyme-linked immunosorbent assay (ELISA) analysis.
Results: The level of lactoferrin measured in the tear film was significantly decreased in the keratoconus group compared to the normal subjects in all cases (p<0.05). We also found an increased level of lyzozyme and albumin in the keratoconus patients when compared to the controls, only the lyzozyme beeing statistically significant. In the keratoconus group, the correlations between proteins and important parameters such as keratometry, pachymetry and corneal biomechanics were statistically relevant in our study.
Conclusions: We can state that the protein composition of tears is modified in keratoconus by increased levels of protein with inflammatory properties such as albumin or by decreased levels of protein with anti-inflammatory properties such as lactoferrin.
Collapse
|
47
|
Ballard Z, Bazargan S, Jung D, Sathianathan S, Clemens A, Shir D, Al-Hashimi S, Ozcan A. Contact lens-based lysozyme detection in tear using a mobile sensor. LAB ON A CHIP 2020; 20:1493-1502. [PMID: 32227027 PMCID: PMC7189769 DOI: 10.1039/c9lc01039d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report a method for sensing analytes in tear-fluid using commercial contact lenses (CLs) as sample collectors for subsequent analysis with a cost-effective and field-portable reader. In this study we quantify lysozyme, the most prevalent protein in tear fluid, non-specifically bound to CLs worn by human participants. Our mobile reader uses time-lapse imaging to capture an increasing fluorescent signal in a standard well-plate, the rate-of-change of which is used to indirectly infer lysozyme concentration through the use of a standard curve. We empirically determined the best-suited CL material for our sampling procedure and assay, and subsequently monitored the lysozyme levels of nine healthy human participants over a two-week period. Of these participants who were regular CL wearers (6 out of 9), we observed an increase in lysozyme levels from 6.89 ± 2.02 μg mL-1 to 10.72 ± 3.22 μg mL-1 (mean ± SD) when inducing an instance of digital eye-strain by asking them to play a game on their mobile-phones during the CL wear-duration. We also observed a lower mean lysozyme concentration (2.43 ± 1.66 μg mL-1) in a patient cohort with dry eye disease (DED) as compared to the average monitoring level of healthy (no DED) human participants (6.89 ± 2.02 μg mL-1). Taken together, this study demonstrates tear-fluid analysis with simple and non-invasive sampling steps along with a rapid, easy-to-use, and cost-effective measurement system, ultimately indicating physiological differences in human participants. We believe this method could be used in future tear-fluid studies, even supporting multiplexed detection of a panel of tear biomarkers toward improved diagnostics and prognostics as well as personalized mobile-health applications.
Collapse
Affiliation(s)
- Zachary Ballard
- Department of Electrical and Computer Engineering, University of California, Los Angeles, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Miyamoto M, Sassa T, Sawai M, Kihara A. Lipid polarity gradient formed by ω-hydroxy lipids in tear film prevents dry eye disease. eLife 2020; 9:53582. [PMID: 32252890 PMCID: PMC7138607 DOI: 10.7554/elife.53582] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Meibum lipids form a lipid layer on the outermost side of the tear film and function to prevent water evaporation and reduce surface tension. (O-Acyl)-ω-hydroxy fatty acids (OAHFAs), a subclass of these lipids, are thought to be involved in connecting the lipid and aqueous layers in tears, although their actual function and synthesis pathway have to date remained unclear. Here, we reveal that the fatty acid ω-hydroxylase Cyp4f39 is involved in OAHFA production. Cyp4f39-deficient mice exhibited damaged corneal epithelium and shortening of tear film break-up time, both indicative of dry eye disease. In addition, tears accumulated on the lower eyelid side, indicating increased tear surface tension. In Cyp4f39-deficient mice, the production of wax diesters (type 1ω and 2ω) and cholesteryl OAHFAs was also impaired. These OAHFA derivatives show intermediate polarity among meibum lipids, suggesting that OAHFAs and their derivatives contribute to lipid polarity gradient formation for tear film stabilization.
Collapse
Affiliation(s)
- Masatoshi Miyamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Megumi Sawai
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
49
|
Dedousi A, Karatzia MA, Katsoulos PD. Reference values of Schirmer tear test in sheep and the effect of season on the test results. Acta Vet Hung 2019; 67:553-560. [PMID: 31842602 DOI: 10.1556/004.2019.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to determine the reference range of Schirmer tear test (STT) values in sheep using Greek indigenous and mixed breeds and to investigate the potential effect of breed and season on these values. Ninety (30 Chios, 30 Florina and 30 Lacaune mixed breed) ewes aged 2 years or more were used for the study. The aqueous portion of the tear film was measured using Schirmer tear test (STT) commercial strips bilaterally by the same investigator with the animal in standing position. The average STT value recorded was 18.45 ± 3.93 mm/min and the range 10.8-26.2 mm/min. STT was significantly affected by the season and the recorded values were significantly higher in summer compared to winter. The breed had no significant effect on tear secretion. The results of the present study provide a reference range of STT values in sheep and indicate that tear secretion is significantly affected by the season.
Collapse
Affiliation(s)
- Anna Dedousi
- 1 Veterinary Research Institute, Hellenic Agricultural Organization, Demeter, Thessaloniki, Greece
| | - Maria A. Karatzia
- 2 Research Institute of Animal Science, Hellenic Agricultural Organization, Demeter, Paralimni Giannitsa, Greece
| | - Panagiotis D. Katsoulos
- 3Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, St. Voutyra 11, 54627 Thessaloniki, Greece
| |
Collapse
|
50
|
|