1
|
Dixon DL, Lawrence MD, Bihari S, De Pasquale CG, Griggs KM, Bersten AD. Systemic Markers of Monocyte Activation in Acute Pulmonary Oedema. Heart Lung Circ 2020; 30:404-413. [PMID: 32713768 DOI: 10.1016/j.hlc.2020.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/21/2020] [Accepted: 06/15/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hydrostatic lung injury followed by pulmonary remodelling variably complicates cardiogenic acute pulmonary oedema (APO). Pulmonary remodelling may be regulated by the balance between distinct phenotypes of pulmonary macrophages; activated/inflammatory (M1), and reparative/anti-inflammatory (M2), derived from circulating monocyte populations. The aim of this study was to identify biomarkers in peripheral blood that are consistent with hydrostatic lung injury and pulmonary remodelling in APO and which follow the variable clinical course. METHODS To examine peripheral markers of lung inflammation, resolution and remodelling, 18 patients, admitted to the intensive care unit (ICU) with a clinical diagnosis of APO, were enrolled. Admission, 12- and 24-hour post-admission bloods were assayed for cytokines by ELISA (R&D Systems, Minneapolis, MN, USA) and leukocyte surface markers by flow cytometry. RESULTS Admission PaO2 to FiO2 ratio was positively correlated with Mon 2 (intermediate) monocyte prevalence, through increasing ratio of CD16+ monocytes to CD11b+ and CD40+ monocytes, and negatively correlated with Mon 1 (classical) monocyte prevalence, through decreasing ratio of CD16+ monocytes to CD62L+. Secondary cohort analysis compared 10 APO patients with established chronic heart failure (CHF) to eight without CHF. An increase in monocyte chemotactic peptide (MCP)-1, monocyte prevalence, and CD16-CD62L+ monocytes with CHF, all characteristic of monocyte activation to a Mon 1 phenotype, were found in the CHF APO patients. CONCLUSIONS Increased systemic monocyte prevalence and expression of cell surface markers suggest a Mon 1 profile in CHF patients during episodes of APO. Future studies should define the role of systemic monocyte prevalence and activation in decompensated CHF.
Collapse
Affiliation(s)
- Dani-Louise Dixon
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, SA, Australia; Department of Critical Care Medicine, Flinders University, Adelaide, SA, Australia.
| | - Mark D Lawrence
- Department of Critical Care Medicine, Flinders University, Adelaide, SA, Australia
| | - Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, SA, Australia; Department of Critical Care Medicine, Flinders University, Adelaide, SA, Australia
| | - Carmine G De Pasquale
- Cardiac Services, Flinders Medical Centre, Adelaide, SA, Australia; Department of Medicine, Flinders University, Adelaide, SA, Australia
| | - Kim M Griggs
- Department of Critical Care Medicine, Flinders University, Adelaide, SA, Australia
| | - Andrew D Bersten
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, SA, Australia; Department of Critical Care Medicine, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
2
|
Zhang SD, Wang P, Zhang J, Wang W, Yao LP, Gu CB, Efferth T, Fu YJ. 2'O-galloylhyperin attenuates LPS-induced acute lung injury via up-regulation antioxidation and inhibition of inflammatory responses in vivo. Chem Biol Interact 2019; 304:20-27. [PMID: 30849337 DOI: 10.1016/j.cbi.2019.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/30/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
2'O-galloylhyperin, an active flavonol glycoside compound with remarkable anti-immune activity, was isolated from Pyrola [P. incarnata Fisch.]. However, the evidence of anti-inflammatory activity in pulmonary diseases was still not convincing. The aim of the present study was (1) to investigate the effect of 2'O-galloylhyperin on LPS-induced acute lung injury in mice, and (2) to identify the mechanisms of attenuation of inflammatory responses. The results demonstrated that 2'O-galloylhyperin significantly reduced LPS-induced inflammation damage in a dose-dependent manner. After LPS challenge, treatment with 2'O-galloylhyperin reduced the production of pro-inflammatory cytokines and chemokines, and also improved LPS-induced lung histopathology changes. 2'O-galloylhyperin also increased the activities of antioxidant enzymes, including SOD and GSH-Px to maintain cellular redox homeostasis. Furthermore, 2'O-galloylhyperin inhibited translocation of nuclear factor (NF-κB) activation and suppressed phosphorylation of MAPK signaling pathway consisting of p38, ERK, JNK. In addition, 2'O-galloylhyperin enhanced heme oxygenase-1 (HO-1) expression to block LPS-induced inflammation via activating nuclear factor-crythroid 2-related factor (Nrf2). Moreover, 2'O-galloylhyperin induced adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation. 2'O-galloylhyperin attenuated LPS-induced acute lung injury by inhibiting the MAPK and NF-κB signaling pathways, presumably related to up-regulation of the AMPK and Nrf2 signaling pathways. Furthermore, 2'O-galloylhyperin is a potential protective antioxidant to protect lung tissues from the acute injury.
Collapse
Affiliation(s)
- Sun-Dong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Peng Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jing Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Wei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Li-Ping Yao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Cheng-Bo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Sharma NS, Lal CV, Li JD, Lou XY, Viera L, Abdallah T, King RW, Sethi J, Kanagarajah P, Restrepo-Jaramillo R, Sales-Conniff A, Wei S, Jackson PL, Blalock JE, Gaggar A, Xu X. The neutrophil chemoattractant peptide proline-glycine-proline is associated with acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2018; 315:L653-L661. [PMID: 30091378 PMCID: PMC6295514 DOI: 10.1152/ajplung.00308.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by unrelenting polymorphonuclear neutrophil (PMN) inflammation and vascular permeability. The matrikine proline-glycine-proline (PGP) and acetylated PGP (Ac-PGP) have been shown to induce PMN inflammation and endothelial permeability in vitro and in vivo. In this study, we investigated the presence and role of airway PGP peptides in acute lung injury (ALI)/ARDS. Pseudomonas aeruginosa-derived lipopolysaccharide (LPS) was instilled intratracheally in mice to induce ALI, and increased Ac-PGP with neutrophil inflammation was noted. The PGP inhibitory peptide, arginine-threonine-arginine (RTR), was administered (it) 30 min before or 6 h after LPS injection. Lung injury was evaluated by detecting neutrophil infiltration and permeability changes in the lung. Pre- and posttreatment with RTR significantly inhibited LPS-induced ALI by attenuating lung neutrophil infiltration, pulmonary permeability, and parenchymal inflammation. To evaluate the role of PGP levels in ARDS, minibronchoalveolar lavage was collected from nine ARDS, four cardiogenic edema, and five nonlung disease ventilated patients. PGP levels were measured and correlated with Acute Physiology and Chronic Health Evaluation (APACHE) score, P a O 2 to F I O 2 (P/F), and ventilator days. PGP levels in subjects with ARDS were significantly higher than cardiogenic edema and nonlung disease ventilated patients. Preliminary examination in both ARDS and non-ARDS populations demonstrated PGP levels significantly correlated with P/F ratio, APACHE score, and duration on ventilator. These results demonstrate an increased burden of PGP peptides in ARDS and suggest the need for future studies in ARDS cohorts to examine correlation with key clinical parameters.
Collapse
Affiliation(s)
- Nirmal S Sharma
- Center for Advanced Lung Disease and Lung Transplantation, University of South Florida/Tampa General Hospital , Tampa, Florida
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | - Charitharth Vivek Lal
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Pediatrics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jin-Dong Li
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Medical Service at Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| | - Xiang-Yang Lou
- Biostatistics Program, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Liliana Viera
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Tarek Abdallah
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert W King
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jaskaran Sethi
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | - Prashanth Kanagarajah
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | | | - Amanda Sales-Conniff
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Patricia L Jackson
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - J Edwin Blalock
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amit Gaggar
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
- Medical Service at Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| | - Xin Xu
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
- Medical Service at Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|
4
|
Gaggar A, Patel RP. There is blood in the water: hemolysis, hemoglobin, and heme in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 311:L714-L718. [PMID: 27542810 DOI: 10.1152/ajplung.00312.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/17/2016] [Indexed: 11/22/2022] Open
Abstract
The major role of red blood cells (RBCs) is to deliver oxygen and remove carbon dioxide within organisms through the unique properties of hemoglobin. Although beneficial within RBCs, when outside hemoglobin and its breakdown products (heme, iron) induce proinflammatory responses affecting various cellular responses. Although these effects are considered to be prominent in disorders with increased hemolysis, recent evidence suggests that this process may be active in nonhemolytic disorders such as acute lung injury/acute respiratory distress syndrome. This perspectives article focuses on data related to red cell products in nonhemolytic disorders and the potential to target these factors in acute lung injury/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Medicine Service, Birmingham VA Medical Center, Birmingham, Alabama
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
5
|
Taniguchi H, Kondoh Y. Acute and subacute idiopathic interstitial pneumonias. Respirology 2016; 21:810-20. [PMID: 27123874 DOI: 10.1111/resp.12786] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 12/12/2022]
Abstract
Idiopathic interstitial pneumonias (IIPs) may have an acute or subacute presentation, or acute exacerbation may occur in a previously subclinical or unrecognized chronic IIP. Acute or subacute IIPs include acute interstitial pneumonia (AIP), cryptogenic organizing pneumonia (COP), nonspecific interstitial pneumonia (NSIP), acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) and AE-NSIP. Interstitial lung diseases (ILDs) including connective tissue disease (CTD) associated ILD, hypersensitivity pneumonitis, acute eosinophilic pneumonia, drug-induced lung disease and diffuse alveolar haemorrhage need to be differentiated from acute and subacute IIPs. Despite the severe lack of randomized controlled trials for the treatment of acute and subacute IIPs, the mainstream treatment remains corticosteroid therapy. Other potential therapies reported in the literature include corticosteroids and immunosuppression, antibiotics, anticoagulants, neutrophil elastase inhibitor, autoantibody-targeted treatment, antifibrotics and hemoperfusion therapy. With regard to mechanical ventilation, patients in recent studies with acute and subacute IIPs have shown better survival than those in previous studies. Therefore, a careful value-laden decision about the indications for endotracheal intubation should be made for each patient. Noninvasive ventilation may be beneficial to reduce ventilator associated pneumonia.
Collapse
Affiliation(s)
- Hiroyuki Taniguchi
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| |
Collapse
|
6
|
Kataoka K, Taniguchi H, Kondoh Y, Nishiyama O, Kimura T, Matsuda T, Yokoyama T, Sakamoto K, Ando M. Recombinant Human Thrombomodulin in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Chest 2015; 148:436-443. [DOI: 10.1378/chest.14-2746] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
7
|
Hahn CS, Scott DW, Xu X, Roda MA, Payne GA, Wells JM, Viera L, Winstead CJ, Bratcher P, Sparidans RW, Redegeld FA, Jackson PL, Folkerts G, Blalock JE, Patel RP, Gaggar A. The matrikine N-α-PGP couples extracellular matrix fragmentation to endothelial permeability. SCIENCE ADVANCES 2015; 1:e1500175. [PMID: 26229981 PMCID: PMC4517288 DOI: 10.1126/sciadv.1500175] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
The compartmentalization and transport of proteins and solutes across the endothelium is a critical biologic function altered during inflammation and disease, leading to pathology in multiple disorders. The impact of tissue damage and subsequent extracellular matrix (ECM) fragmentation in regulating this process is unknown. We demonstrate that the collagen-derived matrikine acetylated proline-glycine-proline (N-α-PGP) serves as a critical regulator of endothelial permeability. N-α-PGP activates human endothelial cells via CXC-chemokine receptor 2 (CXCR2), triggering monolayer permeability through a discrete intracellular signaling pathway. In vivo, N-α-PGP induces local vascular leak after subcutaneous administration and pulmonary vascular permeability after systemic administration. Furthermore, neutralization of N-α-PGP attenuates lipopolysaccharide-induced lung leak. Finally, we demonstrate that plasma from patients with acute respiratory distress syndrome (ARDS) induces VE-cadherin phosphorylation in human endothelial cells, and this activation is attenuated by N-α-PGP blockade with a concomitant improvement in endothelial monolayer impedance. These results identify N-α-PGP as a novel ECM-derived matrikine regulating paracellular permeability during inflammatory disease and demonstrate the potential to target this ligand in various disorders characterized by excessive matrix turnover and vascular leak such as ARDS.
Collapse
Affiliation(s)
- Cornelia S. Hahn
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David W. Scott
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xin Xu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mojtaba Abdul Roda
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - Gregory A. Payne
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J. Michael Wells
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Medical Service at Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Liliana Viera
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Colleen J. Winstead
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Preston Bratcher
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rolf W. Sparidans
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - Frank A. Redegeld
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - Patricia L. Jackson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gert Folkerts
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - J. Edwin Blalock
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Medical Service at Birmingham VA Medical Center, Birmingham, AL 35233, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Calcium signaling-related proteins are associated with broncho-pulmonary dysplasia progression. J Proteomics 2013; 94:401-12. [DOI: 10.1016/j.jprot.2013.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/04/2013] [Accepted: 10/05/2013] [Indexed: 02/07/2023]
|
9
|
Sharifov OF, Xu X, Gaggar A, Grizzle WE, Mishra VK, Honavar J, Litovsky SH, Palgunachari MN, White CR, Anantharamaiah GM, Gupta H. Anti-inflammatory mechanisms of apolipoprotein A-I mimetic peptide in acute respiratory distress syndrome secondary to sepsis. PLoS One 2013; 8:e64486. [PMID: 23691230 PMCID: PMC3653907 DOI: 10.1371/journal.pone.0064486] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/14/2013] [Indexed: 01/11/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) due to sepsis has a high mortality rate with limited treatment options. High density lipoprotein (HDL) exerts innate protective effects in systemic inflammation. However, its role in ARDS has not been well studied. Peptides such as L-4F mimic the secondary structural features and functions of apolipoprotein (apo)A-I, the major protein component of HDL. We set out to measure changes in HDL in sepsis-mediated ARDS patients, and to study the potential of L-4F to prevent sepsis-mediated ARDS in a rodent model of lipopolysaccharide (LPS)-mediated acute lung injury, and a combination of primary human leukocytes and human ARDS serum. We also analyzed serum from non-lung disease intubated patients (controls) and sepsis-mediated ARDS patients. Compared to controls, ARDS demonstrates increased serum endotoxin and IL-6 levels, and decreased HDL, apoA-I and activity of anti-oxidant HDL-associated paraoxanase-1. L-4F inhibits the activation of isolated human leukocytes and neutrophils by ARDS serum and LPS in vitro. Further, L-4F decreased endotoxin activity and preserved anti-oxidant properties of HDL both in vitro and in vivo. In a rat model of severe endotoxemia, L-4F significantly decreased mortality and reduces lung and liver injury, even when administered 1 hour post LPS. Our study suggests the protective role of the apoA-I mimetic peptide L-4F in ARDS and gram-negative endotoxemia and warrant further clinical evaluation. The main protective mechanisms of L-4F are due to direct inhibition of endotoxin activity and preservation of HDL anti-oxidant activity.
Collapse
Affiliation(s)
- Oleg F. Sharifov
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xin Xu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Medicine Service, United States Department of Veterans Affairs Medical Center, Birmingham, Alabama, United States of America
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Vinod K. Mishra
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jaideep Honavar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Silvio H. Litovsky
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mayakonda N. Palgunachari
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - C. Roger White
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - G. M. Anantharamaiah
- Department of Medicine, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Himanshu Gupta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Medicine Service, United States Department of Veterans Affairs Medical Center, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ménoret A, Kumar S, Vella AT. Cytochrome b5 and cytokeratin 17 are biomarkers in bronchoalveolar fluid signifying onset of acute lung injury. PLoS One 2012; 7:e40184. [PMID: 22792238 PMCID: PMC3391234 DOI: 10.1371/journal.pone.0040184] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/01/2012] [Indexed: 11/26/2022] Open
Abstract
Acute lung injury (ALI) is characterized by pulmonary edema and acute inflammation leading to pulmonary dysfunction and potentially death. Early medical intervention may ameliorate the severity of ALI, but unfortunately, there are no reliable biomarkers for early diagnosis. We screened for biomarkers in a mouse model of ALI. In this model, inhalation of S. aureus enterotoxin A causes increased capillary permeability, cell damage, and increase protein and cytokine concentration in the lungs. We set out to find predictive biomarkers of ALI in bronchoalveolar lavage (BAL) fluid before the onset of clinical manifestations. A cutting edge proteomic approach was used to compare BAL fluid harvested 16 h post S. aureus enterotoxin A inhalation versus BAL fluid from vehicle alone treated mice. The proteomic PF 2D platform permitted comparative analysis of proteomic maps and mass spectrometry identified cytochrome b5 and cytokeratin 17 in BAL fluid of mice challenged with S. aureus enterotoxin A. Validation of cytochrome b5 showed tropic expression in epithelial cells of the bronchioles. Importantly, S. aureus enterotoxin A inhalation significantly decreased cytochrome b5 during the onset of lung injury. Validation of cytokeratin 17 showed ubiquitous expression in lung tissue and increased presence in BAL fluid after S. aureus enterotoxin A inhalation. Therefore, these new biomarkers may be predictive of ALI onset in patients and could provide insight regarding the basis of lung injury and inflammation.
Collapse
Affiliation(s)
- Antoine Ménoret
- University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Sanjeev Kumar
- University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Anthony T. Vella
- University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
11
|
Li XJ, Liu DP, Chen HL, Pan XH, Kong QY, Pang QF. Lactoferrin protects against lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2012; 12:460-4. [DOI: 10.1016/j.intimp.2012.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/01/2012] [Accepted: 01/03/2012] [Indexed: 01/08/2023]
|
12
|
Li Z, Mao Z, Lin Y, Liang W, Jiang F, Liu J, Tang Q, Ma D. Dynamic changes of tissue factor pathway inhibitor type 2 associated with IL-1β and TNF-α in the development of murine acute lung injury. Thromb Res 2008; 123:361-6. [DOI: 10.1016/j.thromres.2008.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 02/03/2008] [Accepted: 03/24/2008] [Indexed: 11/25/2022]
|
13
|
White KE, Ding Q, Moore BB, Peters-Golden M, Ware LB, Matthay MA, Olman MA. Prostaglandin E2 mediates IL-1beta-related fibroblast mitogenic effects in acute lung injury through differential utilization of prostanoid receptors. THE JOURNAL OF IMMUNOLOGY 2008; 180:637-46. [PMID: 18097066 DOI: 10.4049/jimmunol.180.1.637] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The fibroproliferative response to acute lung injury (ALI) results in severe, persistent respiratory dysfunction. We have reported that IL-1beta is elevated in pulmonary edema fluid in those with ALI and mediates an autocrine-acting, fibroblast mitogenic pathway. In this study, we examine the role of IL-1beta-mediated induction of cyclooxygenase-2 and PGE2, and evaluate the significance of individual E prostanoid (EP) receptors in mediating the fibroproliferative effects of IL-1beta in ALI. Blocking studies on human lung fibroblasts indicate that IL-1beta is the major cyclooxygenase-2 mRNA and PGE2-inducing factor in pulmonary edema fluid and accounts for the differential PGE2 induction noted in samples from ALI patients. Surprisingly, we found that PGE2 produced by IL-1beta-stimulated fibroblasts enhances fibroblast proliferation. Further studies revealed that the effect of fibroblast proliferation is biphasic, with the promitogenic effect of PGE2 noted at concentrations close to that detected in pulmonary edema fluid from ALI patients. The suppressive effects of PGE2 were mimicked by the EP2-selective receptor agonist, butaprost, by cAMP activation, and were lost in murine lung fibroblasts that lack EP2. Conversely, the promitogenic effects of mid-range concentrations of PGE2 were mimicked by the EP3-selective agent, sulprostone, by cAMP reduction, and lost upon inhibition of Gi-mediated signaling with pertussis toxin. Taken together, these data demonstrate that PGE2 can stimulate or inhibit fibroblast proliferation at clinically relevant concentrations, via preferential signaling through EP3 or EP2 receptors, respectively. Such mechanisms may drive the fibroproliferative response to ALI.
Collapse
Affiliation(s)
- Kimberly E White
- Department of Medicine, University of Alabama at Birmingham 35294, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Collard HR, Moore BB, Flaherty KR, Brown KK, Kaner RJ, King TE, Lasky JA, Loyd JE, Noth I, Olman MA, Raghu G, Roman J, Ryu JH, Zisman DA, Hunninghake GW, Colby TV, Egan JJ, Hansell DM, Johkoh T, Kaminski N, Kim DS, Kondoh Y, Lynch DA, Müller-Quernheim J, Myers JL, Nicholson AG, Selman M, Toews GB, Wells AU, Martinez FJ. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2007; 176:636-43. [PMID: 17585107 PMCID: PMC2094133 DOI: 10.1164/rccm.200703-463pp] [Citation(s) in RCA: 812] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The natural history of idiopathic pulmonary fibrosis (IPF) has been characterized as a steady, predictable decline in lung function over time. Recent evidence suggests that some patients may experience a more precipitous course, with periods of relative stability followed by acute deteriorations in respiratory status. Many of these acute deteriorations are of unknown etiology and have been termed acute exacerbations of IPF. This perspective is the result of an international effort to summarize the current state of knowledge regarding acute exacerbations of IPF. Acute exacerbations of IPF are defined as acute, clinically significant deteriorations of unidentifiable cause in patients with underlying IPF. Proposed diagnostic criteria include subjective worsening over 30 days or less, new bilateral radiographic opacities, and the absence of infection or another identifiable etiology. The potential pathobiological roles of infection, disordered cell biology, coagulation, and genetics are discussed, and future research directions are proposed.
Collapse
Affiliation(s)
- Harold R. Collard
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Bethany B. Moore
- Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Kevin K. Brown
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado
| | - Robert J. Kaner
- Department of Medicine and Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Talmadge E. King
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Joseph A. Lasky
- Department of Medicine, Tulane University, New Orleans, Louisiana
| | - James E. Loyd
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Imre Noth
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Mitchell A. Olman
- Department of Medicine and Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ganesh Raghu
- Department of Medicine, University of Washington, Seattle, Washington
| | - Jesse Roman
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Jay H. Ryu
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - David A. Zisman
- Department of Medicine, University of California Los Angeles, Los Angeles, California
| | | | - Thomas V. Colby
- Department of Laboratory Medicine and Pathology, Mayo Clinic Scottsdale, Scottsdale, Arizona
| | - Jim J. Egan
- Mater Misericordiae University Hospital, University College, Dublin, Ireland
| | - David M. Hansell
- Department of Radiology, Royal Brompton Hospital, Imperial College London, London, United Kingdom
| | | | - Naftali Kaminski
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dong Soon Kim
- Division of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Aichi, Japan
| | - David A. Lynch
- Department of Radiology, National Jewish Medical and Research Center, Denver, Colorado
| | | | - Jeffrey L. Myers
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Andrew G. Nicholson
- Department of Histopathology, Royal Brompton Hospital, Imperial College London, London, United Kingdom
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Galen B. Toews
- Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Athol U. Wells
- Department of Respiratory Medicine, Royal Brompton Hospital, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|