1
|
Wang S, Shao D, Gao X, Zhao P, Kong F, Deng J, Yang L, Shang W, Sun Y, Fu Z. TEAD transcription factor family emerges as a promising therapeutic target for oral squamous cell carcinoma. Front Immunol 2024; 15:1480701. [PMID: 39430767 PMCID: PMC11486717 DOI: 10.3389/fimmu.2024.1480701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
The treatment of oral squamous cell carcinoma (OSCC) remains a significant difficulty, as there has been no improvement in survival rates over the past fifty years. Hence, exploration and confirmation of new dependable treatment targets and biomarkers is imperative for OSCC therapy. TEAD transcription factors are crucial for integrating and coordinating multiple signaling pathways that are essential for embryonic development, organ formation, and tissue homeostasis. In addition, by attaching to coactivators, TEAD modifies the expression of genes such as Cyr61, Myc, and connective tissue growth factor, hence facilitating tumor progression. Therefore, TEAD is regarded as an effective predictive biomarker due to its significant connection with clinical parameters in several malignant tumors, including OSCC. The efficacy of existing drugs that specifically target TEAD has demonstrated encouraging outcomes, indicating its potential as an optimal target for OSCC treatment. This review provides an overview of current targeted therapy strategies for OSCC by highlighting the transcription mechanism and involvement of TEAD in oncogenic signaling pathways. Finally, the feasibility of utilizing TEAD as an innovative approach to address OSCC and its potential clinical applications were analyzed and discussed.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
- Department of Stomatology, Medical College of Qingdao Huanghai University, Qingdao, China
| | - Dan Shao
- Department of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaoyan Gao
- Department of Quality Inspection, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, China
| | - Peng Zhao
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Fanzhi Kong
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Jiawei Deng
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Lianzhu Yang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Wei Shang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Sun
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Zhiguang Fu
- Department of Tumor Radiotherapy, Air Force Medical Center, People's Liberation Army of China (PLA), Beijing, China
| |
Collapse
|
2
|
Cao X, Cheng XW, Liu YY, Dai HW, Gan RY. Inhibition of pathogenic microbes in oral infectious diseases by natural products: Sources, mechanisms, and challenges. Microbiol Res 2024; 279:127548. [PMID: 38016378 DOI: 10.1016/j.micres.2023.127548] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
The maintenance of oral health is of utmost importance for an individual's holistic well-being and standard of living. Within the oral cavity, symbiotic microorganisms actively safeguard themselves against potential foreign diseases by upholding a multifaceted equilibrium. Nevertheless, the occurrence of an imbalance can give rise to a range of oral infectious ailments, such as dental caries, periodontitis, and oral candidiasis. Presently, clinical interventions encompass the physical elimination of pathogens and the administration of antibiotics to regulate bacterial and fungal infections. Given the limitations of various antimicrobial drugs frequently employed in dental practice, the rising incidence of oral inflammation, and the escalating bacterial resistance to antibiotics, it is imperative to explore alternative remedies that are dependable, efficacious, and affordable for the prevention and management of oral infectious ailments. There is an increasing interest in the creation of novel antimicrobial agents derived from natural sources, which possess attributes such as safety, cost-effectiveness, and minimal adverse effects. This review provides a comprehensive overview of the impact of natural products on the development and progression of oral infectious diseases. Specifically, these products exert their influences by mitigating dental biofilm formation, impeding the proliferation of oral pathogens, and hindering bacterial adhesion to tooth surfaces. The review also encompasses an examination of the various classes of natural products, their antimicrobial mechanisms, and their potential therapeutic applications and limitations in the context of oral infections. The insights garnered from this review can support the promising application of natural products as viable therapeutic options for managing oral infectious diseases.
Collapse
Affiliation(s)
- Xin Cao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xing-Wang Cheng
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yin-Ying Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Hong-Wei Dai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore.
| |
Collapse
|
3
|
Metkar SP, Fernandes G, Navti PD, Nikam AN, Kudarha R, Dhas N, Seetharam RN, Santhosh KV, Rao BSS, Mutalik S. Nanoparticle drug delivery systems in hepatocellular carcinoma: A focus on targeting strategies and therapeutic applications. OPENNANO 2023; 12:100159. [DOI: 10.1016/j.onano.2023.100159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Russo E, Grondona C, Brullo C, Spallarossa A, Villa C, Tasso B. Indole Antitumor Agents in Nanotechnology Formulations: An Overview. Pharmaceutics 2023; 15:1815. [PMID: 37514002 PMCID: PMC10385756 DOI: 10.3390/pharmaceutics15071815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The indole heterocycle represents one of the most important scaffolds in medicinal chemistry and is shared among a number of drugs clinically used in different therapeutic areas. Due to its varied biological activities, high unique chemical properties and significant pharmacological behaviors, indole derivatives have drawn considerable interest in the last decade as antitumor agents active against different types of cancers. The research of novel antiproliferative drugs endowed with enhanced efficacy and reduced toxicity led to the approval by U.S. Food and Drug Administration of the indole-based anticancer agents Sunitinib, Nintedanib, Osimertinib, Panobinostat, Alectinib and Anlotinib. Additionally, new drug delivery systems have been developed to protect the active principle from degradation and to direct the drug to the specific site for clinical use, thus reducing its toxicity. In the present work is an updated review of the recently approved indole-based anti-cancer agents and the nanotechnology systems developed for their delivery.
Collapse
Affiliation(s)
- Eleonora Russo
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Carola Grondona
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Chiara Brullo
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Andrea Spallarossa
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Carla Villa
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Bruno Tasso
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| |
Collapse
|
5
|
Combining targeted chemotherapy of hydroxyethyl starch prodrug and photothermal therapy of MoS2 for treatment of bladder cancer. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
6
|
Liu L, Wu D, Tu H, Cao M, Li M, Peng L, Yang J. Applications of Hydrogels in Drug Delivery for Oral and Maxillofacial Diseases. Gels 2023; 9:gels9020146. [PMID: 36826316 PMCID: PMC9956178 DOI: 10.3390/gels9020146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Oral and maxillofacial diseases have an important impact on local function, facial appearance, and general health. As a multifunctional platform, hydrogels are widely used in the biomedical field due to their excellent physicochemical properties. In recent years, a large number of studies have been conducted to adapt hydrogels to the complex oral and maxillofacial environment by modulating their pore size, swelling, degradability, stimulus-response properties, etc. Meanwhile, many studies have attempted to use hydrogels as drug delivery carriers to load drugs, cytokines, and stem cells for antibacterial, anticancer, and tissue regeneration applications in oral and maxillofacial regions. This paper reviews the application and research progress of hydrogel-based drug delivery systems in the treatment of oral and maxillofacial diseases such as caries, endodontic diseases, periodontal diseases, maxillofacial bone diseases, mucosal diseases, oral cancer, etc. The characteristics and applications of hydrogels and drug-delivery systems employed for the treatment of different diseases are discussed in order to provide a reference for further research on hydrogel drug-delivery systems in the future.
Collapse
Affiliation(s)
- Lijia Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Heng Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengxin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
7
|
Vyas K, Rathod M, Patel MM. Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102662. [PMID: 36746272 DOI: 10.1016/j.nano.2023.102662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Oral cancer is a type of cancer that develops in the mouth and is one of the deadliest malignancies in the world. Currently surgical, radiation therapy, and chemotherapy are most common treatments. Better treatment and early detection strategies are required. Chemotherapeutic drugs fail frequently due to toxicity and poor tumor targeting. There are high chances of failure of chemotherapeutic drugs due to toxicity. Active, passive, and immunity-targeting techniques are devised for tumor-specific activity. Nanotechnology-based drug delivery systems are the best available solution and important for precise targeting. Nanoparticles, liposomes, exosomes, and cyclodextrins are nano-based carriers for drug delivery. Nanotechnology is being used to develop new techniques such as intratumoral injections, microbubble mediated ultrasonic therapy, phototherapies, and site-specific delivery. This systematic review delves into the details of such targeted and nano-based drug delivery systems in order to improve patient health and survival rates in oral cancer.
Collapse
Affiliation(s)
- Kunj Vyas
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Maharshsinh Rathod
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
8
|
Alhamhoom Y, Kakinani G, Rahamathulla M, Ali M. Osmani R, Hani U, Yoonus Thajudeen K, Kiran Raj G, Gowda DV. Recent advances in the liposomal nanovesicles based immunotherapy in the treatment of cancer: A review. Saudi Pharm J 2023; 31:279-294. [PMID: 36942270 PMCID: PMC10023551 DOI: 10.1016/j.jsps.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy, along with chemotherapy, targeted delivery, radiation and surgery has become one of the most common cancer treatments. The aim of cancer immunology is to use the bodys immune system to combat tumors and develop a robust antitumor immune response. In the last few years, immune checkpoint inhibitors and chimeric antigen receptor-modified T cells have made substantial advancements in cancer immunotherapy. By boosting cell type-specific delivery and immunological responses, nanocarriers like liposomes have the ability to enhance greater immune responses. The efficacy of anti-tumor therapeutics is being significantly improved as liposomes can assist in resolving a number of issues that can arise from a variety of cancer immunotherapies. Since, liposomes can be loaded with both hydrophilic and hydrophobic drugs and protect the immunotherapeutic agents loaded inside the core, they offer significant advantages over other nano delivery systems. The use of liposomes for accurate and timely delivery of immunotherapies to particular targeted neoplasms, with little or no injury to healthy cells, maximizes immunotherapy efficacy. Liposomes are also suitable vehicles for delivering medications simultaneously with other therapies such as chemotherapy, radiation, and phototherapy. Liposomal nanoparticles will be introduced and used as an objective immunotherapy delivery system for great precision, making them a viable cancer treatment approach.With an emphasis on dendritic cells, T cells, tumor and natural killer cells, and macrophages; outline of many forms of immune-therapies in oncology and cutting-edge advances in liposomal nanovesicles for cancer immunotherapy are covered in this review.
Collapse
Affiliation(s)
- Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Greeshma Kakinani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Kamal Yoonus Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - G. Kiran Raj
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Devegowda V. Gowda
- Department of Pharmaceutics, Cauvery College of Pharmacy, Mysuru 570 028, Karnataka, India
| |
Collapse
|
9
|
Chronobiology and Nanotechnology for Personalized Cancer Therapy. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Hari SK, Gauba A, Shrivastava N, Tripathi RM, Jain SK, Pandey AK. Polymeric micelles and cancer therapy: an ingenious multimodal tumor-targeted drug delivery system. Drug Deliv Transl Res 2023; 13:135-163. [PMID: 35727533 DOI: 10.1007/s13346-022-01197-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/13/2022]
Abstract
Since the beginning of pharmaceutical research, drug delivery methods have been an integral part of it. Polymeric micelles (PMs) have emerged as multifunctional nanoparticles in the current technological era of nanocarriers, and they have shown promise in a range of scientific fields. They can alter the release profile of integrated pharmacological substances and concentrate them in the target zone due to their improved permeability and retention, making them more suitable for poorly soluble medicines. With their ability to deliver poorly soluble chemotherapeutic drugs, PMs have garnered considerable interest in cancer. As a result of their remarkable biocompatibility, improved permeability, and minimal toxicity to healthy cells, while also their capacity to solubilize a wide range of drugs in their micellar core, PMs are expected to be a successful treatment option for cancer therapy in the future. Their nano-size enables them to accumulate in the tumor microenvironment (TME) via the enhanced permeability and retention (EPR) effect. In this review, our major aim is to focus primarily on the stellar applications of PMs in the field of cancer therapeutics along with its mechanism of action and its latest advancements in drug and gene delivery (DNA/siRNA) for cancer, using various therapeutic strategies such as crossing blood-brain barrier, gene therapy, photothermal therapy (PTT), and immunotherapy. Furthermore, PMs can be employed as "smart drug carriers," allowing them to target specific cancer sites using a variety of stimuli (endogenous and exogenous), which improve the specificity and efficacy of micelle-based targeted drug delivery. All the many types of stimulants, as well as how the complex of PM and various anticancer drugs react to it, and their pharmacodynamics are also reviewed here. In conclusion, commercializing engineered micelle nanoparticles (MNPs) for application in therapy and imaging can be considered as a potential approach to improve the therapeutic index of anticancer drugs. Furthermore, PM has stimulated intense interest in research and clinical practice, and in light of this, we have also highlighted a few PMs that have previously been approved for therapeutic use, while the majority are still being studied in clinical trials for various cancer therapies.
Collapse
Affiliation(s)
- Sharath Kumar Hari
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Ankita Gauba
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Neeraj Shrivastava
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India.
| | - Sudhir Kumar Jain
- School of Studies in Microbiology, Vikram University, Ujjain, Madhya Pradesh, 456010, India
| | - Akhilesh Kumar Pandey
- Department of Biological Sciences, Rani Durgavati University, Jabalpur, M.P, 482001, India.,Vikram University, Ujjain, Madhya Pradesh, 456010, India
| |
Collapse
|
11
|
Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, Jha E, chouhan RS, Kaushik NK, Mishra YK, Panda PK, Suar M, Verma SK. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio 2022; 17:100463. [PMID: 36310541 PMCID: PMC9615318 DOI: 10.1016/j.mtbio.2022.100463] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.
Collapse
Affiliation(s)
- Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Raghuraj Singh chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
12
|
Jin GW, Rejinold NS, Choy JH. Multifunctional Polymeric Micelles for Cancer Therapy. Polymers (Basel) 2022; 14:polym14224839. [PMID: 36432965 PMCID: PMC9696676 DOI: 10.3390/polym14224839] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Polymeric micelles, nanosized assemblies of amphiphilic polymers with a core-shell architecture, have been used as carriers for various therapeutic compounds. They have gained attention due to specific properties such as their capacity to solubilize poorly water-soluble drugs, biocompatibility, and the ability to accumulate in tumor via enhanced permeability and retention (EPR). Moreover, additional functionality can be provided to the micelles by a further modification. For example, micelle surface modification with targeting ligands allows a specific targeting and enhanced tumor accumulation. The introduction of stimuli-sensitive groups leads to the drug's release in response to environment change. This review highlights the progress in the development of multifunctional polymeric micelles in the field of cancer therapy. This review will also cover some examples of multifunctional polymeric micelles that are applied for tumor imaging and theragnosis.
Collapse
Affiliation(s)
- Geun-Woo Jin
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- R & D Center, CnPharm Co., Ltd., Seoul 03759, Korea
| | | | - Jin-Ho Choy
- R & D Center, CnPharm Co., Ltd., Seoul 03759, Korea
- Division of Natural Sciences, The National Academy of Sciences, Seoul 06579, Korea
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan 31116, Korea
- International Research Frontier Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Correspondence:
| |
Collapse
|
13
|
Li H, Zhang Y, Xu M, Yang D. Current trends of targeted therapy for oral squamous cell carcinoma. J Cancer Res Clin Oncol 2022; 148:2169-2186. [PMID: 35501496 DOI: 10.1007/s00432-022-04028-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a malignant disease in the world which has a profound effect on human health and life quality. According to tumor stage and pathological diagnosis, OSCC is mainly treated by combinations of surgery, radiotherapy and chemotherapy. However, traditional treatment methods suffer from some limitations, such as systemic toxicity, limited therapeutic effect and drug resistance. With the rapid development of nanotechnology, nanodrug delivery systems (DDSs) and intelligent DDSs have been widely used in targeted therapy for OSCC. Meanwhile, the newly developed therapeutic techniques such as immunotherapy, gene therapy and bionic technology provide the possibility to realize the active targeted therapy. Here, the latest advances of target therapy for OSCC are reviewed, and their therapeutic remarks, current limits and future prospects are also systematically interpreted. It is believed that active and passive targeted therapies have great potentials for clinical transformation and application of OSCC, which will greatly improve human quality of life.
Collapse
Affiliation(s)
- Hongjiao Li
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Yao Zhang
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Mengmeng Xu
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Deqin Yang
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
14
|
Recent advancements and future submissions of silica core-shell nanoparticles. Int J Pharm 2021; 609:121173. [PMID: 34627997 DOI: 10.1016/j.ijpharm.2021.121173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
The core-shell silica-based nanoparticles (CSNPs) possess outstanding properties for developing next-generation therapeutics. CSNPs provide greater surface area owing to their mesoporous structure, which offers a high opportunity for surface modification. This review highlights the potential of core-shell silica-based nanoparticle (CSNP) based injectable nanotherapeutics (INT); its role in drug delivery, biomedical imaging, light-triggered phototherapy, Plasmonic enhancers, gene delivery, magnetic hyperthermia, immunotherapy, and potential as next-generation theragnostic. Specifically, the conceptual crosstalk on modern synthetic strategies, biodistribution profiles with a mechanistic view on the therapeutics loading and release modeling are dealt in detail. The manuscript also converses the challenges associated with CSNPs, regulatory hurdles, and their current market position.
Collapse
|
15
|
Abstract
ABSTRACT Immunotherapy has opened a new era in cancer treatment. Drugs represented by immune checkpoint inhibitors have led to important breakthroughs in the treatment of various solid tumors, greatly improving the survival rate of cancer patients. Many types of immunotherapeutic drugs have become widely available; however, their efficacy is variable, and relatively few patients with advanced cancer experience life-altering durable survival, reflecting the complex and highly regulated nature of the immune system. The research field of cancer immunotherapy (CIT) still faces many challenges in pursuing the broader social goal of "curing cancer." Increasing attention has been paid to strengthening the understanding of the molecular or cellular drivers of resistance to immunotherapy, actively exploring more effective therapeutic targets, and developing combination therapy strategies. Here, we review the key challenges that have emerged in the era of CIT and the possible solutions or development directions to overcome these difficulties, providing relevant references for basic research and the development of modified clinical treatment regimens.
Collapse
|
16
|
Yin T, Li Y, Ren Y, Fuad ARM, Hu F, Du R, Wang Y, Wang G, Wang Y. Phagocytosis of polymeric nanoparticles aided activation of macrophages to increase atherosclerotic plaques in ApoE -/- mice. J Nanobiotechnology 2021; 19:121. [PMID: 33910571 PMCID: PMC8082811 DOI: 10.1186/s12951-021-00863-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
The unique physiochemical properties of nanomaterials have been widely used in drug delivery systems and diagnostic contrast agents. The safety issues of biomaterials with exceptional biocompatibility and hemo-compatibility have also received extensive attention at the nanoscale, especially in cardiovascular disease. Therefore, we conducted a study of the effects of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) on the development of aortic atherosclerotic plaques in ApoE−/− mice. The particle size of PLGA NPs was 92.69 ± 3.1 nm and the zeta potential were − 31.6 ± 2.8 mV, with good blood compatibility. ApoE−/− mice were continuously injected with PLGA NPs intravenously for 4 and 12 weeks. Examination of oil red O stained aortic sinuses confirmed that the accumulation of PLGA NPs caused a significantly higher extension of atherosclerotic plaques and increasing the expression of associated inflammatory factors, such as TNF-α and IL-6. The combined exposure of ox-LDL and PLGA NPs accelerated the conversion of macrophages to foam cells. Our results highlight further understanding the interaction between PLGA NPs and the atherosclerotic plaques, which we should consider in future nanomaterial design and pay more attention to the process of using nano-medicines on cardiovascular diseases. ![]()
Collapse
Affiliation(s)
- Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China.
| | - Yanhong Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Yuzhen Ren
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Atik Rohmana Maftuhatul Fuad
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Fangfang Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Ruolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Yang Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Yazhou Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China. .,School of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
17
|
Neha Desai, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 2021; 18:1261-1290. [PMID: 33793359 DOI: 10.1080/17425247.2021.1912008] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The targeted delivery of anticancer agents to tumor is a major challenge because most of the drugs show off-target effect resulting in nonspecific cell death. Multifunctionalized metallic nanoparticles (NPs) are explored as new carrier system in the era of cancer therapeutics. Researchers investigated the potential of metallic NPs to target tumor cells by active and passive mechanisms, thereby reducing off-target effects of anticancer agents. Moreover, photocatalytic activity of upconversion nanoparticles (UCNPs) and the enhanced permeation and retention (EPR) effect have also gained wide potential in cancer treatment. Recent advancement in the field of nanotechnology highlights their potency for cancer therapy. AREAS COVERED This review summarizes the types of gold and silver metallic NPs with targeting mechanisms and their potentiality in cancer therapy. EXPERT OPINION Recent advances in the field of nanotechnology for cancer therapy offer high specificity and targeting efficiency. Targeting tumor cells through mechanistic pathways using metallic NPs for the disruption/alteration of molecular profile and survival rate of the tumor cells has led to an effective approach for cancer therapeutics. This alteration in the survival rate of the tumor cells might decrease the proliferation thereby resulting in more efficient management in the treatment of cancer.
Collapse
Affiliation(s)
- Neha Desai
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | | | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
18
|
Muluh TA, Chen Z, Li Y, Xiong K, Jin J, Fu S, Wu J. Enhancing Cancer Immunotherapy Treatment Goals by Using Nanoparticle Delivery System. Int J Nanomedicine 2021; 16:2389-2404. [PMID: 33790556 PMCID: PMC8007559 DOI: 10.2147/ijn.s295300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, there has been an incredible increase in research about the abnormal growth of cells (neoplasm), focusing on the management, treatment and preventing reoccurrence. It has been understood that the natural defense system, composed of a variety of immune defensive cells, does not just limit its function in eliminating neoplastic cells, but also controls the growth and spread of tumor cells of different kinds to other parts of the body. Cancer immunotherapy, is a cancer treatment plan that educates the body’s defensive system to forestall, control, and eliminate tumor cells. The effectiveness of immunotherapy is achieved, to its highest efficacy, by the use of nanoparticles (NPs) for precise and timely delivery of immunotherapies to specific targeted neoplasms, with less or no harm to the healthy cells. Immunotherapies have been affirmed in clinical trials as a cancer regimen for various types of cancers, the side effects resulting from imprecise and non-targeted conveyance is well managed with the use of nanoparticles. Nonetheless, we will concentrate on enhancing cancer immunotherapy approaches by the use of nanoparticles for the productivity of antitumor immunity. Nanoparticles will be presented and utilized as an objective immunotherapy delivery system for high exactness and are thus a promising methodology for cancer treatment.
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhuo Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Kang Xiong
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, People's Republic of China
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
19
|
Cremolini C, Vitale E, Rastaldo R, Giachino C. Advanced Nanotechnology for Enhancing Immune Checkpoint Blockade Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:661. [PMID: 33800368 PMCID: PMC7998763 DOI: 10.3390/nano11030661] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Immune checkpoint receptor signaling pathways constitute a prominent class of "immune synapse," a cell-to-cell connection that represses T-lymphocyte effector functions. As a possible evolutionary countermeasure against autoimmunity, this strategy is aimed at lowering potential injury to uninfected cells in infected tissues and at minimizing systemic inflammation. Nevertheless, tumors can make use of these strategies to escape immune recognition, and consequently, such mechanisms represent chances for immunotherapy intervention. Recent years have witnessed the advance of pharmaceutical nanotechnology, or nanomedicine, as a possible strategy to ameliorate immunotherapy technical weaknesses thanks to its intrinsic biophysical properties and multifunctional modifying capability. To improve the long-lasting response rate of checkpoint blockade therapy, nanotechnology has been employed at first for the delivery of single checkpoint inhibitors. Further, while therapy via single immune checkpoint blockade determines resistance and a restricted period of response, strong interest has been raised to efficiently deliver immunomodulators targeting different inhibitory pathways or both inhibitory and costimulatory pathways. In this review, the partially explored promise in implementation of nanotechnology to improve the success of immune checkpoint therapy and solve the limitations of single immune checkpoint inhibitors is debated. We first present the fundamental elements of the immune checkpoint pathways and then outline recent promising results of immune checkpoint blockade therapy in combination with nanotechnology delivery systems.
Collapse
Affiliation(s)
- Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Emanuela Vitale
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (E.V.); (C.G.)
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (E.V.); (C.G.)
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (E.V.); (C.G.)
| |
Collapse
|
20
|
Ou W, Nam KS, Park DH, Hwang J, Ku SK, Yong CS, Kim JO, Byeon JH. Artificial Nanoscale Erythrocytes from Clinically Relevant Compounds for Enhancing Cancer Immunotherapy. NANO-MICRO LETTERS 2020; 12:90. [PMID: 34138119 PMCID: PMC7770689 DOI: 10.1007/s40820-020-00428-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/12/2020] [Indexed: 05/04/2023]
Abstract
Because of enhanced efficacy and lower side effects, cancer immunotherapies have recently been extensively investigated in clinical trials to overcome the limitations of conventional cancer monotherapies. Although engineering attempts have been made to build nanosystems even including stimulus nanomaterials for the efficient delivery of antigens, adjuvants, or anticancer drugs to improve immunogenic cancer cell death, this requires huge R&D efforts and investment for clinically relevant findings to be approved for translation of the nanosystems. To this end, in this study, an air-liquid two-phase electrospray was developed for stable bubble pressing under a balance between mechanical and electrical parameters of the spray to continuously produce biomimetic nanosystems consisting of only clinically relevant compounds [paclitaxel-loaded fake blood cell Eudragit particle (Eu-FBCP/PTX)] to provide a conceptual leap for the timely development of translatable chemo-immunotherapeutic nanosystems. This was pursued as the efficacy of systems for delivering anticancer agents that has been mainly influenced by nanosystem shape because of its relevance to transporting behavior to organs, blood circulation, and cell-membrane interactions. The resulting Eu-FBCP/PTX nanosystems exhibiting phagocytic and micropinocytic uptake behaviors can confer better efficacy in chemo-immunotherapeutics in the absence and presence of anti-PD-L1 antibodies than similar sized PTX-loaded spherical Eu particles (Eu-s/PTX).
Collapse
Affiliation(s)
- Wenquan Ou
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kang Sik Nam
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dae Hoon Park
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Jeong Hoon Byeon
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
21
|
Thenmozhi T. Functionalization of iron oxide nanoparticles with clove extract to induce apoptosis in MCF-7 breast cancer cells. 3 Biotech 2020; 10:82. [PMID: 32099733 DOI: 10.1007/s13205-020-2088-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
It has been reported that iron oxide nanoparticles have various biomedical applications, including cancer diagnosis and treatment. Iron oxide nanoparticles were known to exert cytotoxicity against MCF-7 breast cancer cell lines and in this present study, we have investigated for their apoptosis-inducing potential in the same cell line. The flow cytometry analysis of the MCF-7 breast cancer cell lines treated with functionalized iron oxide nanoparticles showed an increased percentage of cells in terms of viable, early, and late apoptosis. The cell cycle analysis of the MCF-7 cell lines treated with Syzygium aromaticum extract coated with polyvinylpyrrolidone (PVP) + iron oxide nanoparticles and PVP + iron oxide nanoparticles showed substantial accumulation of nanoparticles in the sub-G1 phase, confirming induction of apoptosis. The activities of caspase-3, caspase-8, and caspase-9 increased with increasing concentration of the nanoparticles indicating that activities of caspase can be activated by iron nanoparticles. Further, functionalized nanoparticles induced oxidative stress through reactive oxygen species (ROS) formation. Therefore, it is concluded that the functionalized iron nanoparticles induce apoptosis in MCF-7 breast cancer cell lines and further provides an opportunity to explore the iron nanoparticles for apoptosis in cancer treatment.
Collapse
Affiliation(s)
- T Thenmozhi
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh 517 502 India
| |
Collapse
|
22
|
Emerging Prospects for Nanoparticle-Enabled Cancer Immunotherapy. J Immunol Res 2020; 2020:9624532. [PMID: 32377541 PMCID: PMC7199570 DOI: 10.1155/2020/9624532] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/18/2022] Open
Abstract
One of the standards for cancer treatment is cancer immunotherapy which treats both primary and metastasized tumors. Although cancer immunotherapeutics show better outcomes as compared with conventional approaches of cancer treatment, the currently used cancer immunotherapeutics have limited application in delivering cancer antigens to immune cells. Conversely, in solid tumors, tumor microenvironment suppresses the immune system leading to the evasion of anticancer immunity. Some promising attempts have been made to overcome these drawbacks by using different approaches, for instance, the use of biomaterial-based nanoparticles. Accordingly, various studies involving the application of nanoparticles in cancer immunotherapy have been discussed in this review article. This review not only describes the modes of cancer immunotherapy to reveal the importance of nanoparticles in this modality but also narrates nanoparticle-mediated delivery of cancer antigens and therapeutic supplements. Moreover, the impact of nanoparticles on the immunosuppressive behavior of tumor environment has been discussed. The last part of this review deals with cancer immunotherapy using a combination of traditional interventional oncology approach and image-guided local immunotherapy against cancer. According to recent studies, cancer therapy can potentially be improved through nanoparticle-based immunotherapy. In addition, drawbacks associated with the currently used cancer immunotherapeutics can be fixed by using nanoparticles.
Collapse
|
23
|
Babuka D, Kolouchova K, Hruby M, Groborz O, Tosner Z, Zhigunov A, Stepanek P. Investigation of the internal structure of thermoresponsive diblock poly(2-methyl-2-oxazoline)-b-poly[N-(2,2-difluoroethyl)acrylamide] copolymer nanoparticles. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Auría-Soro C, Nesma T, Juanes-Velasco P, Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R, Almendral Parra MJ, Manzano-Roman R, Fuentes M. Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1365. [PMID: 31554176 PMCID: PMC6835394 DOI: 10.3390/nano9101365] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a multidisciplinary science covering matters involving the nanoscale level that is being developed for a great variety of applications. Nanomedicine is one of these attractive and challenging uses focused on the employment of nanomaterials in medical applications such as drug delivery. However, handling these nanometric systems require defining specific parameters to establish the possible advantages and disadvantages in specific applications. This review presents the fundamental factors of nanoparticles and its microenvironment that must be considered to make an appropriate design for medical applications, mainly: (i) Interactions between nanoparticles and their biological environment, (ii) the interaction mechanisms, (iii) and the physicochemical properties of nanoparticles. On the other hand, the repercussions of the control, alter and modify these parameters in the biomedical applications. Additionally, we briefly report the implications of nanoparticles in nanomedicine and precision medicine, and provide perspectives in immunotherapy, which is opening novel applications as immune-oncology.
Collapse
Affiliation(s)
- Carlota Auría-Soro
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Tabata Nesma
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Helena Fidalgo-Gomez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Vanessa Acebes-Fernandez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Rafael Gongora
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - María Jesus Almendral Parra
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Raúl Manzano-Roman
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| |
Collapse
|
25
|
Wang D, Li X, Li X, Kang A, Sun L, Sun M, Yang F, Xu C. Magnetic And pH Dual-Responsive Nanoparticles For Synergistic Drug-Resistant Breast Cancer Chemo/Photodynamic Therapy. Int J Nanomedicine 2019; 14:7665-7679. [PMID: 31571870 PMCID: PMC6756767 DOI: 10.2147/ijn.s214377] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Drug resistance is one of the prime reasons of chemotherapy failure in breast cancer and is also an important factor affecting prognosis. PURPOSE In this study, we constructed a functional magnetic mesoporous silica-based nanocomposite (MMSN) for breast cancer chemotherapy/photodynamic therapy. METHODS MMSN was characterized by scanning electron microscopy and transmission electron microscopy to observe the morphology. The size distribution and zeta potential of the MSNs were determined using Malvern Particle Size Analyzer. Anti-tumor activity in vitro was investigated by CCK-8 assay, flow cytometry and transwell experiment, and the anti-tumor activity in vivo was probed into by magnetic targeting, toxicity, and antitumor effects in breast cancer-bearing BABL/c nude mice. RESULTS The results showed that the release of doxorubicin in the nanocomposites was pH sensitive, and the cumulative release rate reached 80.53% at 60 h under acidic conditions. The nanocomposites had a high cellular uptake ability in MCF-7/ADR cells, and the IC50 value of the nanocomposites on MCF-7/ADR cells was 4.23 μg/mL, much smaller than that of free DOX (363.2 μg/mL). The nanocomposites could effectively reverse resistance and induce apoptosis of MCF-7/ADR cells. The blood biochemistry parameters and H&E staining results showed no serious adverse effects after treatment with the nanocomposites. Prussian blue staining showed that the nanocomposites were able to target tumor tissues in tumor-bearing mice under a magnetic field. The combined chemical/photodynamic therapy significantly inhibited tumor growth in vivo. CONCLUSION Nanocomposites with magnetic and pH dual-responsive performance has shown a promising platform for enhanced drug-resistant breast cancer treatment.
Collapse
Affiliation(s)
- Dan Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Gynaecology and Obstetrics, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Xuefen Li
- Department of Nephrology, Jiulongpo People’s Hospital, Chongqing, People’s Republic of China
| | - Xinfang Li
- Inorganic Chemistry Department, School of Pharmacy, Second Military Medical University, Shanghai, People’s Republic of China
| | - Anfeng Kang
- Inorganic Chemistry Department, School of Pharmacy, Second Military Medical University, Shanghai, People’s Republic of China
| | - Linhong Sun
- Inorganic Chemistry Department, School of Pharmacy, Second Military Medical University, Shanghai, People’s Republic of China
| | - Miao Sun
- Inorganic Chemistry Department, School of Pharmacy, Second Military Medical University, Shanghai, People’s Republic of China
| | - Feng Yang
- Inorganic Chemistry Department, School of Pharmacy, Second Military Medical University, Shanghai, People’s Republic of China
| | - Congjian Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
26
|
Ketabat F, Pundir M, Mohabatpour F, Lobanova L, Koutsopoulos S, Hadjiiski L, Chen X, Papagerakis P, Papagerakis S. Controlled Drug Delivery Systems for Oral Cancer Treatment-Current Status and Future Perspectives. Pharmaceutics 2019; 11:E302. [PMID: 31262096 PMCID: PMC6680655 DOI: 10.3390/pharmaceutics11070302] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), which encompasses the oral cavity-derived malignancies, is a devastating disease causing substantial morbidity and mortality in both men and women. It is the most common subtype of the head and neck squamous cell carcinoma (HNSCC), which is ranked the sixth most common malignancy worldwide. Despite promising advancements in the conventional therapeutic approaches currently available for patients with oral cancer, many drawbacks are still to be addressed; surgical resection leads to permanent disfigurement, altered sense of self and debilitating physiological consequences, while chemo- and radio-therapies result in significant toxicities, all affecting patient wellbeing and quality of life. Thus, the development of novel therapeutic approaches or modifications of current strategies is paramount to improve individual health outcomes and survival, while early tumour detection remains a priority and significant challenge. In recent years, drug delivery systems and chronotherapy have been developed as alternative methods aiming to enhance the benefits of the current anticancer therapies, while minimizing their undesirable toxic effects on the healthy non-cancerous cells. Targeted drug delivery systems have the potential to increase drug bioavailability and bio-distribution at the site of the primary tumour. This review confers current knowledge on the diverse drug delivery methods, potential carriers (e.g., polymeric, inorganic, and combinational nanoparticles; nanolipids; hydrogels; exosomes) and anticancer targeted approaches for oral squamous cell carcinoma treatment, with an emphasis on their clinical relevance in the era of precision medicine, circadian chronobiology and patient-centred health care.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Meenakshi Pundir
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Fatemeh Mohabatpour
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
| | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lubomir Hadjiiski
- Departmnet of Radiology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Petros Papagerakis
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada.
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|