1
|
Phua TJ. Hallmarks of aging: middle-aging hypovascularity, tissue perfusion and nitric oxide perspective on healthspan. FRONTIERS IN AGING 2025; 5:1526230. [PMID: 39839443 PMCID: PMC11747043 DOI: 10.3389/fragi.2024.1526230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Aging is a complex process marked by various changes at both cellular and systemic levels, impacting the functioning and lifespan of organisms. Over time, researchers have pinpointed several significant hallmarks of aging that lead to the gradual deterioration of tissue function, regulation, and homeostasis associated with aging in humans. Despite this, the intricate interactions and cumulative effects of these hallmarks are still mostly uncharted territory. Understanding this complex web is a major challenge in Geroscience, yet it is crucial for developing effective strategies that promote healthy aging, reduce medical costs, and ensure the sustainability of health systems. Gaining insights in this area is essential for creating interventions that can slow the aging process, enhance healthspan, and decrease the likelihood of age-related diseases. The integration of knowledge from various fields concerning the middle-aging nitric oxide (NO)-mediated hypovascularity hypoxia hemodynamic hypothesis points to a systems-based approach to the biological hallmarks of aging. Key evidence suggests a systemic connection between the endocrine system (specifically sex hormones), endogenous NO deficiency, and the vascular system, which serves as a network of microvascular structures crucial for tissue perfusion functions at cellular level. These processes also involve oxidative stress and inflammation triggered by hypoxia.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
2
|
Joof F, Hu R, Saidi A, Seydel KB, Cohee LM, Zheng Y, Smith JD. Plasma From Older Children in Malawi Inhibits Plasmodium falciparum Binding in 3-Dimensional Brain Microvessels. J Infect Dis 2024; 230:e1402-e1411. [PMID: 38875153 PMCID: PMC11646604 DOI: 10.1093/infdis/jiae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024] Open
Abstract
A hallmark of cerebral malaria is sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain microcirculation. Antibodies contribute to malaria immunity, but it remains unclear whether functional antibodies targeting parasite-expressed ligand can block cytoadhesion in the brain. Here, we screened the plasma of older children and young adults in Malawi to characterize the antibody response against the P. falciparum-IE surface and used a bioengineered 3-dimensional (3D) human brain microvessel model incorporating variable flow dynamics to measure adhesion-blocking responses. We found a strong correlation between surface antibody reactivity by flow cytometry and reduced P. falciparum-IE binding in 3D microvessels. Moreover, there was a threshold of surface antibody reactivity necessary to achieve robust inhibitory activity. Our findings provide evidence of the acquisition of adhesion-blocking antibodies against cerebral binding variants in people exposed to stable P. falciparum transmission and suggest the quality of the inhibitory response can be influenced by flow dynamics.
Collapse
Affiliation(s)
- Fatou Joof
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ruoqian Hu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Alex Saidi
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Karl B Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Lauren M Cohee
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Joseph D Smith
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Law M, Wang PC, Zhou ZY, Wang Y. From Microcirculation to Aging-Related Diseases: A Focus on Endothelial SIRT1. Pharmaceuticals (Basel) 2024; 17:1495. [PMID: 39598406 PMCID: PMC11597311 DOI: 10.3390/ph17111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Silent information regulator sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase with potent anti-arterial aging activities. Its protective function in aging-related diseases has been extensively studied. In the microcirculation, SIRT1 plays a crucial role in preventing microcirculatory endothelial senescence by suppressing inflammation and oxidative stress while promoting mitochondrial function and optimizing autophagy. It suppresses hypoxia-inducible factor-1α (HIF-1α)-mediated pathological angiogenesis while promoting healthy, physiological capillarization. As a result, SIRT1 protects against microvascular dysfunction, such as diabetic microangiopathy, while enhancing exercise-induced skeletal muscle capillarization and energy metabolism. In the brain, SIRT1 upregulates tight junction proteins and strengthens their interactions, thus maintaining the integrity of the blood-brain barrier. The present review summarizes recent findings on the regulation of microvascular function by SIRT1, the underlying mechanisms, and various approaches to modulate SIRT1 activity in microcirculation. The importance of SIRT1 as a molecular target in aging-related diseases, such as diabetic retinopathy and stroke, is underscored, along with the need for more clinical evidence to support SIRT1 modulation in the microcirculation.
Collapse
Affiliation(s)
- Martin Law
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
| | - Pei-Chun Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhong-Yan Zhou
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Munoz CJ, Lucas D, Muller CR, Martinez J, O'Boyle Q, Pires IS, Palmer AF, Cabrales P. Coadministration of PEGylated apohemoglobin and haptoglobin can limit vascular dysfunction in the microcirculation and prevent acute inflammation. J Appl Physiol (1985) 2024; 137:934-944. [PMID: 39143905 PMCID: PMC11486475 DOI: 10.1152/japplphysiol.00315.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Unfortunately, during pathological conditions resulting in chronic hemolysis cell-free hemoglobin (Hb) is released into the circulation that releases free heme, resulting in several complications. One approach to prevent these toxicities is the administration of supplemental scavenger proteins, haptoglobin (Hp) and hemopexin (Hpx). The goal of this body of work is to objectively measure the levels of vascular reactivity and inflammatory profiles after an infusion of acellular hemoglobin in animals that were given a coadministration of PEGylated human apohemoglobin (PEG-apoHb), a hemopexin (Hpx)-mimetic that can scavenge free heme from hemoglobin, together with human plasma-derived Hp that can scavenge dimerized Hb. Using intravital microscopy, Golden Syrian hamsters instrumented with a dorsal window chamber were used to evaluate the in vivo effects of four experimental groups that were then challenged with a hypovolemic injection (10% of the animal's blood volume) of human Hb (hHb, 5 g/dL). The four experimental groups consisted of: 1) lactated Ringer's solution (control), 2) PEG-apoHb only, 3) Hp only, and 4) PEG-apoHb + Hp. The microvascular hemodynamics (diameter and flow) in arterioles and venules were recorded at baseline, 20 min after treatment, and 20 min after hHb challenge. Systemic parameters (blood pressure and heart rate), blood gases (pH, Pco2, and Po2), blood parameters (Hb concentration and hematocrit), and multiorgan functionality/inflammation were also measured. Our results suggest that coadministration of PEG-apoHb + Hp as a booster before the infusion of acellular hemoglobin significantly prevented vasoconstriction in the microcirculation, significantly increased the number of functional capillaries, and significantly reduced inflammation.NEW & NOTEWORTHY Coadministration of PEGylated human apohemoglobin (PEG-apoHb)-a hemopexin (Hpx) mimetic that can scavenge free heme-and human plasma-derived haptoglobin (Hp) that can scavenge hemoglobin (Hb), reduces microcirculatory dysfunction and cardiac and kidney inflammation in a Hb-challenge model.
Collapse
Affiliation(s)
- Carlos J Munoz
- Department of Bioengineering, University of California, San Diego, California, United States
| | - Daniela Lucas
- Department of Bioengineering, University of California, San Diego, California, United States
| | - Cynthia R Muller
- Department of Bioengineering, University of California, San Diego, California, United States
| | - Jacinda Martinez
- Department of Bioengineering, University of California, San Diego, California, United States
| | - Quintin O'Boyle
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, California, United States
| |
Collapse
|
5
|
He S, Hou T, Zhou J, Yu B, Cai J, Luo F, Xu J, Xing J. Implication of CXCR2-Src axis in the angiogenic and osteogenic effects of FP-TEB. NPJ Regen Med 2024; 9:24. [PMID: 39304660 DOI: 10.1038/s41536-024-00364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Application of tissue-engineered bones (TEBs) is hindered by challenges associated with incorporated viable cells. Previously, we employed freeze-drying techniques on TEBs to devitalize mesenchymal stem cells (MSCs) while preserving functional proteins, yielding functional proteins-based TEBs (FP-TEBs). Here, we aimed to elucidate their in vivo angiogenic and osteogenic capabilities and the mechanisms. qPCR arrays were employed to evaluate chemokines and receptors governing EC migration. Identified C-X-C chemokine receptors (CXCRs) were substantiated using shRNAs, and the pivotal role of CXCR2 was validated via conditional knockout mice. Finally, signaling molecules downstream of CXCR2 were identified. Additionally, Src, MAP4K4, and p38 MAPK were identified indispensable for CXCR2 function. Further investigations revealed that regulation of p38 MAPK by Src was mediated by MAP4K4. In conclusion, FP-TEBs promoted EC migration, angiogenesis, and osteogenesis via the CXCR2-Src-Map4k4-p38 MAPK axis.
Collapse
Affiliation(s)
- Sihao He
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Tianyong Hou
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Jiangling Zhou
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Bo Yu
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Juan Cai
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Fei Luo
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China.
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China.
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China.
| | - Junchao Xing
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China.
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China.
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China.
| |
Collapse
|
6
|
Munoz CJ, Lucas D, Muller CR, Breton A, Jani V, Savla C, Palmer AF, Cabrales P. Degree of PEGylatation of Lumbricus terrestris Hemoglobin Improves Microcirculatory Blood Flow but Increases the Rate of Auto-Oxidation. ACS APPLIED BIO MATERIALS 2024; 7:5188-5200. [PMID: 38970152 DOI: 10.1021/acsabm.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
INTRODUCTION The demand for red blood cells (RBCs) is on the rise due to the increasing diagnosis of chronic diseases such as sickle cell anemia, malaria, and thalassemia. Despite many commercial attempts, there are no U.S. FDA-approved artificial RBCs for use in humans. Existing RBC substitutes have employed various strategies to transport oxygen, extend the circulation time, and reduce organ toxicity, but none have replicated the natural protective mechanisms of RBCs, which prevent hemoglobin (Hb) dimerization and heme iron oxidation. Lumbricus terrestris (earthworm) erythrocruorin (LtEc) is a naturally occurring extracellular hemoglobin (Hb) with promising attributes: large molecular diameter (30 nm), high molecular weight (3.6 MDa), low auto-oxidation rate, and limited nitric oxide-scavenging properties. These characteristics make LtEc an ideal candidate as an RBC substitute. However, LtEc has a significant drawback, its short circulatory half-life. To address this issue, we explored thiol-mediated surface PEGylation of LtEc (PEG-LtEc) at varying polyethylene glycol (PEG) surface coverages. Increasing PEG surface coverage beyond 40% destabilizes LtEc into smaller subunits that are 1/12th the size of LtEc. Therefore, we evaluated two PEG surface coverage options: PEG-LtEc-0.2 (20% PEGylation) and PEG-LtEc-1.0 (100% PEGylation). METHODS We conducted experiments using golden Syrian hamsters with dorsal window chambers and catheters to assess the efficacy of these solutions. We measured microvascular parameters, organ function, cerebral blood flow, circulation time, mean arterial pressure, heart rate, and blood gases and performed histology to screen for toxicity. CONCLUSION Our findings indicate that both PEG-LtEc molecules offer significant benefits in restoring microvascular parameters, organ function, cerebral blood flow, and circulation time compared to LtEc alone. Notably, PEG-LtEc-1.0 showed superior microvascular perfusion, although it exhibited a higher rate of auto-oxidation compared to PEG-LtEc-0.2. These results underscore the advantages of PEGylation in terms of tissue perfusion and organ health while highlighting its limitations.
Collapse
Affiliation(s)
- Carlos J Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Daniela Lucas
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Cynthia R Muller
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Amanda Breton
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Vinay Jani
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Shin YS, Hung KS, Tsai CT, Wu MH, Lin CL, Hsueh YY. Validation of multispectral imaging-based tissue oxygen saturation detecting system for wound healing recognition on open wounds. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:086004. [PMID: 39139703 PMCID: PMC11321076 DOI: 10.1117/1.jbo.29.8.086004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Significance The multispectral imaging-based tissue oxygen saturation detecting (TOSD) system offers deeper penetration ( ∼ 2 to 3 mm) and comprehensive tissue oxygen saturation (StO 2 ) assessment and recognizes the wound healing phase at a low cost and computational requirement. The potential for miniaturization and integration of TOSD into telemedicine platforms could revolutionize wound care in the challenging pandemic era. Aim We aim to validate TOSD's application in detectingStO 2 by comparing it with wound closure rates and laser speckle contrast imaging (LSCI), demonstrating TOSD's ability to recognize the wound healing process. Approach Utilizing a murine model, we compared TOSD with digital photography and LSCI for comprehensive wound observation in five mice with 6-mm back wounds. Sequential biochemical analysis of wound discharge was investigated for the translational relevance of TOSD. Results TOSD demonstrated constant signals on unwounded skin with differential changes on open wounds. Compared with LSCI, TOSD provides indicative recognition of the proliferative phase during wound healing, with a higher correlation coefficient to wound closure rate (TOSD: 0.58; LSCI: 0.44).StO 2 detected by TOSD was further correlated with proliferative phase angiogenesis markers. Conclusions Our findings suggest TOSD's enhanced utility in wound management protocols, evaluating clinical staging and therapeutic outcomes. By offering a noncontact, convenient monitoring tool, TOSD can be applied to telemedicine, aiming to advance wound care and regeneration, potentially improving patient outcomes and reducing healthcare costs associated with chronic wounds.
Collapse
Affiliation(s)
- Yi-Syuan Shin
- National Cheng Kung University, College of Medicine, National Cheng Kung University Hospital, Department of Surgery, Division of Plastic and Reconstructive Surgery, Tainan, Taiwan
| | - Kuo-Shu Hung
- National Cheng Kung University, College of Medicine, National Cheng Kung University Hospital, Department of Surgery, Division of Plastic and Reconstructive Surgery, Tainan, Taiwan
- National Cheng Kung University, College of Medicine, Institute of Clinical Medicine, Tainan, Taiwan
| | - Chung-Te Tsai
- National Cheng Kung University, College of Medicine, National Cheng Kung University Hospital, Department of Surgery, Division of Plastic and Reconstructive Surgery, Tainan, Taiwan
| | - Meng-Hsuan Wu
- National Cheng Kung University, Department of Electrical Engineering, Tainan, Taiwan
| | - Chih-Lung Lin
- National Cheng Kung University, Department of Electrical Engineering, Tainan, Taiwan
| | - Yuan-Yu Hsueh
- National Cheng Kung University, College of Medicine, National Cheng Kung University Hospital, Department of Surgery, Division of Plastic and Reconstructive Surgery, Tainan, Taiwan
- National Cheng Kung University, College of Medicine, Institute of Clinical Medicine, Tainan, Taiwan
- National Cheng Kung University, College of Medicine, Department of Physiology, Tainan, Taiwan
| |
Collapse
|
8
|
Dong R, Liu S, Li Y, Gao F, Gao K, Chen C, Qian Z, Li W, Yang Y. Revisiting hemodynamics and blood oxygenation in a microfluidic microvasculature replica. Microvasc Res 2024; 152:104640. [PMID: 38065353 DOI: 10.1016/j.mvr.2023.104640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 02/03/2024]
Abstract
The complexity of microvascular circulation has led to the development of advanced imaging techniques and biomimetic models. This study developed a multifaceted microfluidic-based microdevice as an in vitro model of microvasculature to replicate important geometric and functional features of in vivo perfusion in mice. The microfluidic device consisted of a microchannel for blood perfusion, mirroring the natural hierarchical branching vascular structures found in mice. Additionally, the device incorporated a steady gradient of oxygen (O2) which diffused through the polydimethylsiloxane (PDMS) layer, allowing for dynamic blood oxygenation. The assembled multi-layered microdevice was accompanied by a dual-modal imaging system that combined laser speckle contrast imaging (LSCI) and intrinsic signal optical imaging (ISOI) to visualize full-field blood flow distributions and blood O2 profiles. By closely reproducing in vivo blood perfusion and oxygenation conditions, this microvasculature model, in conjunction with numerical simulation results, can provide quantitative information on physiologically relevant hemodynamics and key O2 transport parameters that are not directly measurable in traditional animal studies.
Collapse
Affiliation(s)
- Rui Dong
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sijia Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yuewu Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Fan Gao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Keqiang Gao
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chunxiao Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Weitao Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Yamin Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
9
|
Sánchez-Duffhues G, Hiepen C. Human iPSCs as Model Systems for BMP-Related Rare Diseases. Cells 2023; 12:2200. [PMID: 37681932 PMCID: PMC10487005 DOI: 10.3390/cells12172200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Disturbances in bone morphogenetic protein (BMP) signalling contribute to onset and development of a number of rare genetic diseases, including Fibrodysplasia ossificans progressiva (FOP), Pulmonary arterial hypertension (PAH), and Hereditary haemorrhagic telangiectasia (HHT). After decades of animal research to build a solid foundation in understanding the underlying molecular mechanisms, the progressive implementation of iPSC-based patient-derived models will improve drug development by addressing drug efficacy, specificity, and toxicity in a complex humanized environment. We will review the current state of literature on iPSC-derived model systems in this field, with special emphasis on the access to patient source material and the complications that may come with it. Given the essential role of BMPs during embryonic development and stem cell differentiation, gain- or loss-of-function mutations in the BMP signalling pathway may compromise iPSC generation, maintenance, and differentiation procedures. This review highlights the need for careful optimization of the protocols used. Finally, we will discuss recent developments towards complex in vitro culture models aiming to resemble specific tissue microenvironments with multi-faceted cellular inputs, such as cell mechanics and ECM together with organoids, organ-on-chip, and microfluidic technologies.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), ISPA-HUCA, Avda. de Roma, s/n, 33011 Oviedo, Spain
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Christian Hiepen
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| |
Collapse
|
10
|
Homes RAP, Giddens F, Francis RS, Hubbard RE, Gordon EH, Midwinter MJ. The sublingual microcirculation and frailty index in chronic kidney disease patients. Microcirculation 2023; 30:e12819. [PMID: 37285445 PMCID: PMC10909441 DOI: 10.1111/micc.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To examine the relationship between sublingual microcirculatory measures and frailty index in those attending a kidney transplant assessment clinic. METHODS Patients recruited had their sublingual microcirculation taken using sidestream dark field videomicroscopy (MicroScan, Micro Vision Medical, Amsterdam, the Netherlands) and their frailty index score using a validated short form via interview. RESULTS A total of 44 patients were recruited with two being excluded due to microcirculatory image quality scores exceeding 10. The frailty index score indicated significant correlations with total vessel density (p < .0001, r = -.56), microvascular flow index (p = .004, r = -.43), portion of perfused vessels (p = .0004, r = -.52), heterogeneity index (p = .015, r = .32), and perfused vessel density (p < .0001, r = -.66). No correlation was shown between the frailty index and age (p = .08, r = .27). CONCLUSIONS There is a relationship between the frailty index and microcirculatory health in those attending a kidney transplant assessment clinic, that is not confounded by age. These findings suggest that the impaired microcirculation may be an underlying cause of frailty.
Collapse
Affiliation(s)
- Ryan A. P. Homes
- School of Biomedical Science, Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fiona Giddens
- Centre for Health Services Research, Faulty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ross S. Francis
- Department of NephrologyPrincess Alexandra HospitalBrisbaneQueenslandAustralia
- Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ruth E. Hubbard
- Centre for Health Services Research, Faulty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Emily H. Gordon
- Centre for Health Services Research, Faulty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Mark J. Midwinter
- School of Biomedical Science, Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
11
|
Márquez M, Muñoz M, Córdova A, Puebla M, Figueroa XF. Connexin 40-Mediated Regulation of Systemic Circulation and Arterial Blood Pressure. J Vasc Res 2023; 60:87-100. [PMID: 37331352 DOI: 10.1159/000531035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
Vascular system is a complex network in which different cell types and vascular segments must work in concert to regulate blood flow distribution and arterial blood pressure. Although paracrine/autocrine signaling is involved in the regulation of vasomotor tone, direct intercellular communication via gap junctions plays a central role in the control and coordination of vascular function in the microvascular network. Gap junctions are made up by connexin (Cx) proteins, and among the four Cxs expressed in the cardiovascular system (Cx37, Cx40, Cx43, and Cx45), Cx40 has emerged as a critical signaling pathway in the vessel wall. This Cx is predominantly found in the endothelium, but it is involved in the development of the cardiovascular system and in the coordination of endothelial and smooth muscle cell function along the length of the vessels. In addition, Cx40 participates in the control of vasomotor tone through the transmission of electrical signals from the endothelium to the underlying smooth muscle and in the regulation of arterial blood pressure by renin-angiotensin system in afferent arterioles. In this review, we discuss the participation of Cx40-formed channels in the development of cardiovascular system, control and coordination of vascular function, and regulation of arterial blood pressure.
Collapse
Affiliation(s)
- Mónica Márquez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Muñoz
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexandra Córdova
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariela Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Munoz CJ, Pires IS, Jani V, Gopal S, Palmer AF, Cabrales P. Apohemoglobin-haptoglobin complex alleviates iron toxicity in mice with β-thalassemia via scavenging of cell-free hemoglobin and heme. Biomed Pharmacother 2022; 156:113911. [DOI: 10.1016/j.biopha.2022.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
|
13
|
Li X, Yuan F, Zhou L. Organ Crosstalk in Acute Kidney Injury: Evidence and Mechanisms. J Clin Med 2022; 11:jcm11226637. [PMID: 36431113 PMCID: PMC9693488 DOI: 10.3390/jcm11226637] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Acute kidney injury (AKI) is becoming a public health problem worldwide. AKI is usually considered a complication of lung, heart, liver, gut, and brain disease, but recent findings have supported that injured kidney can also cause dysfunction of other organs, suggesting organ crosstalk existence in AKI. However, the organ crosstalk in AKI and the underlying mechanisms have not been broadly reviewed or fully investigated. In this review, we summarize recent clinical and laboratory findings of organ crosstalk in AKI and highlight the related molecular mechanisms. Moreover, their crosstalk involves inflammatory and immune responses, hemodynamic change, fluid homeostasis, hormone secretion, nerve reflex regulation, uremic toxin, and oxidative stress. Our review provides important clues for the intervention for AKI and investigates important therapeutic potential from a new perspective.
Collapse
|
14
|
Li T, Ji X, Liu J, Guo X, Pang R, Zhuang H, Dong L, Duan M, Li A. Ulinastatin Improves Renal Microcirculation by Protecting Endothelial Cells and Inhibiting Autophagy in a Septic Rat Model. Kidney Blood Press Res 2022; 47:256-269. [PMID: 35016182 DOI: 10.1159/000521648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Increased permeability of the renal capillaries is a common consequence of sepsis-associated acute kidney injury. Vascular endothelial (VE)-cadherin is a strictly endothelial-specific adhesion molecule that can control the permeability of the blood vessel wall. Additionally, autophagy plays an important role in maintaining cell stability. Ulinastatin, a urinary trypsin inhibitor, attenuates the systemic inflammatory response and visceral vasopermeability. However, it is uncertain whether ulinastatin can improve renal microcirculation by acting on the endothelial adhesion junction. METHODS We observed the effect of ulinastatin in a septic rat model using contrast-enhanced ultrasonography (CEUS) to evaluate the perfusion of the renal cortex and medulla. Male adult Sprague Dawley rats were subjected to cecal ligation and puncture and divided into the sham, sepsis, and ulinastatin groups. Ulinastatin (50,000 U/kg) was injected into the tail vein immediately after the operation. The CEUS was performed to evaluate the renal microcirculation perfusion at 3, 6, 12, and 24 h after the operation. Histological staining was used to evaluate kidney injury scores. Western blot was used to quantify the expression of VE-cadherin, LC3II, and inflammatory factors (interleukin-1β, interleukin-6, and tumor necrosis factor-α) in kidney tissue, and enzyme-linked immunosorbent assay detected serum inflammatory factors and kidney function and early kidney injury biomarker levels. RESULTS Compared with the sham group, ulinastatin reduced the inflammatory response, inhibited autophagy, maintained the expression of VE-cadherin, and meliorated cortical and medullary perfusion. CONCLUSION Ulinastatin effectively protects the adhesion junction and helps ameliorate the perfusion of kidney capillaries during sepsis by the inhibition of autophagy and the expression of inflammatory factors.
Collapse
Affiliation(s)
- Tian Li
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, China
| | - Xiaojun Ji
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Jingfeng Liu
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xinjie Guo
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Ran Pang
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Haizhou Zhuang
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Lei Dong
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Meili Duan
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Ang Li
- Department of Critical Care Medicine, Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, China
| |
Collapse
|
15
|
Fine I, Kaminsky A. Scattering-driven PPG signal model. BIOMEDICAL OPTICS EXPRESS 2022; 13:2286-2298. [PMID: 35519273 PMCID: PMC9045914 DOI: 10.1364/boe.451620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
This article discusses the origin of PPG signals. Two plausible hypotheses are analyzed: the volumetric hypothesis and a model wherein the PPG is driven by the RBC aggregation process. To verify the model predictions, the PPG signals at the fingertip were measured. External pressure was applied to the fingertip, presumably reducing the blood flow. The results expressed in terms of gamma, used in pulse-oximetry, agree with the aggregation model. In addition, the oscillometric signal and the PPG signal amplitude were simultaneously measured in the fingertip. All of the experimental results favor the proposed aggregation mechanism as responsible the PPG signal.
Collapse
|
16
|
Molema G, Zijlstra JG, van Meurs M, Kamps JAAM. Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury. Nat Rev Nephrol 2022; 18:95-112. [PMID: 34667283 DOI: 10.1038/s41581-021-00489-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/29/2022]
Abstract
Microvascular endothelial cells in the kidney have been a neglected cell type in sepsis-induced acute kidney injury (sepsis-AKI) research; yet, they offer tremendous potential as pharmacological targets. As endothelial cells in distinct cortical microvascular segments are highly heterogeneous, this Review focuses on endothelial cells in their anatomical niche. In animal models of sepsis-AKI, reduced glomerular blood flow has been attributed to inhibition of endothelial nitric oxide synthase activation in arterioles and glomeruli, whereas decreased cortex peritubular capillary perfusion is associated with epithelial redox stress. Elevated systemic levels of vascular endothelial growth factor, reduced levels of circulating sphingosine 1-phosphate and loss of components of the glycocalyx from glomerular endothelial cells lead to increased microvascular permeability. Although coagulation disbalance occurs in all microvascular segments, the molecules involved differ between segments. Induction of the expression of adhesion molecules and leukocyte recruitment also occurs in a heterogeneous manner. Evidence of similar endothelial cell responses has been found in kidney and blood samples from patients with sepsis. Comprehensive studies are needed to investigate the relationships between segment-specific changes in the microvasculature and kidney function loss in sepsis-AKI. The application of omics technologies to kidney tissues from animals and patients will be key in identifying these relationships and in developing novel therapeutics for sepsis.
Collapse
Affiliation(s)
- Grietje Molema
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Jan G Zijlstra
- Dept. Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matijs van Meurs
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Dept. Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan A A M Kamps
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
Belcher DA, Williams AT, Munoz CJ, Muller CR, Walser C, Palmer AF, Cabrales P. Attenuating ischemia-reperfusion injury with polymerized albumin. J Appl Physiol (1985) 2022; 132:489-496. [PMID: 34913740 PMCID: PMC8816619 DOI: 10.1152/japplphysiol.00117.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ischemia-reperfusion injury increased vascular permeability, resulting in fluid extravasation from the intravascular compartment into the tissue space. Fluid and small protein extravasation lead to increased interstitial fluid pressure and capillary collapse, impairing capillary exchange. Polymerized human serum albumin (PolyHSA) has an increased molecular weight (MW) compared with unpolymerized human serum albumin (HSA) and can improve intravascular fluid retention and recovery from ischemia-reperfusion injury. To test the hypothesis that polymerization of HSA can improve recovery from ischemia-reperfusion injury, we studied how exchange transfusion of 20% of the blood volume with HSA or PolyHSA immediately before reperfusion can affect local ischemic tissue microhemodynamics, vascular integrity, and tissue viability in a hamster dorsal window chamber model. Microvascular flow and functional capillary density were maintained in animals exchanged with PolyHSA compared with HSA. Likewise, exchange transfusion with PolyHSA preserved vascular permeability measured with extravasation of fluorescently labeled dextran. The intravascular retention time of the exchanged PolyHSA was significantly longer compared with the intravascular retention time of HSA. Lastly, the viability of tissue subjected to ischemia-reperfusion injury increased in animals exchanged with PolyHSA compared with HSA. Therefore maintenance of microvascular perfusion, improvement in vascular integrity, and reduction in tissue damage resulting from reperfusion with PolyHSA suggest that PolyHSA is a promising fluid therapy to improve outcomes of ischemia-reperfusion injury.NEW & NOTEWORTHY Polymerized human serum albumin reduced reperfusion injury and preservers microvascular hemodynamics. Polymerized human serum albumin reduces fluid extravasation and prevents fluid extravasation. Consequently, the tissue viability of ischemic tissue is preserved by polymerized human serum.
Collapse
Affiliation(s)
- Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Alexander T. Williams
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Carlos J. Munoz
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Cynthia R. Muller
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Cynthia Walser
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Pedro Cabrales
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- Department of Bioengineering, University of California San Diego, San Diego, California
| |
Collapse
|
18
|
A Mesoscale Computational Model for Microvascular Oxygen Transfer. Ann Biomed Eng 2021; 49:3356-3373. [PMID: 34184146 DOI: 10.1007/s10439-021-02807-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023]
Abstract
We address a mathematical model for oxygen transfer in the microcirculation. The model includes blood flow and hematocrit transport coupled with the interstitial flow, oxygen transport in the blood and the tissue, including capillary-tissue exchange effects. Moreover, the model is suited to handle arbitrarily complex vascular geometries. The purpose of this study is the validation of the model with respect to classical solutions and the further demonstration of its adequacy to describe the heterogeneity of oxygenation in the tissue microenvironment. Finally, we discuss the importance of these effects in the treatment of cancer using radiotherapy.
Collapse
|
19
|
Govender K, Munoz CJ, Williams AT, Cabrales P. Negative pressure increases microvascular perfusion during severe hemorrhagic shock. Microvasc Res 2020; 134:104125. [PMID: 33346023 DOI: 10.1016/j.mvr.2020.104125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/12/2020] [Accepted: 12/15/2020] [Indexed: 01/12/2023]
Abstract
Hemorrhagic shock (HS) is a severe life-threatening condition characterized by loss of blood volume and a lack of oxygen (O2) delivery to tissues. The objective of this study was to examine the impact of manipulating Starling forces in the microcirculation during HS to increase microvascular perfusion without restoring blood volume or increasing O2 carrying capacity. To decrease interstitial tissue pressure, we developed a non-contact system to locally apply negative pressure and manipulate the pressure balance in capillaries, while allowing for visualization of the microcirculation. Golden Syrian hamsters were instrumented with dorsal window chambers and subjected to a controlled hemorrhaged of 50% of the animal's blood volume without any fluid resuscitation. A negative pressure chamber was attached to the dorsal window chamber and a constant negative pressure was applied. Hemodynamic parameters (including microvascular diameter, blood flow, and functional capillary density [FCD]) were measured before and during the four hours following the hemorrhage, with and without applied negative pressure. Blood flow significantly increased in arterioles during negative pressure. The increase in flow through arterioles also improved microvascular perfusion as reflected by increased FCD. These results indicate that negative pressure increases flow in the microcirculation when fluid resuscitation is not available, thus restoring blood flow, oxygen delivery, and preventing the accumulation of metabolic waste. Applying negative pressure might allow for control of microvascular blood flow and oxygen delivery to specific tissue areas.
Collapse
Affiliation(s)
- Krianthan Govender
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Carlos J Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Alexander T Williams
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
20
|
Munoz C, Aletti F, Govender K, Cabrales P, Kistler EB. Resuscitation After Hemorrhagic Shock in the Microcirculation: Targeting Optimal Oxygen Delivery in the Design of Artificial Blood Substitutes. Front Med (Lausanne) 2020; 7:585638. [PMID: 33195342 PMCID: PMC7652927 DOI: 10.3389/fmed.2020.585638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022] Open
Abstract
Microcirculatory preservation is essential for patient recovery from hemorrhagic shock. In hemorrhagic shock, microcirculatory flow and pressure are greatly reduced, creating an oxygen debt that may eventually become irreversible. During shock, tissues become hypoxic, cellular respiration turns to anaerobic metabolism, and the microcirculation rapidly begins to fail. This condition requires immediate fluid resuscitation to promote tissue reperfusion. The choice of fluid for resuscitation is whole blood; however, this may not be readily available and, on a larger scale, may be globally insufficient. Thus, extensive research on viable alternatives to blood has been undertaken in an effort to develop a clinically deployable blood substitute. This has not, as of yet, achieved fruition, in part due to an incomplete understanding of the complexities of the function of blood in the microcirculation. Hemodynamic resuscitation is acknowledged to be contingent on a number of factors other than volume expansion. The circulation of whole blood is carefully regulated to optimize oxygen delivery to the tissues via shear stress modulation through blood viscosity, inherent oxygen-carrying capacity, cell-free layer variation, and myogenic response, among other variables. Although plasma expanders can address a number of these issues, hemoglobin-based oxygen carriers (HBOCs) introduce a method of replenishing the intrinsic oxygen-carrying capacity of blood. There continue to be a number of issues related to HBOCs, but recent advances in the next-generation HBOCs show promise in the preservation of microcirculatory function and limiting toxicities. The development of HBOCs is now focused on viscosity and the degree of microvascular shear stress achieved in order to optimize vasoactive and oxygen delivery responses by leveraging the restoration and maintenance of physiological responses to blood flow in the microcirculation. Blood substitutes with higher viscous properties tend to improve oxygen delivery compared to those with lower viscosities. This review details current concepts in blood substitutes, particularly as they relate to trauma/hemorrhagic shock, with a specific focus on their complex interactions in the microcirculation.
Collapse
Affiliation(s)
- Carlos Munoz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Federico Aletti
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Krianthan Govender
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Erik B Kistler
- Department of Anesthesiology and Critical Care, University of California, San Diego, La Jolla, CA, United States.,Department of Anesthesiology and Critical Care, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|