1
|
Zhu W, Wu J, Lai W, Li F, Zeng H, Li X, Su H, Liu B, Zhao X, Zou C, Xiao H, Luo Y. Harnessing machine learning and multi-omics to explore tumor evolutionary characteristics and the role of AMOTL1 in prostate cancer. Int J Biol Macromol 2025; 286:138402. [PMID: 39643184 DOI: 10.1016/j.ijbiomac.2024.138402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Although recent advancements have shed light on the crucial role of coordinated evolution among cell subpopulations in influencing disease progression, the full potential of these insights has not yet been fully harnessed in the clinical application of personalized precision medicine for prostate cancer (PCa). In this study, we utilized single-cell sequencing to identify the evolutionary characteristics of tumoral cell states and employed comprehensive bulk RNA sequencing to evaluate their potential as prognostic indicators and therapeutic targets. Leveraging advancements in artificial intelligence, we integrated machine learning with multi-omics to develop and validate the tumor evolutionary characteristic predictive indicator (TECPI). TECPI not only demonstrated superior prognostic performance compared to traditional clinical predictors and 81 previously published models but also improved patient outcomes by accurately identifying individuals who would benefit from immunotherapy and targeted therapies. Furthermore, we experimentally validated the critical role of AMOTL1 in PCa pharmacodynamics through its interaction with AR, pivotal for modulating the sensitivity to AR antagonist. Additionally, we demonstrated the generalizability and applicability of TECPI across pan-cancers. In summary, this study emphasizes the importance of understanding cellular diversity and dynamics within the tumor microenvironment to predict PCa progression and to guide targeted therapy effectively.
Collapse
Affiliation(s)
- Weian Zhu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Jianjie Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Wenjie Lai
- Department of Urology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou 510317, Guangdong, China
| | - Fengao Li
- Department of Urology, Shaoxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Shaoxing 312000, Zhejiang, China
| | - Hengda Zeng
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Xiaoyang Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Huabin Su
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Bohao Liu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Xiao Zhao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Chen Zou
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Hengjun Xiao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
2
|
Lin X, Wu Q, Lei W, Wu D, Sheng J, Liang G, Hou G, Fan D. miR-3154 promotes glioblastoma proliferation and metastasis via targeting TP53INP1. Cell Div 2024; 19:30. [PMID: 39487468 PMCID: PMC11529598 DOI: 10.1186/s13008-024-00134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
Glioblastomas (GBM) are most common types of primary brain tumors and miRNAs play an important role in pathogenesis of glioblastomas. Here, we reported a new miRNA, miR-3154, which regulates glioblastoma proliferation and metastasis. miR-3154 was elevated in glioblastoma tissue and cell lines, and its elevation was associated with grade of glioblastomas. Knockdown of miR-3154 in cell lines weakened ability of proliferation and colony formation, and caused cell cycle arrested and higher percentage of apoptosis. Knockdown of miR-3154 also impaired ability of migration and invasion in glioblastoma cells. In mechanism, miR-3154 bound directly to Tumor Protein P53 Inducible Nuclear Protein 1 (TP53INP1), down-regulating TP53INP1 expression at both mRNA and protein level. Silence of TP53INP1 reversed the effect of miR-3154 knockdown on proliferation and metastasis of glioblastoma cells. These findings show that miR-3154 promotes glioblastoma proliferation and metastasis via targeting TP53INP1.
Collapse
Affiliation(s)
- Xiangdan Lin
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
- Department of Neurosurgery, The first affiliated hospital of Jinzhou medical university, Jinzhou, 121000, China
| | - Qiong Wu
- Department of Thoracic Surgery, General Hospital of Northern Theater Command, NO.83 Wenhua Road, ShenHe District, Shenyang, 110016, China
| | - Wei Lei
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
| | - Dongyang Wu
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
| | - Jianchun Sheng
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
| | - Guojun Hou
- Department of General Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Di Fan
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China.
| |
Collapse
|
3
|
Zhang Z, Liu X, Chu C, Zhang Y, Li W, Yu X, Han Q, Sun H, Zhang Y, Zhu X, Chen L, Wei R, Fan N, Zhou M, Li X. MIR937 amplification potentiates ovarian cancer progression by attenuating FBXO16 inhibition on ULK1-mediated autophagy. Cell Death Dis 2024; 15:735. [PMID: 39384743 PMCID: PMC11464496 DOI: 10.1038/s41419-024-07120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is one of the most lethal gynecological cancer. Genetic studies have revealed gene copy number alterations (CNAs) frequently occurred in HGSOC pathogenesis, however the function and mechanism of CNAs for microRNAs are still not fully understood. Here, we show the dependence on gene copy number amplification of MIR937 that enhances cell autophagy and dictates HGSOC proliferative activity. Data mining of TCGA database revealed MIR937 amplification is correlated with increased MIR937 expression and cell proliferation of HGSOC. Deletion of MIR937 in HGSOC cells led to impaired autophagy and retarded cell proliferation, and the extent for its inhibitory effects scaled with the degree of MIR937 copy loss. Rescue assay confirmed miR-937-5p, a mature product of MIR937, was sufficient to restore its oncogenic function. Mechanistically, MIR937 amplification raised the expression of miR-937-5p, enhanced its binding to 3' UTR of FBXO16 transcript, and thereby restricting FBXO16 degradative effects on ULK1. Our results demonstrate that MIR937 amplification augments cell autophagy and proliferation, and suggest an alternative strategy of MIR937/FBXO16/ULK1 targeting for HGSOC treatment.
Collapse
Affiliation(s)
- Zhen Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinkui Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingjie Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyan Yu
- Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoqiao Han
- Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunhong Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxiao Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liang Chen
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ran Wei
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Nannan Fan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Zhou
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Wang L, Wang G, Song J, Yao D, Wang Y, Chen T. A comprehensive analysis of the prognostic characteristics of microRNAs in breast cancer. Front Genet 2024; 15:1293824. [PMID: 38572416 PMCID: PMC10987719 DOI: 10.3389/fgene.2024.1293824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Both overall survival (OS) and disease-specific survival (DSS) are significant when determining a patient's prognosis for breast cancer (BC). The effect of DSS-related microRNAs on BC susrvival, however, is not well understood. Here, we spotted differentially expressed miRNAs (DEMs) in the TCGA database of BC DSS, identified eight DSS-related miRNAs, and constructed a risk model. AUC values at 1, 3, and 5 years were 0.852, 0.861, and 0.868, respectively, indicating a risk model's excellent prognostic prediction ability. Then, we validated miRNA roles in BC OS and finally defined miR-551b as an independently prognostic miRNA in BC. According to function analysis, miR-551b is strongly linked with the emergence and spread of cancer, including protein ubiquitination, intracellular protein transport, metabolic pathways, and cancer pathways. Moreover, we confirmed the low expression of miR-551b in BC tissue and cells. After miR-551b inhibition or overexpression, cell function was either dramatically increased or diminished, respectively, indicating that miR-551b could regulate BC proliferation, invasion, and migration. In conclusion, we thoroughly clarified BC-related miRNAs on DSS and OS and verified miR-551b as a crucial regulator in the development and prognosis of cancer. These results can offer fresh ideas for BC therapy.
Collapse
Affiliation(s)
- Lingying Wang
- Department of Thoracic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Gui Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiahong Song
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Di Yao
- Department of Thoracic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yong Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tianyou Chen
- Department of Thoracic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Zhu W, Zeng H, Huang J, Wu J, Wang Y, Wang Z, Wang H, Luo Y, Lai W. Integrated machine learning identifies epithelial cell marker genes for improving outcomes and immunotherapy in prostate cancer. J Transl Med 2023; 21:782. [PMID: 37925432 PMCID: PMC10625713 DOI: 10.1186/s12967-023-04633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa), a globally prevalent malignancy, displays intricate heterogeneity within its epithelial cells, closely linked with disease progression and immune modulation. However, the clinical significance of genes and biomarkers associated with these cells remains inadequately explored. To address this gap, this study aimed to comprehensively investigate the roles and clinical value of epithelial cell-related genes in PCa. METHODS Leveraging single-cell sequencing data from GSE176031, we conducted an extensive analysis to identify epithelial cell marker genes (ECMGs). Employing consensus clustering analysis, we evaluated the correlations between ECMGs, prognosis, and immune responses in PCa. Subsequently, we developed and validated an optimal prognostic signature, termed the epithelial cell marker gene prognostic signature (ECMGPS), through synergistic analysis from 101 models employing 10 machine learning algorithms across five independent cohorts. Additionally, we collected clinical features and previously published signatures from the literature for comparative analysis. Furthermore, we explored the clinical utility of ECMGPS in immunotherapy and drug selection using multi-omics analysis and the IMvigor cohort. Finally, we investigated the biological functions of the hub gene, transmembrane p24 trafficking protein 3 (TMED3), in PCa using public databases and experiments. RESULTS We identified a comprehensive set of 543 ECMGs and established a strong correlation between ECMGs and both the prognostic evaluation and immune classification in PCa. Notably, ECMGPS exhibited robust predictive capability, surpassing traditional clinical features and 80 published signatures in terms of both independence and accuracy across five cohorts. Significantly, ECMGPS demonstrated significant promise in identifying potential PCa patients who might benefit from immunotherapy and personalized medicine, thereby moving us nearer to tailored therapeutic approaches for individuals. Moreover, the role of TMED3 in promoting malignant proliferation of PCa cells was validated. CONCLUSIONS Our findings highlight ECMGPS as a powerful tool for improving PCa patient outcomes and supply a robust conceptual framework for in-depth examination of PCa complexities. Simultaneously, our study has the potential to develop a novel alternative for PCa diagnosis and prognostication.
Collapse
Affiliation(s)
- Weian Zhu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Hengda Zeng
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Jiongduan Huang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Jianjie Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Yu Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Ziqiao Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Hua Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China.
| | - Wenjie Lai
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China.
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China.
| |
Collapse
|
6
|
Feng L, Chen X, Li P, Li Y, Zhai Y, Liu X, Jin Q, Zhang H, Yu C, Xing B, Cui Y, Cao P, Zhou G. miR-424-3p promotes metastasis of hepatocellular carcinoma via targeting the SRF-STAT1/2 axis. Carcinogenesis 2023; 44:610-625. [PMID: 37235794 DOI: 10.1093/carcin/bgad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 05/28/2023] Open
Abstract
Although emerging evidence has established the roles of miRNAs in hepatocellular carcinoma (HCC), the global functional implication of miRNAs in this malignancy remains largely uncharacterized. Here, we aim to systematically identify novel miRNAs involved in HCC and clarify the function and mechanism of specific novel candidate miRNA(s) in this malignancy. Through an integrative omics approach, we identified ten HCC-associated functional modules and a collection of candidate miRNAs. Among them, we demonstrated that miR-424-3p, exhibiting strong associations with extracellular matrix (ECM), promotes HCC cells migration and invasion in vitro and facilitates HCC metastasis in vivo. We further demonstrated that SRF is a direct functional target of miR-424-3p, and is required for the oncogenic activity of miR-424-3p. Finally, we found that miR-424-3p reduces the interferon pathway by attenuating the transactivation of SRF on STAT1/2 and IRF9 genes, which in turn enhances the matrix metalloproteinases (MMPs)-mediated ECM remodeling. This study provides comprehensive functional relevance of miRNAs in HCC by an integrative omics analysis, and further clarifies that miR-424-3p in ECM functional module plays an oncogenic role via reducing the SRF-STAT1/2 axis in this malignancy.
Collapse
Affiliation(s)
- Lan Feng
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xi Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Peiyao Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yun Zhai
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinyi Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qian Jin
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongxing Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences at Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Baocai Xing
- Key Laboratory of Carcinogenesis and Translational Research, Department I of Hepatopancreatobiliary Surgery, Cancer Hospital and Institute, Peking University, Beijing, China
| | - Ying Cui
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Pengbo Cao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Anhui Medical University, Hefei, China
- Hebei University, Baoding, China
| |
Collapse
|
7
|
Sun Z, Jing C, Zhan H, Guo X, Suo N, Kong F, Tao W, Xiao C, Hu D, Wang H, Jiang S. Identification of tumor antigens and immune landscapes for bladder urothelial carcinoma mRNA vaccine. Front Immunol 2023; 14:1097472. [PMID: 36761744 PMCID: PMC9905425 DOI: 10.3389/fimmu.2023.1097472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background Bladder urothelial carcinoma (BLCA) is associated with high mortality and recurrence. Although mRNA-based vaccines are promising treatment strategies for combating multiple solid cancers, their efficacy against BLCA remains unclear. We aimed to identify potential effective antigens of BLCA for the development of mRNA-based vaccines and screen for immune clusters to select appropriate candidates for vaccination. Methods Gene expression microarray data and clinical information were retrieved from The Cancer Genome Atlas and GSE32894, respectively. The mRNA splicing patterns were obtained from the SpliceSeq portal. The cBioPortal for Cancer Genomics was used to visualize genetic alteration profiles. Furthermore, nonsense-mediated mRNA decay (NMD) analysis, correlation analysis, consensus clustering analysis, immune cell infiltration analysis, and weighted co-expression network analysis were conducted. Results Six upregulated and mutated tumor antigens related to NMD, and infiltration of APCs were identified in patients with BLCA, including HP1BP3, OSBPL9, SSH3, ZCCHC8, FANCI, and EIF4A2. The patients were subdivided into two immune clusters (IC1 and IC2) with distinct clinical, cellular and molecular features. Patients in IC1 represented immunologically 'hot' phenotypes, whereas those in IC2 represented immunologically 'cold' phenotypes. Moreover, the survival rate was better in IC2 than in IC1, and the immune landscape of BLCA indicated significant inter-patient heterogeneity. Finally, CALD1, TGFB3, and ANXA6 were identified as key genes of BLCA through WGCNA analysis, and their mRNA expression levels were measured using qRT-PCR. Conclusion HP1BP3, OSBPL9, SSH3, ZCCHC8, FANCI, and EIF4A2 were identified as potential antigens for developing mRNA-based vaccines against BLCA, and patients in IC2 might benefit more from vaccination.
Collapse
Affiliation(s)
- Zhuolun Sun
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changying Jing
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), Munich, Germany.,Institute of Diabetes and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Hailun Zhan
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xudong Guo
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Suo
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Feng Kong
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wen Tao
- Department of Urology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chutian Xiao
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Daoyuan Hu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hanbo Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shaobo Jiang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
8
|
De Palma FDE, Carbonnier V, Salvatore F, Kroemer G, Pol JG, Maiuri MC. Systematic Investigation of the Diagnostic and Prognostic Impact of LINC01087 in Human Cancers. Cancers (Basel) 2022; 14:cancers14235980. [PMID: 36497462 PMCID: PMC9738797 DOI: 10.3390/cancers14235980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Long non-coding RNAs may constitute epigenetic biomarkers for the diagnosis, prognosis, and therapeutic response of a variety of tumors. In this context, we aimed at assessing the diagnostic and prognostic value of the recently described long intergenic non-coding RNA 01087 (LINC01087) in human cancers. (2) Methods: We studied the expression of LINC01087 across 30 oncological indications by interrogating public resources. Data extracted from the TCGA and GTEx databases were exploited to plot receiver operating characteristic curves (ROC) and determine the diagnostic performance of LINC01087. Survival data from TCGA and KM-Plotter directories allowed us to graph Kaplan-Meier curves and evaluate the prognostic value of LINC01087. To investigate the function of LINC01087, gene ontology (GO) annotation and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed. Furthermore, interactions between LINC01087 and both miRNA and mRNA were studied by means of bioinformatics tools. (3) Results: LINC01087 was significantly deregulated in 7 out of 30 cancers, showing a predominant upregulation. Notably, it was overexpressed in breast (BC), esophageal (ESCA), and ovarian (OV) cancers, as well as lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD), and uterine carcinosarcoma (UCS). By contrast, LINC01087 displayed downregulation in testicular germ cell tumors (TGCT). ROC curve analyses identified LINC01087 as a potential diagnostic indicator in BC, ESCA, OV, STAD, and TGCT. Moreover, high and low expression of LINC01087 predicted a favorable prognosis in BC and papillary cell carcinoma, respectively. In silico analyses indicated that deregulation of LINC01087 in cancer was associated with a modulation of genes related to ion channel, transporter, and peptide receptor activity. (4) Conclusions: the quantification of an altered abundance of LINC01087 in tissue specimens might be clinically useful for the diagnosis and prognosis of some hormone-related tumors, including BC, OV, and TGCT, as well as other cancer types such as ESCA and STAD. Moreover, our study revealed the potential of LINC01087 (and perhaps other lncRNAs) to regulate neuroactive molecules in cancer.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Vincent Carbonnier
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e Loro Modelli Animali (Federico II, 80131, Napoli, Tor Vergata, Rome and “G. D’Annunzio”, Chieti-Pescara), 80131 Napoli, Italy
| | - Guido Kroemer
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, 75004 Paris, France
| | - Jonathan G. Pol
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| | - Maria Chiara Maiuri
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| |
Collapse
|
9
|
McAlarnen LA, Gupta P, Singh R, Pradeep S, Chaluvally-Raghavan P. Extracellular vesicle contents as non-invasive biomarkers in ovarian malignancies. Mol Ther Oncolytics 2022; 26:347-359. [PMID: 36090475 PMCID: PMC9420349 DOI: 10.1016/j.omto.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer most commonly presents at an advanced stage where survival is approximately 30% compared with >80% if diagnosed and treated before disease spreads. Diagnostic capabilities have progressed from surgical staging via laparotomy to image-guided biopsies and immunohistochemistry staining, along with advances in technology and medicine. Despite improvements in diagnostic capabilities, population-level screening for ovarian cancer is not recommended. Extracellular vesicles (EVs) are 40–150 nm structures formed when the cellular lipid bilayer invaginates. These structures function in cell signaling, immune responses, cancer progression, and establishing the tumor microenvironment. EVs are found in nearly every bodily fluid, including serum, plasma, ascites, urine, and effusion fluid, and contain molecular cargo from their cell of origin. This cargo can be analyzed to yield information about a possible malignancy. In this review we describe how the cargo of EVs has been studied as biomarkers in ovarian cancer. We bring together studies analyzing evidence for various cargos as ovarian cancer biomarkers. Then, we describe the role of EVs in modulation of the tumor microenvironment. This review also summarizes the therapeutic and translational potential of EVs for their optimal utilization as non-invasive biomarkers for novel treatments against cancer.
Collapse
|
10
|
Guo X, Li Y, Che X, Hou K, Qu X, Li C. microRNA-569 inhibits tumor metastasis in pancreatic cancer by directly targeting NUSAP1. Aging (Albany NY) 2022; 14:3652-3665. [PMID: 35483343 PMCID: PMC9085231 DOI: 10.18632/aging.204035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are known to be involved in the development and progression of pancreatic cancer (PC). In this study, the prognostic significance and mechanistic role of microRNA-569 in PC were explored. Quantitative real-time PCR was used to detect the expression of microRNA-569 in PC tissues and cell lines. Scratch test and Transwell assay were conducted to detect migration and invasion ability. The xenograft nude mice model was used to determine tumor metastasis in vivo. The direct targets of microRNA-569 were determined by using bioinformatics analysis and a dual-luciferase reporter assay. The expression level of microRNA-569 was down-regulated in PC patients with a poor prognosis. In vitro and in vivo experiments indicated that over-expression of microRNA-569 inhibited the migration and invasion of PC cells. MicroRNA-569 negatively regulated NUSAP1 by directly binding its 3'-untranslated region. Further mechanism research implied that the ZEB1 pathway was involved in microRNA-569/NUSAP1 mediation of the biological behaviors in PC. These data demonstrated that microRNA-569 may exert a tumor-suppressing effect in PC and maybe a potential therapeutic target for PC patients.
Collapse
Affiliation(s)
- Xiaohui Guo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yatian Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
11
|
Galetzka D, Böck J, Wagner L, Dittrich M, Sinizyn O, Ludwig M, Rossmann H, Spix C, Radsak M, Scholz-Kreisel P, Mirsch J, Linke M, Brenner W, Marron M, Poplawski A, Haaf T, Schmidberger H, Prawitt D. Hypermethylation of RAD9A intron 2 in childhood cancer patients, leukemia and tumor cell lines suggest a role for oncogenic transformation. EXCLI JOURNAL 2022; 21:117-143. [PMID: 35221838 PMCID: PMC8859646 DOI: 10.17179/excli2021-4482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Most childhood cancers occur sporadically and cannot be explained by an inherited mutation or an unhealthy lifestyle. However, risk factors might trigger the oncogenic transformation of cells. Among other regulatory signals, hypermethylation of RAD9A intron 2 is responsible for the increased expression of RAD9A protein, which may play a role in oncogenic transformation. Here, we analyzed the RAD9A intron 2 methylation in primary fibroblasts of 20 patients with primary cancer in childhood and second primary cancer (2N) later in life, 20 matched patients with only one primary cancer in childhood (1N) and 20 matched cancer-free controls (0N), using bisulfite pyrosequencing and deep bisulfite sequencing (DBS). Four 1N patients and one 2N patient displayed elevated mean methylation levels (≥ 10 %) of RAD9A. DBS revealed ≥ 2 % hypermethylated alleles of RAD9A, indicative for constitutive mosaic epimutations. Bone marrow samples of NHL and AML tumor patients (n=74), EBV (Epstein Barr Virus) lymphoblasts (n=6), tumor cell lines (n=5) and FaDu subclones (n=13) were analyzed to substantiate our findings. We find a broad spectrum of tumor entities with an aberrant methylation of RAD9A. We detected a significant difference in mean methylation of RAD9A for NHL versus AML patients (p ≤0.025). Molecular karyotyping of AML samples during therapy with hypermethylated RAD9A showed an evolving duplication of 1.8 kb on Chr16p13.3 including the PKD1 gene. Radiation, colony formation assays, cell proliferation, PCR and molecular karyotyping SNP-array experiments using generated FaDu subclones suggest that hypermethylation of RAD9A intron 2 is associated with genomic imbalances in regions with tumor-relevant genes and survival of the cells. In conclusion, this is the very first study of RAD9A intron 2 methylation in childhood cancer and Leukemia. RAD9A epimutations may have an impact on leukemia and tumorigenesis and can potentially serve as a biomarker.
Collapse
Affiliation(s)
- Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany.,Institute of Pathology, Julius Maximilians University, Würzburg, Germany
| | - Lukas Wagner
- Center for Pediatrics and Adolescent Medicine, University Medical Centre, Mainz, Germany
| | - Marcus Dittrich
- Bioinformatics Department, Julius Maximilians University, Würzburg, Germany
| | - Olesja Sinizyn
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | | | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre, Mainz, Germany
| | - Claudia Spix
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, University Medical Centre, Mainz, Germany
| | | | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Germany
| | - Matthias Linke
- Institute of Human Genetics, University Medical Centre, Mainz, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Women's Health, University Medical Centre, Mainz, Germany
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, University Medical Centre, Mainz, Germany
| |
Collapse
|
12
|
Parashar D, Geethadevi A, Mittal S, McAlarnen LA, George J, Kadamberi IP, Gupta P, Uyar DS, Hopp EE, Drendel H, Bishop EA, Bradley WH, Bone KM, Rader JS, Pradeep S, Chaluvally-Raghavan P. Patient-Derived Ovarian Cancer Spheroids Rely on PI3K-AKT Signaling Addiction for Cancer Stemness and Chemoresistance. Cancers (Basel) 2022; 14:cancers14040958. [PMID: 35205706 PMCID: PMC8870411 DOI: 10.3390/cancers14040958] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Epithelial ovarian cancer (EOC) is the most fatal gynecological cancer with poor survival rates and high mortality. EOC patients respond to standard platinum-based chemotherapy in the beginning, but relapse often due to chemoresistance. Ovarian cancer cells disseminate from the ovarian tumors and spread within the abdomen, where ascites fluid supports the growth and transition. Malignant ascites is present in a third of patients at diagnosis and is considered as a major source of chemoresistance, recurrence, poor survival, and mortality. Malignant ascites is a complex fluid that contains a pro-tumorigenic environment with disseminated cancer cells in 3D spheroids form. In this study, we established an ovarian cancer cell line and identified that 3D spheroids develop from the 2D monolayer, and the platinum-resistant phenotype develops due to the aberrant PI3K-AKT signaling in tumor cells. Furthermore, when we used a combinatorial approach of cisplatin with LY-294002 (a PI3K-AKT dual kinase inhibitor) to treat the cisplatin version of both MCW-OV-SL-3 and A-2780 cell lines, it prevented the 3D spheroid formation ability and also sensitized the cells for cisplatin. In brief, our results provided evidence to advance therapeutic approaches to treat cisplatin resistance in ovarian cancer patients. Abstract Ovarian cancer is the most lethal gynecological malignancy among women worldwide and is characterized by aggressiveness, cancer stemness, and frequent relapse due to resistance to platinum-based therapy. Ovarian cancer cells metastasize through ascites fluid as 3D spheroids which are more resistant to apoptosis and chemotherapeutic agents. However, the precise mechanism as an oncogenic addiction that makes 3D spheroids resistant to apoptosis and chemotherapeutic agents is not understood. To study the signaling addiction mechanism that occurs during cancer progression in patients, we developed an endometrioid subtype ovarian cancer cell line named ‘MCW-OV-SL-3’ from the ovary of a 70-year-old patient with stage 1A endometrioid adenocarcinoma of the ovary. We found that the cell line MCW-OV-SL-3 exhibits interstitial duplication of 1q (q21–q42), where this duplication resulted in high expression of the PIK3C2B gene and aberrant activation of PI3K-AKT-ERK signaling. Using short tandem repeat (STR) analysis, we demonstrated that the cell line exhibits a unique genetic identity compared to existing ovarian cancer cell lines. Notably, the MCW-OV-SL-3 cell line was able to form 3D spheroids spontaneously, which is an inherent property of tumor cells when plated on cell culture dishes. Importantly, the tumor spheroids derived from the MCW-OV-SL-3 cell line expressed high levels of c-Kit, PROM1, ZEB1, SNAI, VIM, and Twist1 compared to 2D monolayer cells. We also observed that the hyperactivation of ERK and PI3K/AKT signaling in these cancer cells resulted in resistance to cisplatin. In summary, the MCW-OV-SL3 endometrioid cell line is an excellent model to study the mechanism of cancer stemness and chemoresistance in endometrioid ovarian cancer.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Anjali Geethadevi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Sonam Mittal
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Lindsey A. McAlarnen
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Jasmine George
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Ishaque P. Kadamberi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Prachi Gupta
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Denise S. Uyar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Elizabeth E. Hopp
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Holli Drendel
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (H.D.); (K.M.B.)
| | - Erin A. Bishop
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - William H. Bradley
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Kathleen M. Bone
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (H.D.); (K.M.B.)
| | - Janet S. Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pradeep Chaluvally-Raghavan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
13
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
14
|
George J, Li Y, Kadamberi IP, Parashar D, Tsaih SW, Gupta P, Geethadevi A, Chen C, Ghosh C, Sun Y, Mittal S, Ramchandran R, Rui H, Lopez-Berestein G, Rodriguez-Aguayo C, Leone G, Rader JS, Sood AK, Dey M, Pradeep S, Chaluvally-Raghavan P. RNA-binding protein FXR1 drives cMYC translation by recruiting eIF4F complex to the translation start site. Cell Rep 2021; 37:109934. [PMID: 34731628 PMCID: PMC8675433 DOI: 10.1016/j.celrep.2021.109934] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Fragile X-related protein-1 (FXR1) gene is highly amplified in patients with ovarian cancer, and this amplification is associated with increased expression of both FXR1 mRNA and protein. FXR1 expression directly associates with the survival and proliferation of cancer cells. Surface sensing of translation (SUnSET) assay demonstrates that FXR1 enhances the overall translation in cancer cells. Reverse-phase protein array (RPPA) reveals that cMYC is the key target of FXR1. Mechanistically, FXR1 binds to the AU-rich elements (ARE) present within the 3' untranslated region (3'UTR) of cMYC and stabilizes its expression. In addition, the RGG domain in FXR1 interacts with eIF4A1 and eIF4E proteins. These two interactions of FXR1 result in the circularization of cMYC mRNA and facilitate the recruitment of eukaryotic translation initiation factors to the translation start site. In brief, we uncover a mechanism by which FXR1 promotes cMYC levels in cancer cells.
Collapse
Affiliation(s)
- Jasmine George
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China
| | - Ishaque P Kadamberi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shirng-Wern Tsaih
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Prachi Gupta
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anjali Geethadevi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Changliang Chen
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chandrima Ghosh
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sonam Mittal
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ramani Ramchandran
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Gustavo Leone
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA
| | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anil K Sood
- Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; Department of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Madhusudan Dey
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211, USA
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA
| | - Pradeep Chaluvally-Raghavan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA.
| |
Collapse
|
15
|
Parashar D, Nair B, Geethadevi A, George J, Nair A, Tsaih SW, Kadamberi IP, Gopinadhan Nair GK, Lu Y, Ramchandran R, Uyar DS, Rader JS, Ram PT, Mills GB, Pradeep S, Chaluvally-Raghavan P. Peritoneal Spread of Ovarian Cancer Harbors Therapeutic Vulnerabilities Regulated by FOXM1 and EGFR/ERBB2 Signaling. Cancer Res 2020; 80:5554-5568. [PMID: 33087324 DOI: 10.1158/0008-5472.can-19-3717] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/06/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022]
Abstract
Peritoneal spread is the primary mechanism of metastasis of ovarian cancer, and survival of ovarian cancer cells in the peritoneal cavity as nonadherent spheroids and their adherence to the mesothelium of distant organs lead to cancer progression, metastasis, and mortality. However, the mechanisms that govern this metastatic process in ovarian cancer cells remain poorly understood. In this study, we cultured ovarian cancer cell lines in adherent and nonadherent conditions in vitro and analyzed changes in mRNA and protein levels to identify mechanisms of tumor cell survival and proliferation in adherent and nonadherent cells. EGFR or ERBB2 upregulated ZEB1 in nonadherent cells, which caused resistance to cell death and increased tumor-initiating capacity. Conversely, Forkhead box M1 (FOXM1) was required for the induction of integrin β1, integrin-α V, and integrin-α 5 for adhesion of cancer cells. FOXM1 also upregulated ZEB1, which could act as a feedback inhibitor of FOXM1, and caused the transition of adherent cells to nonadherent cells. Strikingly, the combinatorial treatment with lapatinib [dual kinase inhibitor of EGFR (ERBB1) and ERBB2] and thiostrepton (FOXM1 inhibitor) reduced growth and peritoneal spread of ovarian cancer cells more effectively than either single-agent treatment in vivo. In conclusion, these results demonstrate that FOXM1 and EGFR/ERBB2 pathways are key points of vulnerability for therapy to disrupt peritoneal spread and adhesion of ovarian cancer cells. SIGNIFICANCE: This study describes the mechanism exhibited by ovarian cancer cells required for adherent cell transition to nonadherent form during peritoneal spread and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5554/F1.large.jpg.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bindu Nair
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anjali Geethadevi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jasmine George
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ajay Nair
- Department of Systems Biology, Columbia University, New York, New York
| | - Shirng-Wern Tsaih
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ishaque P Kadamberi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ramani Ramchandran
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Denise S Uyar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Prahlad T Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Developmental and Cancer Biology, Knight Cancer Institute Oregon Health Science University, Oregon, Portland, Oregon
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin. .,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pradeep Chaluvally-Raghavan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin. .,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
16
|
miRNA551b-3p Activates an Oncostatin Signaling Module for the Progression of Triple-Negative Breast Cancer. Cell Rep 2020; 29:4389-4406.e10. [PMID: 31875548 DOI: 10.1016/j.celrep.2019.11.085] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 06/16/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022] Open
Abstract
Genomic amplification of 3q26.2 locus leads to the increased expression of microRNA 551b-3p (miR551b-3p) in triple-negative breast cancer (TNBC). Our results demonstrate that miR551b-3p translocates to the nucleus with the aid of importin-8 (IPO8) and activates STAT3 transcription. As a consequence, miR551b upregulates the expression of oncostatin M receptor (OSMR) and interleukin-31 receptor-α (IL-31RA) as well as their ligands OSM and IL-31 through STAT3 transcription. We defined this set of genes induced by miR551b-3p as the "oncostatin signaling module," which provides oncogenic addictions in cancer cells. Notably, OSM is highly expressed in TNBC, and the elevated expression of OSM associates with poor outcome in estrogen-receptor-negative breast cancer patients. Conversely, targeting miR551b with anti-miR551b-3p reduced the expression of the OSM signaling module and reduced tumor growth, as well as migration and invasion of breast cancer cells.
Collapse
|
17
|
Peng Y, Li Y, Li Y, Wu A, Fan L, Huang W, Fu C, Deng Z, Wang K, Zhang Y, Shu G, Yin G. HOXC10 promotes tumour metastasis by regulating the EMT-related gene Slug in ovarian cancer. Aging (Albany NY) 2020; 12:19375-19398. [PMID: 32897245 PMCID: PMC7732328 DOI: 10.18632/aging.103824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/14/2020] [Indexed: 01/24/2023]
Abstract
The mortality rate of ovarian cancer is the highest among gynaecological cancers, primarily due to metastatic symptoms. Recent studies have shown that HOX genes are crucial in tumour progression, but the underlying mechanisms remain unclear. Here, HOXC10 expression was examined in ovarian cancer tissues. The function of HOXC10 in ovarian cancer metastasis was investigated in vitroand via intraperitoneal injection in vivo. A total of 158 ovarian cancer patients with adequate records were enrolled for analysis. HOXC10 was associated with metastasis and poor prognosis in ovarian cancer. In vitro, HOXC10 overexpression promoted ovarian cancer cell migration. Moreover, HOXC10 positively regulated Slug expression, altering the migration ability of cancer cells. Furthermore, our study showed that miR-222-3p was a suppressor of HOXC10. In vivo, a decrease in hepatic metastasis was seen in xenograft mice harbouring tumours with stable HOXC10 overexpression after miR-222-3p agomir (an overexpression reagent) injection. This study provides the first evidence that HOXC10 promotes ovarian cancer metastasis by regulating the transcription of the EMT-related gene Slug. Moreover, we found that HOXC10 is regulated by miR-222-3p. These data highlight the crucial role of HOXC10 in enhancing ovarian cancer metastasis and may provide a therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Yulong Peng
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yuanyuan Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yimin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Anqi Wu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Lili Fan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Wenli Huang
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Chunyan Fu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Zhenghao Deng
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
18
|
Carlo SE, Martinez-Baladejo MT, Santiago-Cornier A, Arciniegas-Medina N. 9q34 & 16p13 chromosome duplications in autism. AME Case Rep 2020; 4:17. [PMID: 32793859 DOI: 10.21037/acr.2020.03.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/28/2020] [Indexed: 11/06/2022]
Abstract
Epigenetic mechanisms, genetic factors, and environment influence the diversity of phenotypes developed in various diseases. Duplications in several chromosomes are well characterized in the scientific literature, but partial duplications, in some cases, present with milder forms of a disease and are yet to be understood. Fortunately, the identification of genetic diseases has now become more feasible due to several cytogenetic techniques such as microarray analysis and karyotyping. With these tools, together with other laboratory results and clinical examination, we are able to report the first case in the medical literature of double partial trisomy of chromosome 9q34 and 16p13.
Collapse
Affiliation(s)
- Simon E Carlo
- Department of Biochemistry, Ponce Health Sciences University, Ponce.,Department of Medicine, Ponce Health Sciences University, Ponce.,SER de Puerto Rico, Ponce.,Mayagüez Medical Center, Mayaguez, Ponce
| | | | | | | |
Collapse
|
19
|
Zhang L, Zhang Y, Wang S, Tao L, Pang L, Fu R, Fu Y, Liang W, Li F, Jia W. MiR-212-3p suppresses high-grade serous ovarian cancer progression by directly targeting MAP3K3. Am J Transl Res 2020; 12:875-888. [PMID: 32269720 PMCID: PMC7137041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/09/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory non-coding RNAs that have been reported to play an important role in the tumorigenesis of many cancers. In addition, miRNAs might serve as new promising biomarkers for diagnosis and prognosis and as effective therapeutic targets for patients with such malignancies. Accordingly, the dysregulation of miR-212-3p has been reported in a variety of human cancers. However, its biological functions and molecular mechanisms high-grade serous ovarian cancer (HGSOG) remain unknown. In this study, we demonstrated that miR-212-3p interacts with MAP3K3 based on bioinformatics-based predictions. Further, MAP3K3 was identified as a direct target gene of miR-212-3p in HGSOC. In addition, overexpression of miR-212-3p in HGSOC inhibited cell proliferation, colony formation, invasion, and migration. In contrast MAP3K3 mitigated the suppressive effects of miR-212-3p on HGSOC cell proliferation, invasion, and migration. Furthermore, miR-212-3p was significantly downregulated in HGSOC tissues compared to expression in normal fallopian tube tissues and was inversely associated with MAP3K3 levels. Accordingly, low miR-212-3p expression was also correlated with poor prognosis for HGSOC patients. In conclusion, miR-212-3p might act as a suppressor of HGSOC carcinogenesis by directly targeting MAP3K3. Therefore, this miRNA could be a novel and effective target for the treatment of patients with HGSOC.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Ying Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Shasha Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Lin Tao
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Lijuan Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Ruiting Fu
- Department of Obestetrics and Gynecology, The First Affiliated Hospital School of Medicine, Shihezi UniversityShihezi, China
| | - Yu Fu
- Department of Obestetrics and Gynecology, The First Affiliated Hospital School of Medicine, Shihezi UniversityShihezi, China
| | - Weihua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| | - Feng Li
- Department of Pathology, Beijing Chaoyang HospitalBeijing, China
| | - Wei Jia
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi, China
| |
Collapse
|
20
|
Chen C, Gupta P, Parashar D, Nair GG, George J, Geethadevi A, Wang W, Tsaih SW, Bradley W, Ramchandran R, Rader JS, Chaluvally-Raghavan P, Pradeep S. ERBB3-induced furin promotes the progression and metastasis of ovarian cancer via the IGF1R/STAT3 signaling axis. Oncogene 2020; 39:2921-2933. [PMID: 32029900 PMCID: PMC7346970 DOI: 10.1038/s41388-020-1194-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/02/2022]
Abstract
High-grade serous carcinoma, accounts for up to 70% of all ovarian cases. Furin, a proprotein convertase, is highly expressed in high-grade serous carcinoma of ovarian cancer patients, and its expression is even higher in tumor omentum than in normal omentum, the preferred site of ovarian cancer metastasis. The proteolytic actions of this cellular endoprotease helps the maturation of several important precursors of protein substrates and its levels increase the risk of several cancer. We show that furin activates the IGF1R/STAT3 signaling axis in ovarian cancer cells. Conversely, furin knockdown downregulated IGF1R-β and p-STAT3 (Tyr705) expression. Further, silencing furin reduced tumor cell migration and invasion in vitro and tumor growth and metastasis in vivo. Collectively, our findings show that furin can be an effective therapeutic target for ovarian cancer prevention or treatment.
Collapse
Affiliation(s)
- Changliang Chen
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Prachi Gupta
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Gopakumar G Nair
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jasmine George
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Anjali Geethadevi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Wei Wang
- Metrohealth Medical Research Center, Case Western Reserve University, Cleveland, OH, USA
| | - Shirng-Wern Tsaih
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - William Bradley
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ramani Ramchandran
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Pradeep Chaluvally-Raghavan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
21
|
Dorsett KA, Jones RB, Ankenbauer KE, Hjelmeland AB, Bellis SL. Sox2 promotes expression of the ST6Gal-I glycosyltransferase in ovarian cancer cells. J Ovarian Res 2019; 12:93. [PMID: 31610800 PMCID: PMC6792265 DOI: 10.1186/s13048-019-0574-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Background The ST6Gal-I glycosyltransferase, which adds α2–6-linked sialic acids to N-glycosylated proteins is upregulated in a wide range of malignancies including ovarian cancer. Prior studies have shown that ST6Gal-I-mediated sialylation of select surface receptors remodels intracellular signaling to impart cancer stem cell (CSC) characteristics. However, the mechanisms that contribute to ST6Gal-I expression in stem-like cancer cells are poorly understood. Results Herein, we identify the master stem cell transcription factor, Sox2, as a novel regulator of ST6Gal-I expression. Interestingly, SOX2 and ST6GAL1 are located within the same tumor-associated amplicon, 3q26, and these two genes exhibit coordinate gains in copy number across multiple cancers including ~ 25% of ovarian serious adenocarcinomas. In conjunction with genetic co-amplification, our studies suggest that Sox2 directly binds the ST6GAL1 promoter to drive transcription. ST6Gal-I expression is directed by at least four distinct promoters, and we identified the P3 promoter as the predominant promoter utilized by ovarian cancer cells. Chromatin Immunoprecipitation (ChIP) assays revealed that Sox2 binds regions proximal to the P3 promoter. To confirm that Sox2 regulates ST6Gal-I expression, Sox2 was either overexpressed or knocked-down in various ovarian cancer cell lines. Sox2 overexpression induced an increase in ST6Gal-I mRNA and protein, as well as surface α2–6 sialylation, whereas Sox2 knock-down suppressed levels of ST6Gal-I mRNA, protein and surface α2–6 sialylation. Conclusions These data suggest a process whereby SOX2 and ST6GAL1 are coordinately amplified in cancer cells, with the Sox2 protein then binding the ST6GAL1 promoter to further augment ST6Gal-I expression. Our collective results provide new insight into mechanisms that upregulate ST6Gal-I expression in ovarian cancer cells, and also point to the possibility that some of the CSC characteristics commonly attributed to Sox2 may, in part, be mediated through the sialyltransferase activity of ST6Gal-I.
Collapse
Affiliation(s)
- Kaitlyn A Dorsett
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Robert B Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA.
| |
Collapse
|
22
|
Ye W, Liang F, Ying C, Zhang M, Feng D, Jiang X. Downregulation of microRNA-3934-5p induces apoptosis and inhibits the proliferation of neuroblastoma cells by targeting TP53INP1. Exp Ther Med 2019; 18:3729-3736. [PMID: 31616506 PMCID: PMC6781830 DOI: 10.3892/etm.2019.8007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 03/21/2019] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma is the most common pediatric extracranial solid tumour in the world. miRNAs are a group of endogenous small non-coding RNAs that act on target genes to serve critical roles in many biological processes. Presently, the expression and role of miR-3934-5p in neuroblastoma remains unclear. Therefore, the aim of the present study was to investigate the expression of miR-3934-5p in neuroblastoma tissues and cell lines and to assess the role of miR-3934-5p in neuroblastoma. In the current study, the results revealed that miR-3934-5p was significantly upregulated in neuroblastoma tissues and cell lines. The data also identified TP53INP1 as a direct target gene of miR-3934-5p, which was negatively regulated by miR-3934-5p. The present study further demonstrated that TP53INP1 was downregulated in both neuroblastoma tissues and cell lines. Furthermore, the results of the current study indicate that miR-3934-5p downregulation may induce apoptosis and inhibit neuroblastoma cell viability. However, these effects were reversed via TP53INP1-siRNA. Data from the current study indicates that the miR-3934-5p/TP53INP1 axis may be a novel therapeutic target for neuroblastoma treatment.
Collapse
Affiliation(s)
- Wei Ye
- Department of Neurology, Jianou Municipal Hospital, Jianou, Fujian 353100, P.R. China
| | - Fulv Liang
- Department of Urology, The Third Hospital of Xiamen, Xiamen, Fujian 361000, P.R. China
| | - Chen Ying
- Department of Urology, Haicang Hospital of Xiamen, Xiamen, Fujian 361026, P.R. China
| | - Maolin Zhang
- Department of Surgery, Xiapu County Hospital, Xiapu County, Ningde, Fujian 355100, P.R. China
| | - Dongbo Feng
- Department of Sports Medicine, The Central Hospital of Yongzhou, Yongzhou, Hunan 425000, P.R. China
| | - Xinyu Jiang
- Department of General Surgery, Xiamen Maternity and Child Health Care Hospital, Xiamen, Fujian 361000, P.R. China
| |
Collapse
|
23
|
Prediction of Disease-related microRNAs through Integrating Attributes of microRNA Nodes and Multiple Kinds of Connecting Edges. Molecules 2019; 24:molecules24173099. [PMID: 31455026 PMCID: PMC6749327 DOI: 10.3390/molecules24173099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 11/17/2022] Open
Abstract
Identifying disease-associated microRNAs (disease miRNAs) contributes to the understanding of disease pathogenesis. Most previous computational biology studies focused on multiple kinds of connecting edges of miRNAs and diseases, including miRNA-miRNA similarities, disease-disease similarities, and miRNA-disease associations. Few methods exploited the node attribute information related to miRNA family and cluster. The previous methods do not completely consider the sparsity of node attributes. Additionally, it is challenging to deeply integrate the node attributes of miRNAs and the similarities and associations related to miRNAs and diseases. In the present study, we propose a novel method, known as MDAPred, based on nonnegative matrix factorization to predict candidate disease miRNAs. MDAPred integrates the node attributes of miRNAs and the related similarities and associations of miRNAs and diseases. Since a miRNA is typically subordinate to a family or a cluster, the node attributes of miRNAs are sparse. Similarly, the data for miRNA and disease similarities are sparse. Projecting the miRNA and disease similarities and miRNA node attributes into a common low-dimensional space contributes to estimating miRNA-disease associations. Simultaneously, the possibility that a miRNA is associated with a disease depends on the miRNA's neighbour information. Therefore, MDAPred deeply integrates projections of multiple kinds of connecting edges, projections of miRNAs node attributes, and neighbour information of miRNAs. The cross-validation results showed that MDAPred achieved superior performance compared to other state-of-the-art methods for predicting disease-miRNA associations. MDAPred can also retrieve more actual miRNA-disease associations at the top of prediction results, which is very important for biologists. Additionally, case studies of breast, lung, and pancreatic cancers further confirmed the ability of MDAPred to discover potential miRNA-disease associations.
Collapse
|
24
|
Nishimoto M, Nishikawa S, Kondo N, Wanifuchi-Endo Y, Hato Y, Hisada T, Dong Y, Okuda K, Sugiura H, Kato H, Takahashi S, Toyama T. Prognostic impact of TP53INP1 gene expression in estrogen receptor α-positive breast cancer patients. Jpn J Clin Oncol 2019; 49:567-575. [PMID: 30855679 DOI: 10.1093/jjco/hyz029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Tumor protein 53-induced nuclear protein 1 (TP53INP1) is a key stress protein with tumor suppressor function. Several studies have demonstrated TP53INP1 downregulation in many cancers. In this study, we investigated the correlations of TP53INP1 mRNA expression in breast cancer tissues with prognosis and the correlations of microRNAs that regulate TP53INP1 expression in breast cancer patients with long follow-up. METHODS A total of 453 invasive breast cancer tissues were analyzed for TP53INP1 mRNA expression. We examined correlations of clinicopathological factors and expression levels of TP53INP1 mRNA in these samples. The expressions of miR-155, miR-569 and markers associated with tumor-initiating capacity were also analyzed. The median follow-up period was 9.0 years. RESULTS We found positive correlations between low expression of TP53INP1 mRNA and shorter disease-free survival and overall survival in breast cancer patients (P = 0.0002 and P < 0.0001, respectively), as well as in estrogen receptor α (ERα)-positive patients receiving adjuvant endocrine therapy (P = 0.01 and P = 0.0008, respectively). No correlations were found in ERα-negative patients. Low TP53INP1 mRNA levels positively correlated with higher grade and ERα-negativity. Multivariate analysis indicated that TP53INP1 mRNA level was an independent risk factor for overall survival both in overall breast cancer patients (hazard ratio, 2.13; 95% confidence interval, 1.17-3.92) and ERα-positive patients (hazard ratio, 2.34; 95% confidence interval, 1.18-4.64). CONCLUSIONS We show that low expression of TP53INP1 is an independent factor of poor prognosis in breast cancer patients, especially ERα-positive patients. TP53INP1 might be a promising candidate biomarker and therapeutic target in ERα-positive breast cancer patients.
Collapse
Affiliation(s)
- Mayumi Nishimoto
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Sayaka Nishikawa
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Naoto Kondo
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Yumi Wanifuchi-Endo
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Yukari Hato
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Tomoka Hisada
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Yu Dong
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Hiroshi Sugiura
- Department of Education and Research Center for Advanced Medicine, Nagoya City University Graduate School of Medical Sciences
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Tatsuya Toyama
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
25
|
The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019; 11:25. [PMID: 30744689 PMCID: PMC6371621 DOI: 10.1186/s13148-018-0587-8] [Citation(s) in RCA: 482] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a length of about 19–25 nt, which can regulate various target genes and are thus involved in the regulation of a variety of biological and pathological processes, including the formation and development of cancer. Drug resistance in cancer chemotherapy is one of the main obstacles to curing this malignant disease. Statistical data indicate that over 90% of the mortality of patients with cancer is related to drug resistance. Drug resistance of cancer chemotherapy can be caused by many mechanisms, such as decreased antitumor drug uptake, modified drug targets, altered cell cycle checkpoints, or increased DNA damage repair, among others. In recent years, many studies have shown that miRNAs are involved in the drug resistance of tumor cells by targeting drug-resistance-related genes or influencing genes related to cell proliferation, cell cycle, and apoptosis. A single miRNA often targets a number of genes, and its regulatory effect is tissue-specific. In this review, we emphasize the miRNAs that are involved in the regulation of drug resistance among different cancers and probe the mechanisms of the deregulated expression of miRNAs. The molecular targets of miRNAs and their underlying signaling pathways are also explored comprehensively. A holistic understanding of the functions of miRNAs in drug resistance will help us develop better strategies to regulate them efficiently and will finally pave the way toward better translation of miRNAs into clinics, developing them into a promising approach in cancer therapy.
Collapse
|
26
|
Anfossi S, Fu X, Nagvekar R, Calin GA. MicroRNAs, Regulatory Messengers Inside and Outside Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:87-108. [PMID: 29754176 DOI: 10.1007/978-3-319-74470-4_6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs (ncRNAs) with typical sequence lengths of 19-25 nucleotides and extraordinary abilities to regulate gene expression. Because miRNAs regulate multiple important biological functions of the cell (proliferation, migration, invasion, apoptosis, differentiation, and drug resistance), their expression is highly controlled. Genetic and epigenetic alterations frequently found in cancer cells can cause aberrant expression of miRNAs and, consequently, of their target genes. The tumor microenvironment can also affect miRNA expression through soluble factors (e.g., cytokines and growth factors) secreted by either tumor cells or non-tumor cells (such as immune and stromal cells). Furthermore, like hormones, miRNAs can be secreted and regulate gene expression in recipient cells. Altered expression levels of miRNAs in cancer cells determine the acquisition of fundamental biological capabilities (hallmarks of cancer) responsible for the development and progression of the disease.
Collapse
Affiliation(s)
- Simone Anfossi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Xiao Fu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rahul Nagvekar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
27
|
Zubor P, Kubatka P, Dankova Z, Gondova A, Kajo K, Hatok J, Samec M, Jagelkova M, Krivus S, Holubekova V, Bujnak J, Laucekova Z, Zelinova K, Stastny I, Nachajova M, Danko J, Golubnitschaja O. miRNA in a multiomic context for diagnosis, treatment monitoring and personalized management of metastatic breast cancer. Future Oncol 2018; 14:1847-1867. [DOI: 10.2217/fon-2018-0061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metastatic breast cancer is characterized by aggressive spreading to distant organs. Despite huge multilevel research, there are still several important challenges that have to be clarified in the management of this disease. Therefore, recent investigations have implemented a modern, multiomic approach with the aim of identifying specific biomarkers for not only early detection but also to predict treatment responses and metastatic spread. Specific attention is paid to short miRNAs, which regulate gene expression at the post-transcriptional level. Aberrant miRNA expression could initiate cancer development, cell proliferation, invasion, migration, metastatic spread or drug resistance. An miRNA signature is, therefore, believed to be a promising biomarker and prediction tool that could be utilized in all phases of carcinogenesis. This article offers comprehensive information about miRNA profiles useful for diagnostic and treatment purposes that may sufficiently advance breast cancer management and improve individual outcomes in the near future.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Peter Kubatka
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Zuzana Dankova
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Alexandra Gondova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Karol Kajo
- Department of Pathology, St Elizabeth Cancer Institute Hospital, Bratislava, Slovak Republic
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jozef Hatok
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Marek Samec
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Marianna Jagelkova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Stefan Krivus
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Veronika Holubekova
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Jan Bujnak
- Department of Obstetrics & Gynecology, Kukuras Michalovce Hospital, Michalovce, Slovak Republic
- Oncogynecology Unit, Penta Hospitals International, Svet Zdravia, Michalovce, Slovak Republic
| | - Zuzana Laucekova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Katarina Zelinova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Igor Stastny
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Marcela Nachajova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Jan Danko
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Olga Golubnitschaja
- Radiological Clinic, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
- Breast Cancer Research Center, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
- Center for Integrated Oncology, Cologne-Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Qiu M, Xia W, Chen R, Wang S, Xu Y, Ma Z, Xu W, Zhang E, Wang J, Fang T, Hu J, Dong G, Yin R, Wang J, Xu L. The Circular RNA circPRKCI Promotes Tumor Growth in Lung Adenocarcinoma. Cancer Res 2018; 78:2839-2851. [PMID: 29588350 DOI: 10.1158/0008-5472.can-17-2808] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/13/2018] [Accepted: 03/23/2018] [Indexed: 11/16/2022]
Abstract
Somatic copy number variations (CNV) may drive cancer progression through both coding and noncoding transcripts. However, noncoding transcripts resulting from CNV are largely unknown, especially for circular RNAs. By integrating bioinformatics analyses of alerted circRNAs and focal CNV in lung adenocarcinoma, we identify a proto-oncogenic circular RNA (circPRKCI) from the 3q26.2 amplicon, one of the most frequent genomic aberrations in multiple cancers. circPRKCI was overexpressed in lung adenocarcinoma tissues, in part due to amplification of the 3q26.2 locus, and promoted proliferation and tumorigenesis of lung adenocarcinoma. circPRKCI functioned as a sponge for both miR-545 and miR-589 and abrogated their suppression of the protumorigenic transcription factor E2F7 Intratumor injection of cholesterol-conjugated siRNA specifically targeting circPRKCI inhibited tumor growth in a patient-derived lung adenocarcinoma xenograft model. In summary, circPRKCI is crucial for tumorigenesis and may serve as a potential therapeutic target in patients with lung adenocarcinoma.Significance: These findings reveal high expression of the circular RNA circPRKCI drives lung adenocarcinoma tumorigenesis. Cancer Res; 78(11); 2839-51. ©2018 AACR.
Collapse
Affiliation(s)
- Mantang Qiu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Wenjia Xia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Rui Chen
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
- Department of Cardiothoracic Surgery, Taixing People's Hospital, The Affiliated Taixing Hospital of Yangzhou University, Taixing, China
| | - Siwei Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Zhifei Ma
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Weizhang Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- Department of Scientific Research, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Tian Fang
- Department of Comparative Medicine, Jingling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jingwen Hu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- Department of Scientific Research, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| |
Collapse
|
29
|
Abstract
microRNAs (miRs) are targets for genomic aberrations and emerging treatments against cancer. It has been demonstrated that targeting miR-569 may potentially benefit patients with ovarian or breast cancer. However, the exact roles of miR-569 remain unclear in human lung cancer cells. Using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), it was demonstrated that miR-569 expression was consistently decreased in lung cancer cells. As well as cell proliferation and migration inhibition, apoptosis and cell arrest at the G1 phase were induced following reversion of miR-569 expression in lung cancer cells. The present study demonstrated that miR-569 was able to downregulate FOS and high mobility group A2 mRNA and protein expression using RT-qPCR and western blot analysis. The observed role of miRNA-569 in lung cancer cells in the present study suggested that it may be a novel and promising therapeutic target, and a novel biomarker for detecting lung cancer.
Collapse
Affiliation(s)
- Yi Ping Zheng
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Linxia Wu
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Jie Gao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Yanfu Wang
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
30
|
Eetezadi S, Evans JC, Shen YT, De Souza R, Piquette-Miller M, Allen C. Ratio-Dependent Synergism of a Doxorubicin and Olaparib Combination in 2D and Spheroid Models of Ovarian Cancer. Mol Pharm 2018; 15:472-485. [DOI: 10.1021/acs.molpharmaceut.7b00843] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sina Eetezadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - James C. Evans
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Yen-Ting Shen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Raquel De Souza
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
31
|
Abstract
Circulating Tumor Cells (CTCs) are floating cell populations, which are resistant to anoikis after detachment from the primary sites and travel through the circulatory and lymphatic systems to disseminate throughout the body. CTCs are considered as seed cells for metastasis, and thus isolation of CTCs does not require any invasive procedure. Based on the nature and location of ovarian cancer and glioblastoma, the role of CTCs and hematogenous (carried by blood) spreading of tumor cells in these cancers were not understood well. Dysregulation of epidermal growth factor receptor (EGFR/ERBB) family members due to their overexpression and/or mutation have been known to contribute to the etiology and progression of ovarian cancer and glioblastoma. However, the role of ERBB receptors on CTC formation of ovarian cancer and glioblastoma is not well established. This report highlights the role of ERBB family receptors on resistance to anoikis and CTC formation in ovarian cancer and glioblastoma. Recent research on CTCs demonstrates that capturing ERBB receptor positive cells from circulating system is an efficient approach to isolate CTCs for genomic and proteomic characterization of tumor cells. Therefore, ERBB-targeted isolation of CTCs would help to design therapy to treat cancer, determine drug responses and drug-resistant mechanisms in cancer patients.
Collapse
|
32
|
MicroRNA-106b-5p regulates cisplatin chemosensitivity by targeting polycystic kidney disease-2 in non-small-cell lung cancer. Anticancer Drugs 2017; 28:852-860. [PMID: 28723865 DOI: 10.1097/cad.0000000000000524] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Systemic therapy with cytotoxic agents remains one of the main treatment methods for non-small-cell lung cancer (NSCLC). Cisplatin is a commonly used chemotherapeutic agent, that, when combined with other drugs, is an effective treatment for NSCLC. However, effective cancer therapy is hindered by a patient's resistance to cisplatin. Unfortunately, the potential mechanism underlying such resistance remains unclear. In this study, we explored the mechanism of microRNA-106b-5p (miR-106b-5p), which is involved in the resistance to cisplatin in the A549 cell line of NSCLC. Quantitative real-time PCR was used to test the expression of miR-106-5p in the A549 and the A549/DDP cell line of NSCLC. The cell counting kit-8 assay was used to detect cell viability. Flow cytometry was used to measure cell cycle and cell apoptosis. Luciferase reporter assays and western blot were performed to confirm whether polycystic kidney disease-2 (PKD2) is a direct target gene of miR-106b-5p. Immunohistochemistry was performed to examine the distribution of PKD2 expression in patients who are sensitive and resistant to cisplatin. The experiments indicated that the expression of miR-106b-5p was significantly decreased in A549/DDP compared with that in A549. MiR-106b-5p affected the tolerance of cells to cisplatin by negatively regulating PKD2. Upregulation of miR-106b-5p or downregulation of PKD2 expression can cause A549/DDP cells to become considerably more sensitive to cisplatin. The results showed that miR-106b-5p enhanced the sensitivity of A549/DDP cells to cisplatin by targeting the expression of PKD2. These findings suggest that the use of miR-106b-5p may be a promising clinical strategy in the treatment of NSCLC.
Collapse
|
33
|
Rodriguez-Aguayo C, Monroig PDC, Redis RS, Bayraktar E, Almeida MI, Ivan C, Fuentes-Mattei E, Rashed MH, Chavez-Reyes A, Ozpolat B, Mitra R, Sood AK, Calin GA, Lopez-Berestein G. Regulation of hnRNPA1 by microRNAs controls the miR-18a- K-RAS axis in chemotherapy-resistant ovarian cancer. Cell Discov 2017; 3:17029. [PMID: 28904816 PMCID: PMC5594916 DOI: 10.1038/celldisc.2017.29] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022] Open
Abstract
The regulation of microRNA (miRNA) biogenesis, function and degradation involves a range of mechanisms, including interactions with RNA-binding proteins. The potential contribution of regulatory miRNAs to the expression of these RNA interactor proteins that could control other miRNAs expression is still unclear. Here we demonstrate a regulatory circuit involving oncogenic and tumor-suppressor miRNAs and an RNA-binding protein in a chemotherapy-resistant ovarian cancer model. We identified and characterized miR-15a-5p and miR-25-3p as negative regulators of hnRNPA1 expression, which is required for the processing of miR-18a-3p, an inhibitor of the K-RAS oncogene. The inhibition of miR-25-3p and miR-15a-5p decreased the proliferation, motility, invasiveness and angiogenic potential and increased apoptosis when combined with docetaxel. Alteration of this regulatory circuit causes poor overall survival outcome in ovarian cancer patients. These results highlight miR-15a-5p and miR-25-3p as key regulators of miR-18a-3p expression and its downstream target K-RAS, through direct modulation of hnRNPA1 expression. Our results demonstrate the therapeutic potential of inhibiting miR-25-3p and miR-15a-5p and the use of miR-18a-3p/KRAS ratio as a prominent outcome prognostic factor.
Collapse
Affiliation(s)
- Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paloma del C Monroig
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roxana S Redis
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria I Almeida
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S) and Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohammed H Rashed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The University of Al-Azhar, Cairo, Egypt
| | - Arturo Chavez-Reyes
- Center for Research and Advanced Studies, National Polytechnic Institute (CINVESTAV del IPN), Monterrey, Mexico
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rahul Mitra
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Ng KY, Chan LH, Chai S, Tong M, Guan XY, Lee NP, Yuan Y, Xie D, Lee TK, Dusetti NJ, Carrier A, Ma S. TP53INP1 Downregulation Activates a p73-Dependent DUSP10/ERK Signaling Pathway to Promote Metastasis of Hepatocellular Carcinoma. Cancer Res 2017; 77:4602-4612. [PMID: 28674078 DOI: 10.1158/0008-5472.can-16-3456] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/26/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022]
Abstract
Identifying critical factors involved in the metastatic progression of hepatocellular carcinoma (HCC) may offer important therapeutic opportunities. Here, we report that the proapoptotic stress response factor TP53INP1 is often selectively downregulated in advanced stage IV and metastatic human HCC tumors. Mechanistic investigations revealed that TP53INP1 downregulation in early-stage HCC cells promoted metastasis via DUSP10 phosphatase-mediated activation of the ERK pathway. The DUSP10 promoter included putative binding sites for p73 directly implicated in modulation by TP53INP1. Overall, our findings show how TP53INP1 plays a critical role in limiting the progression of early-stage HCC, with implications for developing new therapeutic strategies to attack metastatic HCC. Cancer Res; 77(17); 4602-12. ©2017 AACR.
Collapse
Affiliation(s)
- Kai-Yu Ng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Lok-Hei Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Stella Chai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Man Tong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Nikki P Lee
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Yunfei Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Nelson J Dusetti
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Alice Carrier
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Stephanie Ma
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong. .,State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
35
|
Biersack B. Interactions between anticancer active platinum complexes and non-coding RNAs/microRNAs. Noncoding RNA Res 2017; 2:1-17. [PMID: 30159416 PMCID: PMC6096430 DOI: 10.1016/j.ncrna.2016.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022] Open
Abstract
Platinum(II) complexes such as cisplatin, carboplatin and oxaliplatin are clinically approved for the therapy of various solid tumors. Challenging pathogenic properties of cancer cells and the response of cancers towards platinum-based drugs are strongly influenced by non-coding small RNA molecules, the microRNAs (miRNAs). Both increased platinum activity and formation of tumor resistance towards platinum drugs are controlled by miRNAs. This review gives an overview of the interactions between platinum-based drugs and miRNAs, and their influence on platinum activity in various cancer types is discussed.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Anticancer drugs
- CBDCA, cyclobutane-1,1-dicarboxylate
- Carboplatin
- Cisplatin
- DACH, 1,2-diaminocyclohexane
- DDP, cisplatin
- EGCG, (−)-epigallocatechin-3-gallate
- EOX, epirubicin/oxaliplatin/xeloda
- FOLFOX, folinate/5-FU/oxaliplatin
- GC, gemcitabine/cisplatin, gastric cancer
- LNA, locked nucleic acid
- MVAC, methotrexate/vinblastine/adriamycin/cisplatin
- MicroRNA
- Oxaliplatin
- Platinum complexes
- XELOX, xeloda/oxaliplatin
- dTTP, deoxythymidine triphosphate
Collapse
|
36
|
Lu Y, Ling S, Hegde AM, Byers LA, Coombes K, Mills GB, Akbani R. Using reverse-phase protein arrays as pharmacodynamic assays for functional proteomics, biomarker discovery, and drug development in cancer. Semin Oncol 2016; 43:476-83. [PMID: 27663479 PMCID: PMC5111873 DOI: 10.1053/j.seminoncol.2016.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The majority of the targeted therapeutic agents in clinical use target proteins and protein function. Although DNA and RNA analyses have been used extensively to identify novel targets and patients likely to benefit from targeted therapies, these are indirect measures of the levels and functions of most therapeutic targets. More importantly, DNA and RNA analysis is ill-suited for determining the pharmacodynamic effects of target inhibition. Assessing changes in protein levels and function is the most efficient way to evaluate the mechanisms underlying sensitivity and resistance to targeted agents. Understanding these mechanisms is necessary to identify patients likely to benefit from treatment and to develop rational drug combinations to prevent or bypass therapeutic resistance. There is an urgent need for a robust approach to assess protein levels and protein function in model systems and across patient samples. While "shot gun" mass spectrometry can provide in-depth analysis of proteins across a limited number of samples, and emerging approaches such as multiple reaction monitoring have the potential to analyze candidate markers, mass spectrometry has not entered into general use because of the high cost, requirement of extensive analysis and support, and relatively large amount of material needed for analysis. Rather, antibody-based technologies, including immunohistochemistry, radioimmunoassays, enzyme-linked immunosorbent assays (ELISAs), and more recently protein arrays, remain the most common approaches for multiplexed protein analysis. Reverse-phase protein array (RPPA) technology has emerged as a robust, sensitive, cost-effective approach to the analysis of large numbers of samples for quantitative assessment of key members of functional pathways that are affected by tumor-targeting therapeutics. The RPPA platform is a powerful approach for identifying and validating targets, classifying tumor subsets, assessing pharmacodynamics, and identifying prognostic and predictive markers, adaptive responses and rational drug combinations in model systems and patient samples. Its greatest utility has been realized through integration with other analytic platforms such as DNA sequencing, transcriptional profiling, epigenomics, mass spectrometry, and metabolomics. The power of the technology is becoming apparent through its use in pathology laboratories and integration into trial design and implementation.
Collapse
Affiliation(s)
- Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shiyun Ling
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Apurva M Hegde
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kevin Coombes
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
37
|
Chen X, Lu P, Wu Y, Wang DD, Zhou S, Yang SJ, Shen HY, Zhang XH, Zhao JH, Tang JH. MiRNAs-mediated cisplatin resistance in breast cancer. Tumour Biol 2016; 37:12905-12913. [DOI: 10.1007/s13277-016-5216-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
|
38
|
Chaluvally-Raghavan P, Jeong KJ, Pradeep S, Silva AM, Yu S, Liu W, Moss T, Rodriguez-Aguayo C, Zhang D, Ram P, Liu J, Lu Y, Lopez-Berestein G, Calin GA, Sood AK, Mills GB. Direct Upregulation of STAT3 by MicroRNA-551b-3p Deregulates Growth and Metastasis of Ovarian Cancer. Cell Rep 2016; 15:1493-1504. [PMID: 27160903 PMCID: PMC4914391 DOI: 10.1016/j.celrep.2016.04.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/10/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022] Open
Abstract
3q26.2 amplification in high-grade serous ovarian cancer leads to increased expression of mature microRNA miR551b-3p, which is associated with poor clinical outcome. Importantly, miR551b-3p contributes to resistance to apoptosis and increased survival and proliferation of cancer cells in vitro and in vivo. miR551b-3p upregulates STAT3 protein levels, and STAT3 is required for the effects of miR551b-3p on cell proliferation. Rather than decreasing levels of target mRNA as expected, we demonstrate that miR551b-3p binds a complementary sequence on the STAT3 promoter, recruiting RNA polymerase II and the TWIST1 transcription factor to activate STAT3 transcription, and thus directly upregulates STAT3 expression. Furthermore, anti-miR551b reduced STAT3 expression in ovarian cancer cells in vitro and in vivo and reduced ovarian cancer growth in vivo. Together, our data demonstrate a role for miR551b-3p in transcriptional activation. Thus, miR551b-3p represents a promising candidate biomarker and therapeutic target in ovarian cancer.
Collapse
MESH Headings
- Animals
- Carcinoma, Ovarian Epithelial
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Self Renewal
- Cell Survival/genetics
- Down-Regulation/genetics
- Female
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Gene Silencing
- Humans
- Mice, Nude
- MicroRNAs/metabolism
- Neoplasm Metastasis
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Nuclear Proteins/metabolism
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Promoter Regions, Genetic/genetics
- RNA Polymerase II/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Transcription, Genetic
- Treatment Outcome
- Tumor Burden/genetics
- Twist-Related Protein 1/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
| | - Kang Jin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sunila Pradeep
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Andreia Machado Silva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Shuangxing Yu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Wenbin Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Tyler Moss
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dong Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Prahlad Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
39
|
Haploinsufficiency for NR3C1, the gene encoding the glucocorticoid receptor, in blastic plasmacytoid dendritic cell neoplasms. Blood 2016; 127:3040-53. [PMID: 27060168 DOI: 10.1182/blood-2015-09-671040] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/25/2016] [Indexed: 11/20/2022] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive leukemia for which knowledge on disease mechanisms and effective therapies are currently lacking. Only a handful of recurring genetic mutations have been identified and none is specific to BPDCN. In this study, through molecular cloning in an index case that presented a balanced t(3;5)(q21;q31) and molecular cytogenetic analyses in a further 46 cases, we identify monoallelic deletion of NR3C1 (5q31), encoding the glucocorticoid receptor (GCR), in 13 of 47 (28%) BPDCN patients. Targeted deep sequencing in 36 BPDCN cases, including 10 with NR3C1 deletion, did not reveal NR3C1 point mutations or indels. Haploinsufficiency for NR3C1 defined a subset of BPDCN with lowered GCR expression and extremely poor overall survival (P = .0006). Consistent with a role for GCR in tumor suppression, functional analyses coupled with gene expression profiling identified corticoresistance and loss-of-EZH2 function as major downstream consequences of NR3C1 deletion in BPDCN. Subsequently, more detailed analyses of the t(3;5)(q21;q31) revealed fusion of NR3C1 to a long noncoding RNA (lncRNA) gene (lincRNA-3q) that encodes a novel, nuclear, noncoding RNA involved in the regulation of leukemia stem cell programs and G1/S transition, via E2F. Overexpression of lincRNA-3q was a consistent feature of malignant cells and could be abrogated by bromodomain and extraterminal domain (BET) protein inhibition. Taken together, this work points to NR3C1 as a haploinsufficient tumor suppressor in a subset of BPDCN and identifies BET inhibition, acting at least partially via lncRNA blockade, as a novel treatment option in BPDCN.
Collapse
|
40
|
Tuna M, Machado AS, Calin GA. Genetic and epigenetic alterations of microRNAs and implications for human cancers and other diseases. Genes Chromosomes Cancer 2015; 55:193-214. [PMID: 26651018 DOI: 10.1002/gcc.22332] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a well-studied group of noncoding RNAs that control gene expression by interacting mainly with messenger RNA. It is known that miRNAs and their biogenesis regulatory machineries have crucial roles in multiple cell processes; thus, alterations in these genes often lead to disease, such as cancer. Disruption of these genes can occur through epigenetic and genetic alterations, resulting in aberrant expression of miRNAs and subsequently of their target genes. This review focuses on the disruption of miRNAs and their key regulatory machineries by genetic alterations, with emphasis on mutations and epigenetic changes in cancer and other diseases.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Andreia S Machado
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
41
|
Samuel P, Pink RC, Brooks SA, Carter DR. miRNAs and ovarian cancer: a miRiad of mechanisms to induce cisplatin drug resistance. Expert Rev Anticancer Ther 2015; 16:57-70. [PMID: 26567444 DOI: 10.1586/14737140.2016.1121107] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ovarian cancer is the most aggressive gynecological cancer. One reason for the low 5-year survival rate of under 40% is that ovarian tumors usually acquire resistance to the platinum-based compounds used to treat them. Resistance to one such compound, cisplatin, can arise via numerous mechanisms that can be categorized as pre-, post-, on- or off-target. Pre-target mechanisms prevent accumulation of cisplatin in the cell, on-target mechanisms allow DNA damage to be repaired more efficiently, post-target mechanisms prevent the damage from inducing apoptosis and off-target mechanisms increase resistance via unrelated compensatory mechanisms. miRNAs are short non-coding RNAs that influence cellular function by repressing gene expression. Here we describe how miRNAs can induce cisplatin resistance in ovarian cancer cells via pre-, post-, on- and off-target mechanisms. A better understanding of how miRNAs feed into the mechanisms of drug resistance will inform the rational design of combination therapies for ovarian cancer.
Collapse
Affiliation(s)
- Priya Samuel
- a Department of Biological and Medical Sciences, Faculty of Health and Life Sciences , Oxford Brookes University , Oxford , UK
| | - Ryan Charles Pink
- a Department of Biological and Medical Sciences, Faculty of Health and Life Sciences , Oxford Brookes University , Oxford , UK
| | - Susan Ann Brooks
- a Department of Biological and Medical Sciences, Faculty of Health and Life Sciences , Oxford Brookes University , Oxford , UK
| | - David RaulFrancisco Carter
- a Department of Biological and Medical Sciences, Faculty of Health and Life Sciences , Oxford Brookes University , Oxford , UK
| |
Collapse
|
42
|
Grozav A, Balacescu O, Balacescu L, Cheminel T, Berindan-Neagoe I, Therrien B. Synthesis, Anticancer Activity, and Genome Profiling of Thiazolo Arene Ruthenium Complexes. J Med Chem 2015; 58:8475-90. [PMID: 26488797 DOI: 10.1021/acs.jmedchem.5b00855] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sixteen hydrazinyl-thiazolo arene ruthenium complexes of the general formula [(η(6)-p-cymene)Ru(N,N'-hydrazinyl-thiazolo)Cl]Cl were synthesized. All complexes were tested in vitro for their antiproliferative activity on three tumor cell lines (HeLa, A2780, and A2780cisR) and on a noncancerous cell line (HFL-1). A superior cytotoxic activity of the ruthenium complexes as compared to cisplatin and oxaliplatin, on both cisplatin-sensitive and cisplatin resistant ovarian cancer cells, was observed. In addition, the biological activity of two selected derivatives was evaluated using microarray gene expression assay and ingenuity pathway analysis. p53 signaling was identified as an important pathway modulated by both arene ruthenium compounds. New activated molecules such as FAS, ZMAT3, PRMT2, BBC3/PUMA, and PDCD4, whose overexpressions are correlated with overcoming resistance to cisplatin therapy, were also identified as potential targets. Moreover, the arene ruthenium complexes can be used in association with cisplatin to prevent cisplatin resistance development and synergistically to induce cell death in ovarian cancer cells.
Collapse
Affiliation(s)
- Adriana Grozav
- Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Victor Babes Str. 41, RO-400012 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuta" , 34-36 Republicii Str, RO-400015, Cluj-Napoca, Romania
| | - Loredana Balacescu
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuta" , 34-36 Republicii Str, RO-400015, Cluj-Napoca, Romania
| | - Thomas Cheminel
- Institut de Chimie, Université de Neuchâtel , 51 Avenue de Bellevaux, CH-2000 Neuchâtel, Switzerland
| | - Ioana Berindan-Neagoe
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuta" , 34-36 Republicii Str, RO-400015, Cluj-Napoca, Romania.,Research Center of Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu″ University of Medicine and Pharmacy , 23 Marinescu Str, RO-400337 Cluj-Napoca, Romania
| | - Bruno Therrien
- Institut de Chimie, Université de Neuchâtel , 51 Avenue de Bellevaux, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
43
|
Chaluvally-Raghavan P, Mills GB. Targeting ncRNAs in the 3q26.2 amplicon. Oncoscience 2015; 2:671-2. [PMID: 26425652 PMCID: PMC4580054 DOI: 10.18632/oncoscience.221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/31/2015] [Indexed: 11/25/2022] Open
Affiliation(s)
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Li J, Drubay D, Michiels S, Gautheret D. Mining the coding and non-coding genome for cancer drivers. Cancer Lett 2015; 369:307-15. [PMID: 26433158 DOI: 10.1016/j.canlet.2015.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/24/2015] [Accepted: 09/24/2015] [Indexed: 12/20/2022]
Abstract
Progress in next-generation sequencing provides unprecedented opportunities to fully characterize the spectrum of somatic mutations of cancer genomes. Given the large number of somatic mutations identified by such technologies, the prioritization of cancer-driving events is a consistent bottleneck. Most bioinformatics tools concentrate on driver mutations in the coding fraction of the genome, those causing changes in protein products. As more non-coding pathogenic variants are identified and characterized, the development of computational approaches to effectively prioritize cancer-driving variants within the non-coding fraction of human genome is becoming critical. After a short summary of methods for coding variant prioritization, we here review the highly diverse non-coding elements that may act as cancer drivers and describe recent methods that attempt to evaluate the deleteriousness of sequence variation in these elements. With such tools, the prioritization and identification of cancer-implicated regulatory elements and non-coding RNAs is becoming a reality.
Collapse
Affiliation(s)
- Jia Li
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Damien Drubay
- Service de Biostatistique et d'Epidemiologie, Gustave Roussy, Villejuif, France; INSERM U1018, CESP, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Stefan Michiels
- Service de Biostatistique et d'Epidemiologie, Gustave Roussy, Villejuif, France; INSERM U1018, CESP, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France.
| |
Collapse
|
45
|
Saadi H, Seillier M, Carrier A. The stress protein TP53INP1 plays a tumor suppressive role by regulating metabolic homeostasis. Biochimie 2015. [PMID: 26225460 DOI: 10.1016/j.biochi.2015.07.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the recent years, we have provided evidence that Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) is a key stress protein with antioxidant-associated tumor suppressive function. The TP53INP1 gene, which is highly conserved in mammals, is over-expressed during stress responses including inflammation. This gene encodes two protein isoforms with nuclear or cytoplasmic subcellular localization depending on the context. TP53INP1 contributes to stress responses, thus preventing stress-induced dysfunctions leading to pathologies such as cancer. Two major mechanisms by which TP53INP1 functions have been unveiled. First, in the nucleus, TP53INP1 was shown to regulate the transcriptional activity of p53 and p73 by direct interaction, and to mediate the antioxidant activity of p53. Second, independently of p53, TP53INP1 contributes to autophagy and more particularly mitophagy through direct interaction with molecular actors of autophagy. TP53INP1 is thus required for the homeostasis of the mitochondrial compartment, and is therefore involved in the regulation of energetic metabolism. Finally, the antioxidant function of TP53INP1 stems from the control of mitochondrial reactive oxygen species production. In conclusion, TP53INP1 is a multifaceted protein endowed with multiple functions, including metabolic regulation, as is its main functional partner p53.
Collapse
Affiliation(s)
- Houda Saadi
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Marion Seillier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Alice Carrier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France.
| |
Collapse
|