1
|
Mei H, Yang J, Hao J, Ding Y, Wan X, Dong M, Zhang X, Luo L, Xiong T, Wang L, Yang T, Huang C. Mechanism of ethyl acetate fraction of Amorphophallus konjac against breast cancer based on network pharmacology, molecular docking and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119648. [PMID: 40107477 DOI: 10.1016/j.jep.2025.119648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amorphophallus konjac (Sheliugu), a medicinal and edible herb from East China and regions south of the Yangtze River, exhibits significant antitumor activity. However, its active constituents and mechanisms remain poorly understood. AIMS OF THE STUDY This study explores the therapeutic effects of the konjac ethyl acetate fraction (KEAF) in triple-negative breast cancer (TNBC) and elucidates its underlying mechanisms. MATERIALS AND METHODS UPLC-MS/MS identified KEAF's chemical components, and network pharmacology determined its key targets in TNBC. Survival curves of essential genes were analyzed using UALCAN, bc-GenExMiner, and Kaplan-Meier plotter databases. Protein expression and prognostic data identified TNBC-linked genes. Molecular docking assessed binding affinities of KEAF's bioactive components with these genes. In vitro experiments validated KEAF's effects on proliferation, migration, cell cycle regulation, and apoptosis. RESULTS KEAF contained 15 active compounds and 146 principal targets, with eight key targets identified: TP53, EGFR, AKT1, MYC, STAT3, HIF1A, ESR1, and JUN. GO and KEGG enrichment analyses highlighted the PI3K/Akt signaling pathway as central to KEAF's therapeutic effects. Protein expression and prognostic studies confirmed EGFR and ESR1 as critical in TNBC progression. Molecular docking revealed strong binding of scutellarein and genistein to EGFR and ESR1 (T score >5). In vitro, KEAF inhibited MDA-MB-231 cell proliferation and migration, modulated the cell cycle, and induced apoptosis by downregulating PI3K/Akt signaling. CONCLUSION Scutellarein and genistein in KEAF exhibit therapeutic potential against TNBC by targeting EGFR and ESR1 and suppressing the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Huimin Mei
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Jinglong Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Jiapeng Hao
- Bijie Hospital of Traditional Chinese Medicine, Bijie, 551700, PR China
| | - Yushan Ding
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Xinliang Wan
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Minghong Dong
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Xudong Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Liying Luo
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Tongtong Xiong
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Lu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Tianming Yang
- Bijie Hospital of Traditional Chinese Medicine, Bijie, 551700, PR China.
| | - Cong Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China; Anshun Hospital of Traditional Chinese Medicine, Anshun, 561000, PR China.
| |
Collapse
|
2
|
Gangat N, Tefferi A. Venetoclax schedule in AML: 7 vs 14 vs 21 vs 28 days. Blood Cancer J 2025; 15:56. [PMID: 40180902 PMCID: PMC11968881 DOI: 10.1038/s41408-025-01270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
Venotoclax schedule in acute myeloid leukemia.
Collapse
Affiliation(s)
- Naseema Gangat
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| | | |
Collapse
|
3
|
Letai A, de The H. Conventional chemotherapy: millions of cures, unresolved therapeutic index. Nat Rev Cancer 2025; 25:209-218. [PMID: 39681637 DOI: 10.1038/s41568-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
In recent decades, millions of patients with cancer have been cured by chemotherapy alone. By 'cure', we mean that patients with cancers that would be fatal if left untreated receive a time-limited course of chemotherapy and their cancer disappears, never to return. In an era when hundreds of thousands of cancer genomes have been sequenced, a remarkable fact persists: in most patients who have been cured, we still do not fully understand the mechanisms underlying the therapeutic index by which the tumour cells are killed, but normal cells are somehow spared. In contrast, in more recent years, patients with cancer have benefited from targeted therapies that usually do not cure but whose mechanisms of therapeutic index are, at least superficially, understood. In this Perspective, we will explore the various and sometimes contradictory models that have attempted to explain why chemotherapy can cure some patients with cancer, and what gaps in our understanding of the therapeutic index of chemotherapy remain to be filled. We will summarize principles which have benefited curative conventional chemotherapy regimens in the past, principles which might be deployed in constructing combinations that include modern targeted therapies.
Collapse
Affiliation(s)
- Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Hugues de The
- College de France, CIRB, INSERM, CNRS, Université PSL Paris, Paris, France.
- Hematology Laboratory, St Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.
- IRSL, INSERM, CNRS, Université Paris-Cité, Paris, France.
| |
Collapse
|
4
|
Wootton LM, Morgan EL. Ubiquitin and ubiquitin-like proteins in HPV-driven carcinogenesis. Oncogene 2025; 44:713-723. [PMID: 40011575 PMCID: PMC11888991 DOI: 10.1038/s41388-025-03310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Persistent infection with high-risk (HR) human papillomaviruses (HPVs) is responsible for approximately 5% of cancer cases worldwide, including a growing number of oropharyngeal and anogenital cancers. The major HPV oncoproteins, E6 and E7, act together to manipulate cellular pathways involved in the regulation of proliferation, the cell cycle and cell survival, ultimately driving malignant transformation. Protein ubiquitination and the ubiquitin proteasome system (UPS) is often deregulated upon viral infection and in oncogenesis. HPV E6 and E7 interact with and disrupt multiple components of the ubiquitination machinery to promote viral persistence, which can also result in cellular transformation and the formation of tumours. This review highlights the ways in which HPV manipulates protein ubiquitination and the ubiquitin-like protein pathways and how this contributes to tumour development. Furthermore, we discuss how understanding the interactions between HPV and the protein ubiquitination could lead to novel therapeutic targets that are of urgent need in HPV+ carcinomas.
Collapse
Affiliation(s)
| | - Ethan L Morgan
- School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
5
|
Luskin MR, Shimony S, Keating J, Winer ES, Garcia JS, Stone RM, Jabbour E, Flamand Y, Stevenson K, Ryan J, Zeng Z, Letai A, Konopleva M, Jain N, DeAngelo DJ. Venetoclax plus low-intensity chemotherapy for adults with acute lymphoblastic leukemia. Blood Adv 2025; 9:617-626. [PMID: 39546748 PMCID: PMC11847096 DOI: 10.1182/bloodadvances.2024014405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
ABSTRACT In acute lymphoblastic leukemia (ALL), the B-cell lymphoma 2 inhibitor venetoclax may enhance the efficacy of chemotherapy, allowing dose reductions. This phase 1b study of venetoclax plus attenuated chemotherapy enrolled 19 patients with ALL either newly diagnosed (aged ≥60 years, n = 11 [B-cell, n = 8; T-cell, n = 3]) or relapsed/refractory (R/R; aged ≥18 years, n = 8 [B-cell, n = 3; T-cell, n = 5]). Venetoclax was given for 21 days with each cycle of mini-hyper-CVD (mini-HCVD; cyclophosphamide, vincristine, dexamethasone alternating with methotrexate and cytarabine). There were no dose-limiting toxicities at dose level 1 (DL1; n = 3, 400 mg/d) or DL2 (n = 6, 600 mg/d); DL2 was the recommended phase 2 dose and explored further (n = 10). The most common nonhematologic adverse events were grade ≥3 infections. There were no deaths within 60 days. There was no tumor lysis syndrome, hepatotoxicity, prolonged cytopenias, or early discontinuation for toxicity. Among patients with newly diagnosed ALL, 10 of 11 (90.9%) achieved a measurable residual disease-negative (<0.01% sensitivity) complete remission (CR) including 6 patients with hypodiploid TP53-mutated ALL. All patients in CR bridged to hematopoietic stem cell transplant (n = 9) or completed protocol (n = 1). With a median follow-up of 60 months, median disease-free survival (DFS) for patients with newly diagnosed ALL was 54.6 months (95% confidence interval [CI], 35.5 to not available), with a 2-year DFS rate of 90% (95% CI, 71-100). Among patients with R/R ALL, 3 of 8 (37.5%) achieved CR. In summary, for patients with newly diagnosed ALL, venetoclax plus mini-HCVD is well tolerated with promising efficacy. This trial was registered at www.clinicaltrials.gov as #NCT03319901.
Collapse
Affiliation(s)
- Marlise R. Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Julia Keating
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Eric S. Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Richard M. Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yael Flamand
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Kristen Stevenson
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Jeremy Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Hematology and Oncology, Montefiore Einstein Comprehensive Cancer Center and Albert Einstein College of Medicine, New York, NY
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel J. DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
6
|
Brown FC, Wang X, Birkinshaw R, Chua CC, Morley T, Kasapgil S, Pomilio G, Blombery P, Huang DCS, Czabotar P, Priore SF, Yang G, Carroll M, Wei AH, Perl AE. Acquired BCL2 variants associated with venetoclax resistance in acute myeloid leukemia. Blood Adv 2025; 9:127-131. [PMID: 39374584 PMCID: PMC11742564 DOI: 10.1182/bloodadvances.2024014446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 10/09/2024] Open
Affiliation(s)
- Fiona C. Brown
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Xin Wang
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Richard Birkinshaw
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Chong Chyn Chua
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Thomas Morley
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Sila Kasapgil
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Giovanna Pomilio
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Sir Peter Maccallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Haematology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - David C. S. Huang
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Peter Czabotar
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Salvatore F. Priore
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Guang Yang
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Martin Carroll
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Leukemia Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Andrew H. Wei
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Hematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Alexander E. Perl
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Leukemia Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Pacchiardi K, de Marcellus V, Huynh T, Fodil S, Kim R, Bello RD, Fontaine M, Lonchamp C, Chat L, Aguinaga L, Lengliné E, Sébert M, Raffoux E, Adès L, Dombret H, Clappier E, Puissant A, Mathis S, Chauvel C, Itzykson R. Prospective feasibility of a minimal BH3 profiling assay in acute myeloid leukemia. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2025; 108:86-94. [PMID: 39600238 DOI: 10.1002/cyto.b.22217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
BH3 profiling can assess global mitochondrial priming and dependence of leukemic cells on specific BH3 anti-apoptotic proteins such as BCL-2. In acute myeloid leukemia (AML), proof-of-concept prognostic studies have been performed on archived samples variably accounting for molecular genetics. We undertook a single-center feasibility study of a simplified flow-based assay to determine the absolute mitochondrial priming and BCL-2 dependence in consecutive AML patients. When possible, results on the leukemic fraction were normalized to the cognate lymphocyte population (relative priming and BCL-2 dependence). Samples from 97 (89.8%) of the 108 referred patients were successfully processed. Relative priming and BCL-2 dependence could be determined in 62 (67.4%) and 67 (62.0%) samples, respectively. Absolute mitochondrial priming was lower in patients having previously failed intensive chemotherapy compared to chemotherapy-naïve patients (p = 0.01), but its prognostic impact was limited. Conversely, relative BCL-2 independence tended to predict worse EFS (HR = 2.51, p = 0.07) and OS (HR = 2.79, p = 0.10) independently of adverse genetic risk. Our results show that simplified BH3 profiling can be prospectively assessed in AML patients but that its prognostic use may require internal normalization. Future studies should compare its relevance with other functional assays such as ex vivo drug testing or BH3 protein expression.
Collapse
Affiliation(s)
- Kim Pacchiardi
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Victoire de Marcellus
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
| | - Tony Huynh
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sofiane Fodil
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Rathana Kim
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Reinaldo Dal Bello
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Morgane Fontaine
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
| | - Catherine Lonchamp
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
| | - Laureen Chat
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lorea Aguinaga
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Etienne Lengliné
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Sébert
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuel Raffoux
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lionel Adès
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hervé Dombret
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuelle Clappier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandre Puissant
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
| | - Stéphanie Mathis
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Clémentine Chauvel
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
8
|
Jochems F, Baltira C, MacDonald JA, Daniels V, Mathur A, de Gooijer MC, van Tellingen O, Letai A, Bernards R. Senolysis by ABT-263 is associated with inherent apoptotic dependence of cancer cells derived from the non-senescent state. Cell Death Differ 2024:10.1038/s41418-024-01439-7. [PMID: 39706991 DOI: 10.1038/s41418-024-01439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
Cellular senescence is a stress response that cells can employ to resist cell death. Senescent cells rely on anti-apoptotic signaling for their survival, which can be targeted by senolytic agents, like the BCL-XL, BCL-2, BCL-W inhibitor ABT-263. However, the response to ABT-263 of senescent cancer cells ranges from highly sensitive to refractory. Using BH3 profiling, we identify here apoptotic blocks in cancer cells that are resistant to this senolytic treatment and discover a correlation between mitochondrial apoptotic priming and cellular sensitivity to ABT-263 in senescence. Intriguingly, ABT-263 sensitivity correlates with overall mitochondrial apoptotic priming, not only in senescence but also in the parental state. Moreover, we confirm that ABT-263 exposure increases dependency on MCL-1, which is most enhanced in ABT-263 sensitive cells. ABT-263 resistant cells however upregulate MCL-1, while sensitive cells exhibit low levels of this anti-apoptotic protein. Overall, our data indicate that the response of senescent cells to ABT-263 is predetermined by the mitochondrial apoptotic priming state of the parental cells, which could serve as a predictive biomarker for response to senolytic therapy.
Collapse
Affiliation(s)
- Fleur Jochems
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Chrysiida Baltira
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Julie A MacDonald
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Veerle Daniels
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Abhijeet Mathur
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester; The Christie NHS Foundation Trust, Manchester, UK
| | - Olaf van Tellingen
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Anthony Letai
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands.
| |
Collapse
|
9
|
Hartman ML. Tipping the balance of cell death: alternative splicing as a source of MCL-1S in cancer. Cell Death Dis 2024; 15:917. [PMID: 39695189 DOI: 10.1038/s41419-024-07307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Apoptosis-regulating proteins from the B-cell lymphoma-2 (BCL-2) family are of continued interest as they represent promising targets for anti-cancer therapies. Myeloid cell leukemia-1 (MCL-1), which usually refers to the long isoform (MCL-1L) is frequently overexpressed in various types of cancer. However, MCL1 pre-mRNA can also undergo alternative splicing through exon skipping to yield the short isoform, MCL-1S. Regarding its structure and function, MCL-1S corresponds to BCL-2 homology domain 3 (BH3)-only pro-apoptotic proteins in contrast to the pro-survival role of MCL-1L. As cancer cells are usually characterized by the high MCL-1L:MCL-1S ratio, several studies revealed that overexpression of MCL-1S may constitute a new therapeutic approach in cancer and presumably overcome resistance to currently available drugs. Switching the balance towards high levels of MCL-1S is feasible by using inhibitors of alternative splicing-regulating proteins and strategies directly interfering with MCL1 pre-mRNA. Additionally, several compounds were shown to increase MCL-1S levels through unelucidated mechanisms, while diversely affecting the level of MCL-1L isoform. These mechanisms require detailed clarification as the balance between the long and short variants of MCL-1 can also contribute to mitochondrial hyperpolarization. In this respect, the role of MCL-1S in the regulation of apoptosis-unrelated events of the mitochondria physiology, including mitochondria fission and fusion also remains to be determined. In this review, the structure and function of MCL-1S isoform, and MCL-1S-targeting approaches are discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
10
|
Wichert MC, Fortner C, Niedermayer A, Bender J, Enzenmüller S, Debatin KM, Meyer LH, Seyfried F. The dual BCL-2 and BCL-XL inhibitor AZD4320 acts on-target and synergizes with MCL-1 inhibition in B-cell precursor ALL. Blood Adv 2024; 8:6035-6042. [PMID: 39368805 PMCID: PMC11635643 DOI: 10.1182/bloodadvances.2024013194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024] Open
Affiliation(s)
| | - Colin Fortner
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Alexandra Niedermayer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Johanna Bender
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Stefanie Enzenmüller
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lüder Hinrich Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Felix Seyfried
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
11
|
Han G, Cui M, Lu P, Zhang T, Yin R, Hu J, Chai J, Wang J, Gao K, Liu W, Yao S, Cao Z, Zheng Y, Tian W, Guo R, Shen M, Liu Z, Li W, Zhao S, Lin X, Zhang Y, Song K, Sun Y, Zhou F, Zhang H. Selective translation of nuclear mitochondrial respiratory proteins reprograms succinate metabolism in AML development and chemoresistance. Cell Stem Cell 2024; 31:1777-1793.e9. [PMID: 39357516 DOI: 10.1016/j.stem.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Mitochondrial adaptations dynamically reprogram cellular bioenergetics and metabolism and confer key properties for human cancers. However, the selective regulation of these mitochondrial responses remains largely elusive. Here, inspired by a genetic screening in acute myeloid leukemia (AML), we identify RAS effector RREB1 as a translational regulator and uncover a unique translation control system for nuclear-encoded mitochondrial proteins in human cancers. RREB1 deletion reduces mitochondrial activities and succinate metabolism, thereby damaging leukemia stem cell (LSC) function and AML development. Replenishing complex II subunit SDHD rectifies these deficiencies. Notably, inhibition of complex II re-sensitizes AML cells to venetoclax treatment. Mechanistically, a short RREB1 variant binds to a conserved motif in the 3' UTRs and cooperates with elongation factor eEF1A1 to enhance protein translation of nuclear-encoded mitochondrial mRNAs. Overall, our findings reveal a unique translation control mechanism for mitochondrial adaptations in AML pathogenesis and provide a potential strategy for targeting this vulnerability of LSCs.
Collapse
Affiliation(s)
- Guoqiang Han
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Manman Cui
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Pengbo Lu
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Tiantian Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rong Yin
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jin Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jihua Chai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kexin Gao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Weidong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuxin Yao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Ziyan Cao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yanbing Zheng
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Wen Tian
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Min Shen
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Zhao
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangpeng Lin
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhui Zhang
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Sun
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Haojian Zhang
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; RNA Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Sango J, Carcamo S, Sirenko M, Maiti A, Mansour H, Ulukaya G, Tomalin LE, Cruz-Rodriguez N, Wang T, Olszewska M, Olivier E, Jaud M, Nadorp B, Kroger B, Hu F, Silverman L, Chung SS, Wagenblast E, Chaligne R, Eisfeld AK, Demircioglu D, Landau DA, Lito P, Papaemmanuil E, DiNardo CD, Hasson D, Konopleva M, Papapetrou EP. RAS-mutant leukaemia stem cells drive clinical resistance to venetoclax. Nature 2024; 636:241-250. [PMID: 39478230 PMCID: PMC11618090 DOI: 10.1038/s41586-024-08137-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Cancer driver mutations often show distinct temporal acquisition patterns, but the biological basis for this, if any, remains unknown. RAS mutations occur invariably late in the course of acute myeloid leukaemia, upon progression or relapsed/refractory disease1-6. Here, by using human leukaemogenesis models, we first show that RAS mutations are obligatory late events that need to succeed earlier cooperating mutations. We provide the mechanistic explanation for this in a requirement for mutant RAS to specifically transform committed progenitors of the myelomonocytic lineage (granulocyte-monocyte progenitors) harbouring previously acquired driver mutations, showing that advanced leukaemic clones can originate from a different cell type in the haematopoietic hierarchy than ancestral clones. Furthermore, we demonstrate that RAS-mutant leukaemia stem cells (LSCs) give rise to monocytic disease, as observed frequently in patients with poor responses to treatment with the BCL2 inhibitor venetoclax. We show that this is because RAS-mutant LSCs, in contrast to RAS-wild-type LSCs, have altered BCL2 family gene expression and are resistant to venetoclax, driving clinical resistance and relapse with monocytic features. Our findings demonstrate that a specific genetic driver shapes the non-genetic cellular hierarchy of acute myeloid leukaemia by imposing a specific LSC target cell restriction and critically affects therapeutic outcomes in patients.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Cell Lineage/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Monocytes/metabolism
- Monocytes/drug effects
- Mutation
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- ras Proteins/metabolism
- ras Proteins/genetics
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Granulocytes
- Clone Cells/metabolism
- Clone Cells/pathology
- Stem Cells/metabolism
- Stem Cells/pathology
- Recurrence
Collapse
Affiliation(s)
- Junya Sango
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Sirenko
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hager Mansour
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gulay Ulukaya
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lewis E Tomalin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nataly Cruz-Rodriguez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiansu Wang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emmanuel Olivier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manon Jaud
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bettina Nadorp
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Benjamin Kroger
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Hu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lewis Silverman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen S Chung
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elvin Wagenblast
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronan Chaligne
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan A Landau
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Piro Lito
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marina Konopleva
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Zhuang X, Chen P, Yang K, Yang R, Man X, Wang R, Shi Y. MT1E in AML: a gateway to understanding regulatory cell death and immunotherapeutic responses. J Leukoc Biol 2024; 116:1515-1529. [PMID: 38943611 PMCID: PMC11599122 DOI: 10.1093/jleuko/qiae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024] Open
Abstract
Regulated cell death (RCD) plays a crucial role in the initiation and progression of tumors, particularly in acute myeloid leukemia (AML). This study investigates the prognostic importance of RCD-related genes in AML and their correlation with immune infiltration. We combined TCGA and GTEx data, analyzing 1,488 RCD-related genes, to develop a predictive model using LASSO regression and survival analysis. The model's accuracy was validated against multiple databases, examining immune cell infiltration, therapy responses, and drug sensitivity among risk groups. RT-qPCR confirmed MT1E expression in AML patients and healthy bone marrow. CCK8 and Transwell assays measured cell proliferation, adhesion, migration, and invasion, while flow cytometry and Western blotting assessed apoptosis and protein expression. We developed a prognostic model using 10 RCD methods, which demonstrated strong predictive ability, showing an inverse correlation between age and risk scores with survival in AML patients. Functional enrichment analysis of the model is linked to immune modulation pathways. RT-qPCR revealed significantly lower MT1E expression in AML vs healthy bone marrow (P < 0.05). Consequently, experiments were designed to assess the function of MT1E overexpression. Findings indicated that MT1E overexpression showed it significantly reduced THP-1 cell proliferation and adhesion (P < 0.001), decreased migration (P < 0.001), and invasiveness (P < 0.05), and increased apoptosis (P < 0.05), with a notable rise in Caspase3 expression. A novel AML RCD risk model was developed, showing promise as a prognostic marker for evaluating outcomes and immune therapy effectiveness. Insights into MT1E's impact on AML cell proliferation and apoptosis open possibilities for improving patient outcomes and devising personalized treatment strategies.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Immunotherapy
- Apoptosis
- Cell Proliferation
- Prognosis
- Male
- Female
- Cell Line, Tumor
- Cell Movement
- Middle Aged
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Xin Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Peng Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Kaiqian Yang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Rong Yang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Xiaoying Man
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Ruochen Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
- Qinghai Province Women and Children's Hospital, Xining, Qinghai Province 810000, China
| |
Collapse
|
14
|
Iyer P, Jasdanwala SS, Wang Y, Bhatia K, Bhatt S. Decoding Acute Myeloid Leukemia: A Clinician's Guide to Functional Profiling. Diagnostics (Basel) 2024; 14:2560. [PMID: 39594226 PMCID: PMC11593197 DOI: 10.3390/diagnostics14222560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a complex clonal disorder characterized by clinical, genetic, metabolomic, and epigenetic heterogeneity resulting in the uncontrolled proliferation of aberrant blood-forming precursor cells. Despite advancements in the understanding of the genetic, metabolic, and epigenetic landscape of AML, it remains a significant therapeutic challenge. Functional profiling techniques, such as BH3 profiling (BP), gene expression profiling (GEP), proteomics, metabolomics, drug sensitivity/resistance testing (DSRT), CRISPR/Cas9, and RNAi screens offer valuable insights into the functional behavior of leukemia cells. BP evaluates the mitochondrial response to pro-apoptotic BH3 peptides, determining a cell's apoptotic threshold and its reliance on specific anti-apoptotic proteins. This knowledge can pinpoint vulnerabilities in the mitochondria-mediated apoptotic pathway in leukemia cells, potentially informing treatment strategies and predicting therapeutic responses. GEP, particularly RNA sequencing, evaluates the transcriptomic landscape and identifies gene expression alterations specific to AML subtypes. Proteomics and metabolomics, utilizing mass spectrometry and nuclear magnetic resonance (NMR), provide a detailed view of the active proteins and metabolic pathways in leukemia cells. DSRT involves exposing leukemia cells to a panel of chemotherapeutic and targeted agents to assess their sensitivity or resistance profiles and potentially guide personalized treatment strategies. CRISPR/Cas9 and RNAi screens enable systematic disruption of genes to ascertain their roles in leukemia cell survival and proliferation. These techniques facilitate precise disease subtyping, uncover novel biomarkers and therapeutic targets, and provide a deeper understanding of drug-resistance mechanisms. Recent studies utilizing functional profiling have identified specific mutations and gene signatures associated with aggressive AML subtypes, aberrant signaling pathways, and potential opportunities for drug repurposing. The integration of multi-omics approaches, advances in single-cell sequencing, and artificial intelligence is expected to refine the precision of functional profiling and ultimately improve patient outcomes in AML. This review highlights the diverse landscape of functional profiling methods and emphasizes their respective advantages and limitations. It highlights select successes in how these methods have further advanced our understanding of AML biology, identifies druggable targets that have improved outcomes, delineates challenges associated with these techniques, and provides a prospective view of the future where these techniques are likely to be increasingly incorporated into the routine care of patients with AML.
Collapse
Affiliation(s)
- Prasad Iyer
- Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Shaista Shabbir Jasdanwala
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore; (S.S.J.); (Y.W.); (S.B.)
| | - Yuhan Wang
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore; (S.S.J.); (Y.W.); (S.B.)
| | - Karanpreet Bhatia
- Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore; (S.S.J.); (Y.W.); (S.B.)
| |
Collapse
|
15
|
Giansanti M, Ottone T, Travaglini S, Voso MT, Graziani G, Faraoni I. Combination Treatment of Resistant Acute Promyelocytic Leukemia Cells with Arsenic Trioxide and Anti-Apoptotic Gene Inhibitors. Pharmaceuticals (Basel) 2024; 17:1529. [PMID: 39598439 PMCID: PMC11597735 DOI: 10.3390/ph17111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Arsenic trioxide (ATO) is an anticancer agent for treating acute promyelocytic leukemia (APL). However, 5-10% of patients fail to respond, developing relapsed/refractory disease. The aim of this study was to identify potential new therapeutic approaches for ATO-unresponsive APL by targeting the anti-apoptotic genes that contribute to drug resistance. METHODS RNA expression of dysregulated genes involved in the apoptotic pathway was analyzed by comparing ATO-resistant APL cell clones generated in our lab with the corresponding sensitive clones, at basal levels and after 48 h of treatment with ATO. RESULTS ATO-resistant APL cells showed upregulation of APAF1, BCL2, BIRC3, and NOL3 genes, while CD70 and IL10 genes were downregulated, compared to ATO-sensitive cells. Treatment with ATO strongly increased the expression of the anti-apoptotic genes BIRC3, NOL3, and BCL2A1 and significantly downregulated BCL2 in ATO-sensitive clones. Although all these genes can be relevant to ATO-resistance, we selected BCL2 and BIRC3 as druggable targets. A direct correlation between BCL2 expression and the sensitivity to the BCL2 inhibitor venetoclax was observed, indicating BCL2 as predictive biomarker of the response. Moreover, the combination of venetoclax with ATO exerted synergistic cytotoxic effects, thus reverting the resistance to ATO. APL treatment with SMAC mimetics such as LCL161 and xevinapant (inhibitors of BIRC3) was not as effective as the BCL2 inhibitor as a monotherapy but exerted synergistic effects in combination with ATO in cells with low BIRC expression. CONCLUSIONS This study demonstrates the therapeutic potential of venetoclax in combination with ATO in vitro and strongly encourages further investigation of relapsed/refractory APL with high BCL2 expression.
Collapse
Affiliation(s)
- Manuela Giansanti
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (M.T.V.)
- Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, 00179 Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (M.T.V.)
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (M.T.V.)
- Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, 00179 Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
16
|
Sahib NRBM, Mohamed JS, Rashid MBMA, Jayalakshmi, Lin YC, Chee YL, Fan BE, De Mel S, Ooi MGM, Jen WY, Chow EKH. A Combinatorial Functional Precision Medicine Platform for Rapid Therapeutic Response Prediction in AML. Cancer Med 2024; 13:e70401. [PMID: 39560206 PMCID: PMC11574777 DOI: 10.1002/cam4.70401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Despite advances made in targeted biomarker-based therapy for acute myeloid leukemia (AML) treatment, remission is often short and followed by relapse and acquired resistance. Functional precision medicine (FPM) efforts have been shown to improve therapy selection guidance by incorporating comprehensive biological data to tailor individual treatment. However, effectively managing complex biological data, while also ensuring rapid conversion of actionable insights into clinical utility remains challenging. METHODS We have evaluated the clinical applicability of quadratic phenotypic optimization platform (QPOP), to predict clinical response to combination therapies in AML and reveal patient-centric insights into combination therapy sensitivities. In this prospective study, 51 primary samples from newly diagnosed (ND) or refractory/relapsed (R/R) AML patients were evaluated by QPOP following ex vivo drug testing. RESULTS Individualized drug sensitivity reports were generated in 55/63 (87.3%) patient samples with a median turnaround time of 5 (4-10) days from sample collection to report generation. To evaluate clinical feasibility, QPOP-predicted response was compared to clinical treatment outcomes and indicated concordant results with 83.3% sensitivity and 90.9% specificity and an overall 86.2% accuracy. Serial QPOP analysis in a FLT3-mutant patient sample indicated decreased FLT3 inhibitor (FLT3i) sensitivity, which is concordant with increasing FLT3 allelic burden and drug resistance development. Forkhead box M1 (FOXM1)-AKT signaling was subsequently identified to contribute to resistance to FLT3i. CONCLUSION Overall, this study demonstrates the feasibility of applying QPOP as a functional combinatorial precision medicine platform to predict therapeutic sensitivities in AML and provides the basis for prospective clinical trials evaluating ex vivo-guided combination therapy.
Collapse
Affiliation(s)
- Noor Rashidha Binte Meera Sahib
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jameelah Sheik Mohamed
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | | | - Jayalakshmi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Yen Lin Chee
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Bingwen Eugene Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology, Tan Tock Seng Hospital, Singapore
- Lee Kong Chain School of Medicine, Nanyang Technological University, Singapore
- Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore
| | - Sanjay De Mel
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Melissa Gaik Ming Ooi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Wei-Ying Jen
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| |
Collapse
|
17
|
Desai P, Lonial S, Cashen A, Kamdar M, Flinn I, O’Brien S, Garcia JS, Korde N, Moslehi J, Wey M, Cheung P, Sharma S, Olabode D, Chen H, Ali Syed F, Liu M, Saeh J, Andrade-Campos M, Kadia TM, Blachly JS. A Phase 1 First-in-Human Study of the MCL-1 Inhibitor AZD5991 in Patients with Relapsed/Refractory Hematologic Malignancies. Clin Cancer Res 2024; 30:4844-4855. [PMID: 39167622 PMCID: PMC11528199 DOI: 10.1158/1078-0432.ccr-24-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE AZD5991, a human MCL-1 inhibitor, was assessed for safety, tolerability, pharmacokinetics, and antitumor activity as monotherapy and in combination with venetoclax in patients with relapsed or refractory hematologic malignancies. PATIENTS AND METHODS In the monotherapy cohort (n = 61), patients with hematologic malignancies received AZD5991 intravenously in escalating doses either once or twice weekly, following intrapatient dose escalation, during a 3-week cycle. In the combination cohort (n = 17), patients with acute myeloid leukemia and myelodysplastic syndrome received escalating doses of AZD5991 and venetoclax during either a 3- or 4-week cycle. Primary objectives were safety and maximum tolerated dose; secondary objectives included plasma pharmacokinetics and antitumor activity. RESULTS The most common (≥30%) adverse events were diarrhea (59.0%), nausea (55.1%), and vomiting (47.4%). Four deaths occurred because of adverse events: cardiac arrest, sepsis, tumor lysis syndrome, and acute respiratory failure; only tumor lysis syndrome was related to AZD5991. Dose-limiting toxicities occurred in five patients. Three patients with myelodysplastic syndrome achieved an objective response: one marrow complete remission without hematologic improvement, one partial remission with AZD5991 monotherapy, and one marrow complete remission with AZD5991 + venetoclax. Asymptomatic elevations of troponin I or T were observed in eight (10.3%) patients. Post hoc retrospective analysis revealed elevated troponin T in 14/31 patients before any AZD5991 dose and in 54/65 patients after any AZD5991 dose at or after Cycle 1. No associations were found between elevated troponin and cardiovascular risk factors. CONCLUSIONS Treatment with AZD5991 was associated with high incidence of laboratory troponin elevation and a low overall response rate.
Collapse
Affiliation(s)
| | - Sagar Lonial
- Emory Winship Cancer Institute, Atlanta, Georgia
| | - Amanda Cashen
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Ian Flinn
- Tennessee Oncology, Nashville, Tennessee
| | | | | | - Neha Korde
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Javid Moslehi
- University of California San Francisco, San Francisco, California
| | | | | | | | | | - Hong Chen
- AstraZeneca, Cambridge, United Kingdom
| | | | - Mary Liu
- AstraZeneca, Cambridge, United Kingdom
| | | | | | | | - James S. Blachly
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
18
|
Chun C, Byun JM, Cha M, Lee H, Choi B, Kim H, Hong S, Lee Y, Park H, Koh Y, Yoon TY. Profiling protein-protein interactions to predict the efficacy of B-cell-lymphoma-2-homology-3 mimetics for acute myeloid leukaemia. Nat Biomed Eng 2024; 8:1379-1395. [PMID: 39025942 PMCID: PMC11584402 DOI: 10.1038/s41551-024-01241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
B-cell-lymphoma-2 (BCL2) homology-3 (BH3) mimetics are inhibitors of protein-protein interactions (PPIs) that saturate anti-apoptotic proteins in the BCL2 family to induce apoptosis in cancer cells. Despite the success of the BH3-mimetic ABT-199 for the treatment of haematological malignancies, only a fraction of patients respond to the drug and most patients eventually develop resistance to it. Here we show that the efficacy of ABT-199 can be predicted by profiling the rewired status of the PPI network of the BCL2 family via single-molecule pull-down and co-immunoprecipitation to quantify more than 20 types of PPI from a total of only 1.2 × 106 cells per sample. By comparing the obtained multidimensional data with BH3-mimetic efficacies determined ex vivo, we constructed a model for predicting the efficacy of ABT-199 that designates two complexes of the BCL2 protein family as the primary mediators of drug effectiveness and resistance, and applied it to prospectively assist therapeutic decision-making for patients with acute myeloid leukaemia. The characterization of PPI complexes in clinical specimens opens up opportunities for individualized protein-complex-targeting therapies.
Collapse
Affiliation(s)
- Changju Chun
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Ja Min Byun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Minkwon Cha
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hongwon Lee
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Byungsan Choi
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Hyunwoo Kim
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Saem Hong
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Yunseo Lee
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Hayoung Park
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea.
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea.
| |
Collapse
|
19
|
Wegmann R, Bonilla X, Casanova R, Chevrier S, Coelho R, Esposito C, Ficek-Pascual J, Goetze S, Gut G, Jacob F, Jacobs A, Kuipers J, Lischetti U, Mena J, Milani ES, Prummer M, Del Castillo JS, Singer F, Sivapatham S, Toussaint NC, Vilinovszki O, Wildschut MHE, Thavayogarajah T, Malani D, Aebersold R, Bacac M, Beerenwinkel N, Beisel C, Bodenmiller B, Heinzelmann-Schwarz V, Koelzer VH, Levesque MP, Moch H, Pelkmans L, Rätsch G, Tolnay M, Wicki A, Wollscheid B, Manz MG, Snijder B, Theocharides APA. Single-cell landscape of innate and acquired drug resistance in acute myeloid leukemia. Nat Commun 2024; 15:9402. [PMID: 39477946 PMCID: PMC11525670 DOI: 10.1038/s41467-024-53535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Deep single-cell multi-omic profiling offers a promising approach to understand and overcome drug resistance in relapsed or refractory (rr) acute myeloid leukemia (AML). Here, we combine single-cell ex vivo drug profiling (pharmacoscopy) with single-cell and bulk DNA, RNA, and protein analyses, alongside clinical data from 21 rrAML patients. Unsupervised data integration reveals reduced ex vivo response to the Bcl-2 inhibitor venetoclax (VEN) in patients treated with both a hypomethylating agent (HMA) and VEN, compared to those pre-exposed to chemotherapy or HMA alone. Integrative analysis identifies both known and unreported mechanisms of innate and treatment-related VEN resistance and suggests alternative treatments, like targeting increased proliferation with the PLK inhibitor volasertib. Additionally, high CD36 expression in VEN-resistant blasts associates with sensitivity to CD36-targeted antibody treatment ex vivo. This study demonstrates how single-cell multi-omic profiling can uncover drug resistance mechanisms and treatment vulnerabilities, providing a valuable resource for future AML research.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Single-Cell Analysis
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- CD36 Antigens/metabolism
- CD36 Antigens/genetics
- Female
- Male
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Middle Aged
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Aged
Collapse
Affiliation(s)
- Rebekka Wegmann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ximena Bonilla
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Ruben Casanova
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Stéphane Chevrier
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Ricardo Coelho
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cinzia Esposito
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Sandra Goetze
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gabriele Gut
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Francis Jacob
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andrea Jacobs
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Ulrike Lischetti
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emanuela S Milani
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael Prummer
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
| | | | - Franziska Singer
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
| | - Sujana Sivapatham
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Nora C Toussaint
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
- Swiss Data Science Center, ETH Zürich, Zurich, Switzerland
| | - Oliver Vilinovszki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Mattheus H E Wildschut
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - Disha Malani
- Harvard Medical School and Dana-Farber Cancer Institute, Boston, USA
| | - Rudolf Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | | | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Gunnar Rätsch
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- AI Center at ETH Zurich, Zurich, Switzerland
| | - Markus Tolnay
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | | |
Collapse
|
20
|
Armistead J, Höpfl S, Goldhausen P, Müller-Hartmann A, Fahle E, Hatzold J, Franzen R, Brodesser S, Radde NE, Hammerschmidt M. A sphingolipid rheostat controls apoptosis versus apical cell extrusion as alternative tumour-suppressive mechanisms. Cell Death Dis 2024; 15:746. [PMID: 39397024 PMCID: PMC11471799 DOI: 10.1038/s41419-024-07134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Evasion of cell death is a hallmark of cancer, and consequently the induction of cell death is a common strategy in cancer treatment. However, the molecular mechanisms regulating different types of cell death are poorly understood. We have formerly shown that in the epidermis of hypomorphic zebrafish hai1a mutant embryos, pre-neoplastic transformations of keratinocytes caused by unrestrained activity of the type II transmembrane serine protease Matriptase-1 heal spontaneously. This healing is driven by Matriptase-dependent increased sphingosine kinase (SphK) activity and sphingosine-1-phosphate (S1P)-mediated keratinocyte loss via apical cell extrusion. In contrast, amorphic hai1afr26 mutants with even higher Matriptase-1 and SphK activity die within a few days. Here we show that this lethality is not due to epidermal carcinogenesis, but to aberrant tp53-independent apoptosis of keratinocytes caused by increased levels of pro-apoptotic C16 ceramides, sphingolipid counterparts to S1P within the sphingolipid rheostat, which severely compromises the epidermal barrier. Mathematical modelling of sphingolipid rheostat homeostasis, combined with in vivo manipulations of components of the rheostat or the ceramide de novo synthesis pathway, indicate that this unexpected overproduction of ceramides is caused by a negative feedback loop sensing ceramide levels and controlling ceramide replenishment via de novo synthesis. Therefore, despite their initial decrease due to increased conversion to S1P, ceramides eventually reach cell death-inducing levels, making transformed pre-neoplastic keratinocytes die even before they are extruded, thereby abrogating the normally barrier-preserving mode of apical live cell extrusion. Our results offer an in vivo perspective of the dynamics of sphingolipid homeostasis and its relevance for epithelial cell survival versus cell death, linking apical cell extrusion and apoptosis. Implications for human carcinomas and their treatments are discussed.
Collapse
Affiliation(s)
- Joy Armistead
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Sebastian Höpfl
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
| | - Pierre Goldhausen
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | | | - Evelin Fahle
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | - Rainer Franzen
- Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Susanne Brodesser
- Lipidomics/Metabolomics Facility, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nicole E Radde
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
21
|
Wu D, Li M, Hong Y, Jin L, Liu Q, Sun C, Li L, Han X, Deng S, Feng Y, Shen Y, Kai G. Integrated stress response activation induced by usnic acid alleviates BCL-2 inhibitor ABT-199 resistance in acute myeloid leukemia. J Adv Res 2024:S2090-1232(24)00436-3. [PMID: 39384125 DOI: 10.1016/j.jare.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION ABT-199 (venetoclax) is a BCL-2 suppressor with pronounced effects on acute myeloid leukemia (AML). However, its usefulness as a monotherapy or in combination with hypomethylating medicines like azacitidine is debatable due to acquired resistance. Usnic acid, a dibenzofuran extracted from lichen Usnea diffracta Vain, exhibits anticancer properties and may counteract multidrug resistance in leukemia cells. OBJECTIVE This study investigated whether usnic acid at low-cytotoxicity level could enhance sensitivity of AML cells with acquired resistance to ABT-199 by targeting the integrated stress response pathways. METHODS To investigate the combined effects on AML cells, we used a cell viability test, flow cytometry to quantify apoptosis, cell cycle analysis, and mitochondrial membrane potential measurement. RNA-seq and immunoblot were used to determine the potential mechanisms of ABT-199 + usnic acid combination. RESULTS Usnic acid, at a low cytotoxicity level, successfully restored ABT-199 sensitivity in AML cell lines that had developed ABT-199 resistance and increased ABT-199's antileukemic activity in a xenograft model. Mechanistically, the combination of usnic acid and ABT-199 cooperated to boost the expression of the integrated stress response (ISR)-associated genes ATF4, CHOP, and NOXA through the heme-regulated inhibitor kinase (HRI), while also promoting the degradation of the anti-apoptotic protein MCL-1. ISRIB, a compound that blocks the ISR, was able to reverse the growth suppression and cell death, the increase in expression of genes related with the ISR, and the inhibition of MCL-1 protein caused by combination therapy. Additionally, the downregulation of MCL-1 was linked to an increase in MCL-1 phosphorylation at serine 159 and subsequent destruction by the proteasome. CONCLUSION In summary, usnic acid improves chemosensitivity to ABT-199 by triggering the integrated stress response, leading to decreased levels of MCL-1 protein, suggesting a potential treatment for AML cases resistant to Bcl-2 inhibitors.
Collapse
Affiliation(s)
- Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Man Li
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yaonan Hong
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Li Jin
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Chengtao Sun
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liqin Li
- Key Laboratory of Traditional Chinese Medicine for the Development and Clinical Transformation of Immunomodulatory Traditional Chinese Medicine in Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| | - Xiaoxiao Han
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shengqian Deng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yue Feng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yiping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Guoyin Kai
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
La Marca JE, Kelly GL, Strasser A, Diepstraten ST. Don't fear the reaper: The role of regulated cell death in tumorigenesis and BH3-mimetics for cancer therapy. Dev Cell 2024; 59:2532-2548. [PMID: 39378839 DOI: 10.1016/j.devcel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 10/10/2024]
Abstract
From its earliest characterization, it has been recognized that there is a role for regulated (programmed) cell death in cancer. As our understanding of the different types of programmed cell death processes and their molecular control has advanced, so have the technologies that allow us to manipulate these processes to, for example, fight against cancer. In this review, we describe the roles of the different forms of regulated cell death in the development of cancer as well as their potential therapeutic exploitation. In that vein, we explore the development and use of BH3-mimetics, a unique class of drugs that can directly activate the apoptotic cell death machinery to treat cancer. Finally, we address key challenges that face the field to improve the use of these therapeutics and the efforts that are being undertaken to do so.
Collapse
Affiliation(s)
- John E La Marca
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
23
|
Rauh U, Wei G, Serrano-Wu M, Kosmidis G, Kaulfuss S, Siegel F, Thede K, McFarland J, Lemke CT, Werbeck N, Nowak-Reppel K, Pilari S, Menz S, Ocker M, Zhang W, Davis K, Poncet-Montange G, Roth J, Daniels D, Kaushik VK, Hubbard B, Ziegelbauer K, Golub TR. BRD-810 is a highly selective MCL1 inhibitor with optimized in vivo clearance and robust efficacy in solid and hematological tumor models. NATURE CANCER 2024; 5:1479-1493. [PMID: 39179926 PMCID: PMC11502502 DOI: 10.1038/s43018-024-00814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
The MCL1 gene is frequently amplified in cancer and codes for the antiapoptotic protein myeloid cell leukemia 1 (MCL1), which confers resistance to the current standard of care. Therefore, MCL1 is an attractive anticancer target. Here we describe BRD-810 as a potent and selective MCL1 inhibitor and its key design principle of rapid systemic clearance to potentially minimize area under the curve-driven toxicities associated with MCL1 inhibition. BRD-810 induced rapid cell killing within 4 h in vitro but, in the same 4-h window, had no impact on cell viability or troponin I release in human induced pluripotent stem cell-derived cardiomyocytes, even at suprapharmacologic concentrations. In vivo BRD-810 induced efficacy in xenograft hematological and solid tumor models despite the short residence time of BRD-810 in plasma. In totality, our data support the hypothesis that short-term inhibition of MCL1 with BRD-810 can induce apoptosis in tumor cells while maintaining an acceptable safety profile. We, therefore, intend to advance BRD-810 to clinical trials.
Collapse
Affiliation(s)
- Ulrike Rauh
- Trueline Therapeutics Inc., Cambridge, MA, USA.
| | - Guo Wei
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Kai Thede
- Nuvisan Innovation Campus Berlin, Berlin, Germany
| | | | | | | | | | - Sabine Pilari
- Independent Consultant, Pharmacometrics Modeling and Simulation, Berlin, Germany
| | | | | | - Weiqun Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyle Davis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jennifer Roth
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Flanagan L, Coughlan A, Cosgrove N, Roe A, Wang Y, Gilmore S, Drozdz I, Comerford C, Ryan J, Minihane E, Parvin S, O'Dwyer M, Quinn J, Murphy P, Furney S, Glavey S, Chonghaile TN, Foundation LR, Ireland SF, Research BC. Steroid-free combination of 5-azacytidine and venetoclax for the treatment of multiple myeloma. Haematologica 2024; 109:2930-2943. [PMID: 38511268 PMCID: PMC11367189 DOI: 10.3324/haematol.2023.283771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 03/22/2024] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy that, despite an unprecedented increase in overall survival, lacks truly risk-adapted or targeted treatments. A proportion of patients with MM depend on BCL-2 for survival, and, recently, the BCL-2 antagonist venetoclax has shown clinical efficacy and safety in t(11;14) and BCL-2 overexpressing MM. However, only a small proportion of MM patients rely on BCL-2 (approx. 20%), and there is a need to broaden the patient population outside of t(11;14) that can be treated with venetoclax. Therefore, we took an unbiased screening approach and screened epigenetic modifiers to enhance venetoclax sensitivity in 2 non-BCL-2 dependent MM cell lines. The demethylase inhibitor 5-azacytidine was one of the lead hits from the screen, and the enhanced cell killing of the combination was confirmed in additional MM cell lines. Using dynamic BH3 profiling and immunoprecipitations, we identified the potential mechanism of synergy is due to increased NOXA expression, through the integrated stress response. Knockdown of PMAIP1 or PKR partially rescues cell death of the venetoclax and 5-azacytidine combination treatment. The addition of a steroid to the combination treatment did not enhance the cell death, and, interestingly, we found enhanced death of the immune cells with steroid addition, suggesting that a steroid-sparing regimen may be more beneficial in MM. Lastly, we show for the first time in primary MM patient samples that 5-azacytidine enhances the response to venetoclax ex vivo across diverse anti-apoptotic dependencies (BCL-2 or MCL-1) and diverse cytogenetic backgrounds. Overall, our data identify 5-azacytidine and venetoclax as an effective treatment combination, which could be a tolerable steroid-sparing regimen, particularly for elderly MM patients.
Collapse
Affiliation(s)
- Lyndsey Flanagan
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2
| | - Aisling Coughlan
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2
| | - Nicola Cosgrove
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2
| | - Andrew Roe
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2
| | - Yu Wang
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2
| | - Stephanie Gilmore
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2
| | - Izabela Drozdz
- Department of Pathology, Royal College of Surgeons in Ireland
| | - Claire Comerford
- Department of Pathology, Royal College of Surgeons in Ireland; Department of Haematology, Beaumont Hospital, Dublin
| | - Jeremy Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Emma Minihane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Salma Parvin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Michael O'Dwyer
- Department of Medicine/Haematology, University of Galway, Galway
| | - John Quinn
- Department of Pathology, Royal College of Surgeons in Ireland; Department of Haematology, Beaumont Hospital, Dublin
| | - Philip Murphy
- Department of Pathology, Royal College of Surgeons in Ireland; Department of Haematology, Beaumont Hospital, Dublin
| | - Simon Furney
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2
| | - Siobhan Glavey
- Department of Pathology, Royal College of Surgeons in Ireland; Department of Haematology, Beaumont Hospital, Dublin
| | - Tríona Ní Chonghaile
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2.
| | | | | | | |
Collapse
|
25
|
Zhang L, Zhou X, Aryal S, Veasey V, Zhang P, Li FJ, Luan Y, Bhatia R, Zhou Y, Lu R. CRISPR screen of venetoclax response-associated genes identifies transcription factor ZNF740 as a key functional regulator. Cell Death Dis 2024; 15:627. [PMID: 39191721 DOI: 10.1038/s41419-024-06995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
BCL-2 inhibitors such as venetoclax offer therapeutic promise in acute myeloid leukemia (AML) and other cancers, but drug resistance poses a significant challenge. It is crucial to understand the mechanisms that regulate venetoclax response. While correlative studies have identified numerous genes linked to venetoclax sensitivity, their direct impact on the drug response remains unclear. In this study, we targeted around 1400 genes upregulated in venetoclax-sensitive primary AML samples and carried out a CRISPR knockout screen to evaluate their direct effects on venetoclax response. Our screen identified the transcription factor ZNF740 as a critical regulator, with its expression consistently predicting venetoclax sensitivity across subtypes of the FAB classification. ZNF740 depletion leads to increased resistance to ventoclax, while its overexpression enhances sensitivity to the drug. Mechanistically, our integrative transcriptomic and genomic analysis identifies NOXA as a direct target of ZNF740, which negatively regulates MCL-1 protein stability. Loss of ZNF740 downregulates NOXA and increases the steady state protein levels of MCL-1 in AML cells. Restoring NOXA expression in ZNF740-depleted cells re-sensitizes AML cells to venetoclax treatment. Furthermore, we demonstrated that dual targeting of MCL-1 and BCL-2 effectively treats ZNF740-deficient AML in vivo. Together, our work systematically elucidates the causal relationship between venetoclax response signature genes and establishes ZNF740 as a novel transcription factor regulating venetoclax sensitivity.
Collapse
MESH Headings
- Sulfonamides/pharmacology
- Humans
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Animals
- Cell Line, Tumor
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Clustered Regularly Interspaced Short Palindromic Repeats/genetics
- Mice
- Drug Resistance, Neoplasm/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Transcription Factors/metabolism
- Transcription Factors/genetics
- CRISPR-Cas Systems/genetics
Collapse
Affiliation(s)
- Lixia Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyue Zhou
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Sajesan Aryal
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Virginia Veasey
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Pengcheng Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Fu Jun Li
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yu Luan
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ravi Bhatia
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rui Lu
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
26
|
Deng S, Derebail S, Weiler VJ, Fong Ng J, Maroto-Martin E, Chatterjee M, Giorgetti G, Chakraborty C, Kalhotra P, Du T, Yao Y, Prabhala R, Shammas M, Gulla A, Aktas Samur A, Samur MK, Qiu L, Anderson KC, Fulciniti M, Munshi NC. Venetoclax resistance leads to broad resistance to standard-of-care anti-MM agents, but not to immunotherapies. Blood Adv 2024; 8:4025-4034. [PMID: 38861273 PMCID: PMC11339023 DOI: 10.1182/bloodadvances.2023012298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Accepted: 05/18/2024] [Indexed: 06/12/2024] Open
Abstract
ABSTACT To our knowledge, venetoclax is the first example of personalized medicine for multiple myeloma (MM), with meaningful clinical activity as a monotherapy and in combination in patients with myeloma harboring the t(11:14) translocation. However, despite the high response rates and prolonged progression-free survival, a significant proportion of patients eventually relapse. Here, we aim to study adaptive molecular responses after the acquisition of venetoclax resistance in sensitive t(11:14) MM cell models. We therefore generated single-cell venetoclax-resistant t(11:14) MM cell lines and investigated the mechanisms contributing to resistance as well as the cells' sensitivity to other treatments. Our data suggest that acquired resistance to venetoclax is characterized by reduced mitochondrial priming and changes in B-cell lymphoma-2 (BCL-2) family proteins' expression in MM cells, conferring broad resistance to standard-of-care antimyeloma drugs. However, our results show that the resistant cells are still sensitive to immunotherapeutic treatments, highlighting the need to consider appropriate sequencing of these treatments after venetoclax-based regimens.
Collapse
Affiliation(s)
- Shuhui Deng
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Sanika Derebail
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Vera Joy Weiler
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jessica Fong Ng
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Elena Maroto-Martin
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Madhumouli Chatterjee
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Giulia Giorgetti
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Chandraditya Chakraborty
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Poonam Kalhotra
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ting Du
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yao Yao
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, China
| | - Rao Prabhala
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Masood Shammas
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Annamaria Gulla
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Anil Aktas Samur
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mehmet Kemal Samur
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Kenneth C. Anderson
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nikhil C. Munshi
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| |
Collapse
|
27
|
Zhang Y, Zheng Y, Zhang J, Xu C, Wu J. Apoptotic signaling pathways in bone metastatic lung cancer: a comprehensive analysis. Discov Oncol 2024; 15:310. [PMID: 39060849 PMCID: PMC11282049 DOI: 10.1007/s12672-024-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This review provides a comprehensive analysis of apoptotic signaling pathways in the context of bone metastatic lung cancer, emphasizing the intricate molecular mechanisms and microenvironmental influences. Beginning with an overview of apoptosis in cancer, the paper explores the specific molecular characteristics of bone metastatic lung cancer, highlighting alterations in apoptotic pathways. Focused discussions delve into key apoptotic signaling pathways, including the intrinsic and extrinsic pathways, and the roles of critical molecular players such as Bcl-2 family proteins and caspases. Microenvironmental factors, such as the tumor microenvironment, extracellular matrix interactions, and immune cell involvement, are examined in depth. The review also addresses experimental approaches and techniques employed in studying apoptotic signaling, paving the way for a discussion on current therapeutic strategies, their limitations, and future prospects. This synthesis contributes a holistic understanding of apoptosis in bone metastatic lung cancer, offering insights for potential therapeutic advancements.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopedic Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yi Zheng
- Department of Orthopedic Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Jiakai Zhang
- Department of Orthopedic Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Chaoyang Xu
- Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
| | - Junlong Wu
- Department of Orthopedic Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
28
|
Dong Y, Zhang X. Targeting cellular mitophagy as a strategy for human cancers. Front Cell Dev Biol 2024; 12:1431968. [PMID: 39035027 PMCID: PMC11257920 DOI: 10.3389/fcell.2024.1431968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Mitophagy is the cellular process to selectively eliminate dysfunctional mitochondria, governing the number and quality of mitochondria. Dysregulation of mitophagy may lead to the accumulation of damaged mitochondria, which plays an important role in the initiation and development of tumors. Mitophagy includes ubiquitin-dependent pathways mediated by PINK1/Parkin and non-ubiquitin dependent pathways mediated by mitochondrial autophagic receptors including NIX, BNIP3, and FUNDC1. Cellular mitophagy widely participates in multiple cellular process including metabolic reprogramming, anti-tumor immunity, ferroptosis, as well as the interaction between tumor cells and tumor-microenvironment. And cellular mitophagy also regulates tumor proliferation and metastasis, stemness, chemoresistance, resistance to targeted therapy and radiotherapy. In this review, we summarized the underlying molecular mechanisms of mitophagy and discussed the complex role of mitophagy in diverse contexts of tumors, indicating it as a promising target in the mitophagy-related anti-tumor therapy.
Collapse
Affiliation(s)
- Yuming Dong
- School of Stomatology, China Medical University, Shenyang, China
| | - Xue Zhang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
29
|
Derippe T, Fouliard S, Decleves X, Mager DE. Quantitative systems pharmacology modeling of tumor heterogeneity in response to BH3-mimetics using virtual tumors calibrated with cell viability assays. CPT Pharmacometrics Syst Pharmacol 2024; 13:1252-1263. [PMID: 38747730 PMCID: PMC11247121 DOI: 10.1002/psp4.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 07/16/2024] Open
Abstract
Both primary and acquired resistance mechanisms that involve intra-tumoral cell heterogeneity limit the use of BH3-mimetics to trigger tumor cell apoptosis. This article proposes a new quantitative systems pharmacology (QSP)-based methodology in which cell viability assays are used to calibrate virtual tumors (VTs) made of virtual cells whose fate is determined by simulations from an apoptosis QSP model. VTs representing SU-DHL-4 and KARPAS-422 cell lines were calibrated using in vitro data involving venetoclax (anti-BCL2), A-1155463 (anti-BCLXL), and/or A-1210477 (anti-MCL1). The calibrated VTs provide insights into the combination of several BH3-mimetics, such as the distinction between cells eliminated by at least one of the drugs (monotherapies) from the cells eliminated by a pharmacological combination only. Calibrated VTs can also be used as initial conditions in an agent-based model (ABM) framework, and a minimal ABM was developed to bridge in vitro SU-DHL-4 cell viability results to tumor growth inhibition experiments in mice.
Collapse
Affiliation(s)
- Thibaud Derippe
- Institut de Recherches Internationales Servier, Suresnes, France
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Sylvain Fouliard
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Xavier Decleves
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
- Enhanced Pharmacodynamics, LLC, Buffalo, New York, USA
| |
Collapse
|
30
|
Tan Y, Xin L, Wang Q, Xu R, Tong X, Chen G, Ma L, Yang F, Jiang H, Zhang N, Wu J, Li X, Guo X, Wang C, Zhou H, Zhou F. FLT3-selective PROTAC: Enhanced safety and increased synergy with Venetoclax in FLT3-ITD mutated acute myeloid leukemia. Cancer Lett 2024; 592:216933. [PMID: 38705564 DOI: 10.1016/j.canlet.2024.216933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Acute myeloid leukemia (AML) patients carrying Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutations often face a poor prognosis. While some FLT3 inhibitors have been used clinically, challenges such as short efficacy and poor specificity persist. Proteolytic targeting chimera (PROTAC), with its lower ligand affinity requirement for target proteins, offers higher and rapid targeting capability. Gilteritinib, used as the ligand for the target protein, was connected with different E3 ligase ligands to synthesize several series of PROTAC targeting FLT3-ITD. Through screening and structural optimization, the optimal lead compound PROTAC Z29 showed better specificity than Gilteritinib. Z29 induced FLT3 degradation through the proteasome pathway and inhibited tumor growth in subcutaneous xenograft mice. We verified Z29's minimal impact on platelets in a patient-derived xenografts (PDX) model compared to Gilteritinib. The combination of Z29 and Venetoclax showed better anti-tumor effects, lower platelet toxicity, and lower hepatic toxicity in FLT3-ITD+ models. The FLT3-selective PROTAC can mitigate the platelet toxicity of small molecule inhibitors, ensuring safety and efficacy in monotherapy and combination therapy with Venetoclax. It is a promising strategy for FLT3-ITD+ patients, especially those with platelet deficiency or liver damage.
Collapse
Affiliation(s)
- Yuxin Tan
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lilan Xin
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qian Wang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Rong Xu
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiqin Tong
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Fuwei Yang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Hongqiang Jiang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Nan Zhang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Jinxian Wu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Xinqi Li
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Xinyi Guo
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chao Wang
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Haibing Zhou
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
31
|
Nocquet L, Roul J, Lefebvre CC, Duarte L, Campone M, Juin PP, Souazé F. Low BCL-xL expression in triple-negative breast cancer cells favors chemotherapy efficacy, and this effect is limited by cancer-associated fibroblasts. Sci Rep 2024; 14:14177. [PMID: 38898061 PMCID: PMC11187150 DOI: 10.1038/s41598-024-64696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Triple negative breast cancers (TNBC) present a poor prognosis primarily due to their resistance to chemotherapy. This resistance is known to be associated with elevated expression of certain anti-apoptotic members within the proteins of the BCL-2 family (namely BCL-xL, MCL-1 and BCL-2). These regulate cell death by inhibiting pro-apoptotic protein activation through binding and sequestration and they can be selectively antagonized by BH3 mimetics. Yet the individual influences of BCL-xL, MCL-1, and BCL-2 on the sensitivity of TNBC cells to chemotherapy, and their regulation by cancer-associated fibroblasts (CAFs), major components of the tumor stroma and key contributors to therapy resistance remain to be delineated. Using gene editing or BH3 mimetics to inhibit anti-apoptotic BCL-2 family proteins in TNBC line MDA-MB-231, we show that BCL-xL and MCL-1 promote cancer cell survival through compensatory mechanisms. This cell line shows limited sensitivity to chemotherapy, in line with the clinical resistance observed in TNBC patients. We elucidate that BCL-xL plays a pivotal role in therapy response, as its depletion or pharmacological inhibition heightened chemotherapy effectiveness. Moreover, BCL-xL expression is associated with chemotherapy resistance in patient-derived tumoroids where its pharmacological inhibition enhances ex vivo response to chemotherapy. In a co-culture model of cancer cells and CAFs, we observe that even in a context where BCL-xL reduced expression renders cancer cells more susceptible to chemotherapy, those in contact with CAFs display reduced sensitivity to chemotherapy. Thus CAFs exert a profound pro-survival effect in breast cancer cells, even in a setting highly favoring cell death through combined chemotherapy and absence of the main actor of chemoresistance, BCL-xL.
Collapse
Affiliation(s)
- Lisa Nocquet
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Julie Roul
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
- SIRIC ILIAD, Nantes, Angers, France
- ICO René Gauducheau, Saint Herblain, France
| | - Chloé C Lefebvre
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Laurine Duarte
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Mario Campone
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
- ICO René Gauducheau, Saint Herblain, France
| | - Philippe P Juin
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France.
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France.
- SIRIC ILIAD, Nantes, Angers, France.
- ICO René Gauducheau, Saint Herblain, France.
| | - Frédérique Souazé
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France.
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France.
- SIRIC ILIAD, Nantes, Angers, France.
| |
Collapse
|
32
|
Olesinski EA, Bhatia KS, Wang C, Pioso MS, Lin XX, Mamdouh AM, Ng SX, Sandhu V, Jasdanwala SS, Yilma B, Bohl S, Ryan JA, Malani D, Luskin MR, Kallioniemi O, Porkka K, Adamia S, Chng WJ, Osato M, Weinstock DM, Garcia JS, Letai A, Bhatt S. Acquired Multidrug Resistance in AML Is Caused by Low Apoptotic Priming in Relapsed Myeloblasts. Blood Cancer Discov 2024; 5:180-201. [PMID: 38442309 PMCID: PMC11061585 DOI: 10.1158/2643-3230.bcd-24-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 12/19/2023] [Indexed: 03/07/2024] Open
Abstract
In many cancers, mortality is associated with the emergence of relapse with multidrug resistance (MDR). Thus far, the investigation of cancer relapse mechanisms has largely focused on acquired genetic mutations. Using acute myeloid leukemia (AML) patient-derived xenografts (PDX), we systematically elucidated a basis of MDR and identified drug sensitivity in relapsed AML. We derived pharmacologic sensitivity for 22 AML PDX models using dynamic BH3 profiling (DBP), together with genomics and transcriptomics. Using in vivo acquired resistant PDXs, we found that resistance to unrelated, narrowly targeted agents in distinct PDXs was accompanied by broad resistance to drugs with disparate mechanisms. Moreover, baseline mitochondrial apoptotic priming was consistently reduced regardless of the class of drug-inducing selection. By applying DBP, we identified drugs showing effective in vivo activity in resistant models. This study implies evasion of apoptosis drives drug resistance and demonstrates the feasibility of the DBP approach to identify active drugs for patients with relapsed AML. SIGNIFICANCE Acquired resistance to targeted therapy remains challenging in AML. We found that reduction in mitochondrial priming and common transcriptomic signatures was a conserved mechanism of acquired resistance across different drug classes in vivo. Drugs active in vivo can be identified even in the multidrug resistant state by DBP.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Humans
- Apoptosis/drug effects
- Animals
- Mice
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Multiple/genetics
- Drug Resistance, Multiple/drug effects
- Xenograft Model Antitumor Assays
- Granulocyte Precursor Cells/drug effects
- Granulocyte Precursor Cells/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Elyse A. Olesinski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Chuqi Wang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Marissa S. Pioso
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Xiao Xian Lin
- Department of Pharmacy, National University of Singapore, Singapore
| | - Ahmed M. Mamdouh
- Department of Pharmacy, National University of Singapore, Singapore
| | - Shu Xuan Ng
- Department of Pharmacy, National University of Singapore, Singapore
| | - Vedant Sandhu
- Department of Pharmacy, National University of Singapore, Singapore
| | | | - Binyam Yilma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Stephan Bohl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Jeremy A. Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Disha Malani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Marlise R. Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland FIMM, Hi-Life, University of Helsinki, Helsinki, Finland
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, Solna, Sweden
| | - Kimmo Porkka
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, HUS, Helsinki, Finland
| | - Sophia Adamia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore
| |
Collapse
|
33
|
Nachmias B, Aumann S, Haran A, Schimmer AD. Venetoclax resistance in acute myeloid leukaemia-Clinical and biological insights. Br J Haematol 2024; 204:1146-1158. [PMID: 38296617 DOI: 10.1111/bjh.19314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 04/11/2024]
Abstract
Venetoclax, an oral BCL-2 inhibitor, has been widely incorporated in the treatment of acute myeloid leukaemia. The combination of hypomethylating agents and venetoclax is the current standard of care for elderly and patient's ineligible for aggressive therapies. However, venetoclax is being increasingly used with aggressive chemotherapy regimens both in the front line and in the relapse setting. Our growing experience and intensive research demonstrate that certain genetic abnormalities are associated with venetoclax sensitivity, while others with resistance, and that resistance can emerge during treatment leading to disease relapse. In the current review, we provide a summary of the known mechanisms of venetoclax cytotoxicity, both regarding the inhibition of BCL-2-mediated apoptosis and its effect on cell metabolism. We describe how these pathways are linked to venetoclax resistance and are associated with specific mutations. Finally, we provide the rationale for novel drug combinations in current and future clinical trials.
Collapse
Affiliation(s)
- Boaz Nachmias
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shlomzion Aumann
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arnon Haran
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Mei J, Liu X, Tian H, Chen Y, Cao Y, Zeng J, Liu Y, Chen Y, Gao Y, Yin J, Wang P. Tumour organoids and assembloids: Patient-derived cancer avatars for immunotherapy. Clin Transl Med 2024; 14:e1656. [PMID: 38664597 PMCID: PMC11045561 DOI: 10.1002/ctm2.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Organoid technology is an emerging and rapidly growing field that shows promise in studying organ development and screening therapeutic regimens. Although organoids have been proposed for a decade, concerns exist, including batch-to-batch variations, lack of the native microenvironment and clinical applicability. MAIN BODY The concept of organoids has derived patient-derived tumour organoids (PDTOs) for personalized drug screening and new drug discovery, mitigating the risks of medication misuse. The greater the similarity between the PDTOs and the primary tumours, the more influential the model will be. Recently, 'tumour assembloids' inspired by cell-coculture technology have attracted attention to complement the current PDTO technology. High-quality PDTOs must reassemble critical components, including multiple cell types, tumour matrix, paracrine factors, angiogenesis and microorganisms. This review begins with a brief overview of the history of organoids and PDTOs, followed by the current approaches for generating PDTOs and tumour assembloids. Personalized drug screening has been practised; however, it remains unclear whether PDTOs can predict immunotherapies, including immune drugs (e.g. immune checkpoint inhibitors) and immune cells (e.g. tumour-infiltrating lymphocyte, T cell receptor-engineered T cell and chimeric antigen receptor-T cell). PDTOs, as cancer avatars of the patients, can be expanded and stored to form a biobank. CONCLUSION Fundamental research and clinical trials are ongoing, and the intention is to use these models to replace animals. Pre-clinical immunotherapy screening using PDTOs will be beneficial to cancer patients. KEY POINTS The current PDTO models have not yet constructed key cellular and non-cellular components. PDTOs should be expandable and editable. PDTOs are promising preclinical models for immunotherapy unless mature PDTOs can be established. PDTO biobanks with consensual standards are urgently needed.
Collapse
Affiliation(s)
- Jie Mei
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Hui‐Xiang Tian
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
| | - Yixuan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Cao
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Jun Zeng
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Yung‐Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yaping Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Gao
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Xiangya Lung Cancer Center, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Ji‐Ye Yin
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Peng‐Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| |
Collapse
|
35
|
Paudel BB, Tan SF, Fox TE, Ung J, Golla U, Shaw JJP, Dunton W, Lee I, Fares WA, Patel S, Sharma A, Viny AD, Barth BM, Tallman MS, Cabot M, Garrett-Bakelman FE, Levine RL, Kester M, Feith DJ, Claxton D, Janes KA, Loughran TP. Acute myeloid leukemia stratifies as 2 clinically relevant sphingolipidomic subtypes. Blood Adv 2024; 8:1137-1142. [PMID: 38170742 PMCID: PMC10909712 DOI: 10.1182/bloodadvances.2023010535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- B. Bishal Paudel
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Su-Fern Tan
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
| | - Todd E. Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA
| | - Johnson Ung
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- Department of Microbiology/Immunology/Cancer Biology, University of Virginia, Charlottesville, VA
| | - Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Jeremy J. P. Shaw
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
| | - Wendy Dunton
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
| | - Irene Lee
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX
| | - Wisam A. Fares
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Satyam Patel
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Arati Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
- Penn State Cancer Institute, Hershey, PA
| | - Aaron D. Viny
- Department of Medicine, Division of Hematology & Oncology, and of Genetics & Development, Herbert Irving Comprehensive Cancer Center, New York, NY
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY
| | - Brian M. Barth
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD
- Department of Natural Sciences, University of Alaska Southeast, Juneau, AK
| | - Martin S. Tallman
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Myles Cabot
- Department of Biochemistry & Molecular Biology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Francine E. Garrett-Bakelman
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA
| | - David J. Feith
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - David Claxton
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA
- Penn State Cancer Institute, Hershey, PA
| | - Kevin A. Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - Thomas P. Loughran
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| |
Collapse
|
36
|
Ali KA, Shah RD, Dhar A, Myers NM, Nguyen C, Paul A, Mancuso JE, Scott Patterson A, Brody JP, Heiser D. Ex vivo discovery of synergistic drug combinations for hematologic malignancies. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100129. [PMID: 38101570 DOI: 10.1016/j.slasd.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Combination therapies have improved outcomes for patients with acute myeloid leukemia (AML). However, these patients still have poor overall survival. Although many combination therapies are identified with high-throughput screening (HTS), these approaches are constrained to disease models that can be grown in large volumes (e.g., immortalized cell lines), which have limited translational utility. To identify more effective and personalized treatments, we need better strategies for screening and exploring potential combination therapies. Our objective was to develop an HTS platform for identifying effective combination therapies with highly translatable ex vivo disease models that use size-limited, primary samples from patients with leukemia (AML and myelodysplastic syndrome). We developed a system, ComboFlow, that comprises three main components: MiniFlow, ComboPooler, and AutoGater. MiniFlow conducts ex vivo drug screening with a miniaturized flow-cytometry assay that uses minimal amounts of patient sample to maximize throughput. ComboPooler incorporates computational methods to design efficient screens of pooled drug combinations. AutoGater is an automated gating classifier for flow cytometry that uses machine learning to rapidly analyze the large datasets generated by the assay. We used ComboFlow to efficiently screen more than 3000 drug combinations across 20 patient samples using only 6 million cells per patient sample. In this screen, ComboFlow identified the known synergistic combination of bortezomib and panobinostat. ComboFlow also identified a novel drug combination, dactinomycin and fludarabine, that synergistically killed leukemic cells in 35 % of AML samples. This combination also had limited effects in normal, hematopoietic progenitors. In conclusion, ComboFlow enables exploration of massive landscapes of drug combinations that were previously inaccessible in ex vivo models. We envision that ComboFlow can be used to discover more effective and personalized combination therapies for cancers amenable to ex vivo models.
Collapse
Affiliation(s)
- Kamran A Ali
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA; Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA.
| | - Reecha D Shah
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | - Anukriti Dhar
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | - Nina M Myers
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | | | - Arisa Paul
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | | | | | - James P Brody
- Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Diane Heiser
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| |
Collapse
|
37
|
Dou Z, Lei H, Su W, Zhang T, Chen X, Yu B, Zhen X, Si J, Sun C, Zhang H, Di C. Modification of BCLX pre-mRNA splicing has antitumor efficacy alone or in combination with radiotherapy in human glioblastoma cells. Cell Death Dis 2024; 15:160. [PMID: 38383492 PMCID: PMC10881996 DOI: 10.1038/s41419-024-06507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Dysregulation of anti-apoptotic and pro-apoptotic protein isoforms arising from aberrant splicing is a crucial hallmark of cancers and may contribute to therapeutic resistance. Thus, targeting RNA splicing to redirect isoform expression of apoptosis-related genes could lead to promising anti-cancer phenotypes. Glioblastoma (GBM) is the most common type of malignant brain tumor in adults. In this study, through RT-PCR and Western Blot analysis, we found that BCLX pre-mRNA is aberrantly spliced in GBM cells with a favored splicing of anti-apoptotic Bcl-xL. Modulation of BCLX pre-mRNA splicing using splice-switching oligonucleotides (SSOs) efficiently elevated the pro-apoptotic isoform Bcl-xS at the expense of the anti-apoptotic Bcl-xL. Induction of Bcl-xS by SSOs activated apoptosis and autophagy in GBM cells. In addition, we found that ionizing radiation could also modulate the alternative splicing of BCLX. In contrast to heavy (carbon) ion irradiation, low energy X-ray radiation-induced an increased ratio of Bcl-xL/Bcl-xS. Inhibiting Bcl-xL through splicing regulation can significantly enhance the radiation sensitivity of 2D and 3D GBM cells. These results suggested that manipulation of BCLX pre-mRNA alternative splicing by splice-switching oligonucleotides is a novel approach to inhibit glioblastoma tumorigenesis alone or in combination with radiotherapy.
Collapse
Affiliation(s)
- Zhihui Dou
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Boyi Yu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaogang Zhen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jing Si
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Chao Sun
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
38
|
Bhatia K, Sandhu V, Wong MH, Iyer P, Bhatt S. Therapeutic biomarkers in acute myeloid leukemia: functional and genomic approaches. Front Oncol 2024; 14:1275251. [PMID: 38410111 PMCID: PMC10894932 DOI: 10.3389/fonc.2024.1275251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is clinically and genetically a heterogeneous disease characterized by clonal expansion of abnormal hematopoietic progenitors. Genomic approaches to precision medicine have been implemented to direct targeted therapy for subgroups of AML patients, for instance, IDH inhibitors for IDH1/2 mutated patients, and FLT3 inhibitors with FLT3 mutated patients. While next generation sequencing for genetic mutations has improved treatment outcomes, only a fraction of AML patients benefit due to the low prevalence of actionable targets. In recent years, the adoption of newer functional technologies for quantitative phenotypic analysis and patient-derived avatar models has strengthened the potential for generalized functional precision medicine approach. However, functional approach requires robust standardization for multiple variables such as functional parameters, time of drug exposure and drug concentration for making in vitro predictions. In this review, we first summarize genomic and functional therapeutic biomarkers adopted for AML therapy, followed by challenges associated with these approaches, and finally, the future strategies to enhance the implementation of precision medicine.
Collapse
Affiliation(s)
- Karanpreet Bhatia
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Vedant Sandhu
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Mei Hsuan Wong
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Prasad Iyer
- Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
- Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Rahmé R, Braun T. Venetoclax Combined with Intensive Chemotherapy: A New Hope for Refractory and/or Relapsed Acute Myeloid Leukemia? J Clin Med 2024; 13:549. [PMID: 38256681 PMCID: PMC10816428 DOI: 10.3390/jcm13020549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Background. Primary resistance of acute myeloid leukemia (AML) to the conventional 3 + 7 intensive chemotherapy and relapses after first-line chemotherapy are two highly challenging clinical scenarios. In these cases, when allogeneic stem cell transplantation is feasible, patients are usually retreated with other chemotherapeutic regimens, as transplantation is still considered, nowadays, the only curative option. Methods. We discuss the mechanisms behind resistance to chemotherapy and offer a comprehensive review on current treatments of refractory/relapsed AML with a focus on novel approaches incorporating the BCL-2 inhibitor venetoclax. Results. Alas, complete remission rates after salvage chemotherapy remain relatively low, between 30 and 60% at best. More recently, the BCL-2 inhibitor venetoclax was combined either with hypomethylating agents or chemotherapy in refractory/relapsed patients. In particular, its combination with chemotherapy offered promising results by achieving higher rates of remission and bridging a substantial number of patients to transplantation. Conclusions. Venetoclax-based approaches might become, in the near future, the new standard of care for refractory/relapsed AML.
Collapse
Affiliation(s)
- Ramy Rahmé
- Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
- Faculty of Medicine, Université Sorbonne Paris Nord, 93017 Bobigny, France;
| | - Thorsten Braun
- Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
- Faculty of Medicine, Université Sorbonne Paris Nord, 93017 Bobigny, France;
| |
Collapse
|
40
|
Wang L, Peng B, Yan Y, Liu G, Yang D, Wang Q, Li Y, Mao Q, Chen Q. The tRF-3024b hijacks miR-192-5p to increase BCL-2-mediated resistance to cytotoxic T lymphocytes in Esophageal Squamous Cell Carcinoma. Int Immunopharmacol 2024; 126:111135. [PMID: 37977065 DOI: 10.1016/j.intimp.2023.111135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
The limited efficacy of immune checkpoint inhibitors (ICIs) in the treatment of advanced Esophageal Squamous Cell Carcinoma (ESCC) poses a challenge. Recent evidence suggests that tumor cells' insensitivity to cytotoxic T lymphocytes (CTLs) contributes to drug resistance against ICIs. Here, a particular tRNA-derived fragment called tRF-3024b has been identified as playing a significant role in tumor cell resistance to CTLs. Through tRF sequencing (tRF-seq), we observed a high expression of tRF-3024b in ESCC cells that survived co-culture with CTLs. Further in vitro studies demonstrated that tRF-3024b reduced the apoptosis of tumor cells when co-cultured with CTLs. The mechanism behind this resistance involves tRF-3024b promoting the expression of B-cell lymphoma-2 (BCL-2) by sequestering miR-192-5p, a microRNA that would normally inhibit BCL-2 expression. This means that tRF-3024b indirectly enhances the protective effects of BCL-2, reducing apoptosis in tumor cells. Rescue assays confirmed that the suppressive function of tRF-3024b relies on BCL-2. In summary, the tRF-3024b/miR-192-5p/BCL-2 axis sheds light on the crucial role of tRF-3024b in regulating BCL-2 expression. These findings offer valuable insights into strategies to enhance the response of ESCC to CTLs and improve the effectiveness of immunotherapy approaches in treating ESCC.
Collapse
Affiliation(s)
- Lin Wang
- Department of Oncology, Department of Geriatric Lung Cancer Laboratory, The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Bo Peng
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Yan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guangjun Liu
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dunpeng Yang
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qibin Wang
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongcheng Li
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qixing Mao
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Qiang Chen
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
41
|
Gjertsen BT. How to discover the exceptional venetoclax responders in AML/MDS? Br J Haematol 2024; 204:14-15. [PMID: 37920123 DOI: 10.1111/bjh.19165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Hematology Section, Department of Medicine, Haukeland University Hospital, Helse Bergen HF, Bergen, Norway
| |
Collapse
|
42
|
Cerella C, Gajulapalli SR, Lorant A, Gerard D, Muller F, Lee Y, Kim KR, Han BW, Christov C, Récher C, Sarry JE, Dicato M, Diederich M. ATP1A1/BCL2L1 predicts the response of myelomonocytic and monocytic acute myeloid leukemia to cardiac glycosides. Leukemia 2024; 38:67-81. [PMID: 37904054 PMCID: PMC10776384 DOI: 10.1038/s41375-023-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Myelomonocytic and monocytic acute myeloid leukemia (AML) subtypes are intrinsically resistant to venetoclax-based regimens. Identifying targetable vulnerabilities would limit resistance and relapse. We previously documented the synergism of venetoclax and cardiac glycoside (CG) combination in AML. Despite preclinical evidence, the repurposing of cardiac glycosides (CGs) in cancer therapy remained unsuccessful due to a lack of predictive biomarkers. We report that the ex vivo response of AML patient blasts and the in vitro sensitivity of established cell lines to the hemi-synthetic CG UNBS1450 correlates with the ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1)/BCL2 like 1 (BCL2L1) expression ratio. Publicly available AML datasets identify myelomonocytic/monocytic differentiation as the most robust prognostic feature, along with core-binding factor subunit beta (CBFB), lysine methyltransferase 2A (KMT2A) rearrangements, and missense Fms-related receptor tyrosine kinase 3 (FLT3) mutations. Mechanistically, BCL2L1 protects from cell death commitment induced by the CG-mediated stepwise triggering of ionic perturbation, protein synthesis inhibition, and MCL1 downregulation. In vivo, CGs showed an overall tolerable profile while impacting tumor growth with an effect ranging from tumor growth inhibition to regression. These findings suggest a predictive marker for CG repurposing in specific AML subtypes.
Collapse
Affiliation(s)
- Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Sruthi Reddy Gajulapalli
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Anne Lorant
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Deborah Gerard
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Florian Muller
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Yejin Lee
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Rok Kim
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Christo Christov
- University of Lorraine, Service Commun de Microscopie, Nancy, France
| | - Christian Récher
- Cancer Research Center of Toulouse, UMR 1037 INSERM/ Université Toulouse III-Paul Sabatier, 2 avenue Hubert Curien, Oncopôle, 31037, Toulouse, France
| | - Jean-Emmanuel Sarry
- Cancer Research Center of Toulouse, UMR 1037 INSERM/ Université Toulouse III-Paul Sabatier, 2 avenue Hubert Curien, Oncopôle, 31037, Toulouse, France
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Marc Diederich
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
43
|
Calderon A, Han C, Karma S, Wang E. Non-genetic mechanisms of drug resistance in acute leukemias. Trends Cancer 2024; 10:38-51. [PMID: 37839973 DOI: 10.1016/j.trecan.2023.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Acute leukemia is characterized by clonal heterogeneity that contributes to poor drug responses in patients. Despite treatment advances, the occurrence of relapse remains a major barrier to achieving cures as current therapeutic approaches are inadequate to effectively prevent or overcome resistance. Given that only a few genetic mutations are associated with relapse in acute leukemia patients, there is a growing focus on 'non-genetic' mechanisms that affect the hallmarks of cancer to allow leukemic cells to survive post therapy. In this review, we provide an overview of the therapeutic landscape in acute leukemias. Importantly, we discuss non-genetic mechanisms exploited by leukemic cells to promote their survival after treatment. Last, we present current strategies to prevent or overcome drug resistance in this disease.
Collapse
Affiliation(s)
| | - Cuijuan Han
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Sadik Karma
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
44
|
Miller PG, Sperling AS, Mayerhofer C, McConkey ME, Ellegast JM, Da Silva C, Cohen DN, Wang C, Sharda A, Yan N, Saha S, Schluter C, Schechter I, Słabicki M, Sandoval B, Kahn J, Boettcher S, Gibson CJ, Scadden DT, Stegmaier K, Bhatt S, Lindsley RC, Ebert BL. PPM1D modulates hematopoietic cell fitness and response to DNA damage and is a therapeutic target in myeloid malignancy. Blood 2023; 142:2079-2091. [PMID: 37595362 PMCID: PMC10733824 DOI: 10.1182/blood.2023020331] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023] Open
Abstract
PPM1D encodes a phosphatase that is recurrently activated across cancer, most notably in therapy-related myeloid neoplasms. However, the function of PPM1D in hematopoiesis and its contribution to tumor cell growth remain incompletely understood. Using conditional mouse models, we uncover a central role for Ppm1d in hematopoiesis and validate its potential as a therapeutic target. We find that Ppm1d regulates the competitive fitness and self-renewal of hematopoietic stem cells (HSCs) with and without exogenous genotoxic stresses. We also show that although Ppm1d activation confers cellular resistance to cytotoxic therapy, it does so to a lesser degree than p53 loss, informing the clonal competition phenotypes often observed in human studies. Notably, loss of Ppm1d sensitizes leukemias to cytotoxic therapies in vitro and in vivo, even in the absence of a Ppm1d mutation. Vulnerability to PPM1D inhibition is observed across many cancer types and dependent on p53 activity. Importantly, organism-wide loss of Ppm1d in adult mice is well tolerated, supporting the tolerability of pharmacologically targeting PPM1D. Our data link PPM1D gain-of-function mutations to the clonal expansion of HSCs, inform human genetic observations, and support the therapeutic targeting of PPM1D in cancer.
Collapse
Affiliation(s)
- Peter G. Miller
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Adam S. Sperling
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Christina Mayerhofer
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Marie E. McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jana M. Ellegast
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Carmen Da Silva
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Drew N. Cohen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Chuqi Wang
- National University of Singapore, Singapore
| | - Azeem Sharda
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Ni Yan
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Subha Saha
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Cameron Schluter
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Ilexa Schechter
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Brittany Sandoval
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Josephine Kahn
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Christopher J. Gibson
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - David T. Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA
- Ludwig Center at Harvard, Boston, MA
| | - Kimberly Stegmaier
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - R. Coleman Lindsley
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Benjamin L. Ebert
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Howard Hughes Medical Institute, Bethesda, MD
| |
Collapse
|
45
|
Xie X, Zhang W, Zhou X, Xu B, Wang H, Qiu Y, Hu Y, Guo B, Ye Z, Hu L, Zhang H, Li Y, Bai X. Low doses of IFN-γ maintain self-renewal of leukemia stem cells in acute myeloid leukemia. Oncogene 2023; 42:3657-3669. [PMID: 37872214 DOI: 10.1038/s41388-023-02874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Conventional therapies for acute myeloid leukemia (AML) often fail to eliminate the disease-initiating leukemia stem cell (LSC) population, leading to disease relapse. Interferon-γ (IFN-γ) is a known inflammatory cytokine that promotes antitumor responses. Here, we found that low serum IFN-γ levels correlated with a higher percentage of LSCs and greater relapse incidence in AML patients. Furthermore, IFNGR1 was overexpressed in relapsed patients with AML and associated with a poor prognosis. We showed that high doses (5-10 μg/day) of IFN-γ exerted an anti-AML effect, while low doses (0.01-0.05 μg/day) of IFN-γ accelerated AML development and supported LSC self-renewal in patient-derived AML-LSCs and in an LSC-enriched MLL-AF9-driven mouse model. Importantly, targeting the IFN-γ receptor IFNGR1 by using lentiviral shRNAs or neutralizing antibodies induced AML differentiation and delayed leukemogenesis in vitro and in mice. Overall, we uncovered essential roles for IFN-γ and IFNGR1 in AML stemness and showed that targeting IFNGR1 is a strategy to decrease stemness and increase differentiation in relapsed AML patients.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
| | - Wuju Zhang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, 510910, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Bin Guo
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Zhixin Ye
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Le Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
46
|
Li M, Zheng S, Gong Q, Zhuang H, Wu Z, Wang P, Zhang X, Xu R. An oral triple pill-based cocktail effectively controls acute myeloid leukemia with high translation. Biomed Pharmacother 2023; 167:115584. [PMID: 37778270 DOI: 10.1016/j.biopha.2023.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
Acute myeloid leukemia (AML) is a deadly hematological malignancy characterized by oncogenic translational addiction that results in over-proliferation and apoptosis evasion of leukemia cells. Various chemo- and targeted therapies aim to reverse this hallmark, but most show only modest efficacy. Here we report a single oral pill containing a low-dose triple small molecule-based cocktail, a highly active anti-cancer therapy (HAACT) with unique mechanisms that can effectively control AML. The cocktail comprises oncogenic translation inhibitor HHT, drug efflux pump P-gpi ENC and anti-apoptotic protein Bcl-2i VEN. Mechanistically, the cocktail can potently kill both leukemia stem cells (LSC) and bulk leukemic cells via co-targeting oncogenic translation, apoptosis machinery, and drug efflux pump, resulting in deep and durable remissions of AML in diverse model systems. We also identified EphB4/Bcl-xL as the cocktail response biomarkers. Collectively, our studies provide proof that a single pill containing a triple combination cocktail might be a promising avenue for AML therapy.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuwen Zheng
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qinyuan Gong
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haifeng Zhuang
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Zhaoxing Wu
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ping Wang
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuzhao Zhang
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rongzhen Xu
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Hematology, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
47
|
Milnerowicz S, Maszewska J, Skowera P, Stelmach M, Lejman M. AML under the Scope: Current Strategies and Treatment Involving FLT3 Inhibitors and Venetoclax-Based Regimens. Int J Mol Sci 2023; 24:15849. [PMID: 37958832 PMCID: PMC10647248 DOI: 10.3390/ijms242115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Acute myeloid leukemia (AML) is a disease that mainly affects elderly patients who are more often unfit for intensive chemotherapy (median age of diagnosis is 68). The regimens, including venetoclax, a highly specific BCL-2 (B-cell lymphoma-2) inhibitor, are a common alternative because of their safer profile and fewer side effects. However, the resistance phenomenon of leukemic cells necessitates the search for drugs that would help to overcome the resistance and improve treatment outcomes. One of the resistance mechanisms takes place through the upregulation of MCL-1 and BCL-XL, preventing BAX/BAK-driven MOMP (mitochondrial outer membrane permeabilization), thus stopping the apoptosis process. Possible partners for BCL-2 inhibitors may include inhibitors from the FLT3i (FMS-like tyrosine kinase-3 inhibitor) group. They resensitize cancer cells through the downregulation of MCL-1 expression in the FLT3 mutated cells, resulting in the stronger efficacy of BCL-2 inhibitors. Also, they provide an additional pathway for targeting the clonal cell. Both preclinical and clinical data suggest that the combination might show a synergistic effect and improve patients' outcomes. The aim of this review is to determine whether the combination of venetoclax and FLT3 inhibitors can impact the therapeutic approaches and what other agents they can be combined with.
Collapse
Affiliation(s)
- Szymon Milnerowicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (J.M.)
| | - Julia Maszewska
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (J.M.)
| | - Paulina Skowera
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (P.S.); (M.S.)
| | - Magdalena Stelmach
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (P.S.); (M.S.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (P.S.); (M.S.)
| |
Collapse
|
48
|
Rosenquist R, Bernard E, Erkers T, Scott DW, Itzykson R, Rousselot P, Soulier J, Hutchings M, Östling P, Cavelier L, Fioretos T, Smedby KE. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med 2023; 294:413-436. [PMID: 37424223 DOI: 10.1111/joim.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
- PRISM Center for Personalized Medicine, Gustave Roussy, Villejuif, France
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - David W Scott
- BC Cancer's Centre for Lymphoid Cancer, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Jean Soulier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Hématologie Biologique, APHP, Hôpital Saint-Louis, Paris, France
| | - Martin Hutchings
- Department of Haematology and Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Karin E Smedby
- Department of Hematology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Ebner J, Schmoellerl J, Piontek M, Manhart G, Troester S, Carter BZ, Neubauer H, Moriggl R, Szakács G, Zuber J, Köcher T, Andreeff M, Sperr WR, Valent P, Grebien F. ABCC1 and glutathione metabolism limit the efficacy of BCL-2 inhibitors in acute myeloid leukemia. Nat Commun 2023; 14:5709. [PMID: 37726279 PMCID: PMC10509209 DOI: 10.1038/s41467-023-41229-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
The BCL-2 inhibitor Venetoclax is a promising agent for the treatment of acute myeloid leukemia (AML). However, many patients are refractory to Venetoclax, and resistance develops quickly. ATP-binding cassette (ABC) transporters mediate chemotherapy resistance but their role in modulating the activity of targeted small-molecule inhibitors is unclear. Using CRISPR/Cas9 screening, we find that loss of ABCC1 strongly increases the sensitivity of AML cells to Venetoclax. Genetic and pharmacologic ABCC1 inactivation potentiates the anti-leukemic effects of BCL-2 inhibitors and efficiently re-sensitizes Venetoclax-resistant leukemia cells. Conversely, ABCC1 overexpression induces resistance to BCL-2 inhibitors by reducing intracellular drug levels, and high ABCC1 levels predicts poor response to Venetoclax therapy in patients. Consistent with ABCC1-specific export of glutathionylated substrates, inhibition of glutathione metabolism increases the potency of BCL-2 inhibitors. These results identify ABCC1 and glutathione metabolism as mechanisms limiting efficacy of BCL-2 inhibitors, which may pave the way to development of more effective therapies.
Collapse
Affiliation(s)
- Jessica Ebner
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Johannes Schmoellerl
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Martin Piontek
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabriele Manhart
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Selina Troester
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heidi Neubauer
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gergely Szakács
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
- Institute of Enzymology, Research Centre of Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Thomas Köcher
- Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| |
Collapse
|
50
|
Hua L, Yang N, Li Y, Huang K, Jiang X, Liu F, Yu Z, Chen J, Lai J, Du J, Zeng H. Metformin sensitizes AML cells to venetoclax through endoplasmic reticulum stress-CHOP pathway. Br J Haematol 2023; 202:971-984. [PMID: 37409755 DOI: 10.1111/bjh.18968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/26/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Venetoclax inhibits acute myeloid leukaemia by inhibiting BCL-2 targeting, and a combination regimen with venetoclax has been explored. Although these regimens produce better clinical results, the vast majority of patients still suffer from disease recurrence or primary drug resistance. Metformin has been demonstrated to induce apoptosis in cancer cells. However, whether it can synergize with venetoclax and the underlying mechanisms of metformin-induced apoptosis are not fully understood. In this study, we investigated the effect of metformin and venetoclax on the growth of AML cells in vitro and in vivo. In both Molm13 and THP-1 cell lines, metformin and venetoclax synergistically inhibited the proliferation and induced apoptosis of leukaemia cells. Most importantly, the combination of metformin and venetoclax treatment significantly increased the expression levels of the endoplasmic reticulum (ER) stress-related marker CHOP, for example, in AML cell lines. Knockdown of CHOP markedly attenuated the metformin- and venetoclax-induced cell apoptosis. Moreover, the combination of metformin and venetoclax demonstrated prominent anti-leukaemia effects in xenograft models and bone marrow samples from AML patients. In summary, the combination of metformin and venetoclax showed enhanced anti-leukaemia activity with acceptable safety in AML patients, representing a new combinatorial strategy worth further clinical investigation to treat AML.
Collapse
Affiliation(s)
- Lei Hua
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Nianhui Yang
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Kexiu Huang
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xinya Jiang
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Fangshu Liu
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhi Yu
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jie Chen
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jing Lai
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|