1
|
Zhe N, Li Q, Huang N, Li H, Chen H, Zhu P. Hotspots evolution and frontiers of immunotherapy for the treatment of acute myeloid leukemia: A bibliometric analysis. Hum Vaccin Immunother 2025; 21:2448888. [PMID: 39819314 DOI: 10.1080/21645515.2024.2448888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/19/2025] Open
Abstract
Given the growing significance of immunotherapy in addressing the limitations of conventional acute myeloid leukemia (AML) treatments, this study aimed to elucidate the hotspot evolution and frontiers of immunotherapy in AML using bibliometric analysis. With a strict retrieval strategy applied in the Web of Science Core Collection, 2411 publications were obtained and exported. The temporal and geographical distributions of these publications and the countries, institutions, journals, and authors who contributed to the field were investigated. An in-depth content analysis was performed. The United States had various research institutions dedicated to AML immunotherapy. Frontiers in Immunology had the highest number of publications, but Blood had the highest H-index. Marion Subklewe was the most productive author. The current research hotspots of AML immunotherapy included chimeric antigen receptor-T-cell therapy, antibody-based immunotherapies, immune checkpoint blockade, and combination therapy, highlighting the key aspects of immunotherapy for AML treatment and providing comprehensive insights into the research status and advances in this field. Novel immunotherapies combined with chemotherapy may become the primary focus of AML treatment.
Collapse
Affiliation(s)
- Nana Zhe
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Qiang Li
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Nanqu Huang
- Department of Pharmacy, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Hang Li
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Hongyun Chen
- Department of Dermatology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Pinwei Zhu
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| |
Collapse
|
2
|
Qin H, Zhou Z, Shi R, Mai Y, Xu Y, Peng F, Cheng G, Zhang P, Chen W, Chen Y, Chen Y, Xu R, Lu Q. Insights into next-generation immunotherapy designs and tools: molecular mechanisms and therapeutic prospects. J Hematol Oncol 2025; 18:62. [PMID: 40483473 PMCID: PMC12145627 DOI: 10.1186/s13045-025-01701-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/11/2025] [Indexed: 06/11/2025] Open
Abstract
Immunotherapy has revolutionized the oncology treatment paradigm, and CAR-T cell therapy in particular represents a significant milestone in treating hematological malignancies. Nevertheless, tumor resistance due to target heterogeneity or mutation remains a Gordian knot for immunotherapy. This review elucidates molecular mechanisms and therapeutic potential of next-generation immunotherapeutic tools spanning genetically engineered immune cells, multi-specific antibodies, and cell engagers, emphasizing multi-targeting strategies to enhance personalized immunotherapy efficacy. Development of logic gate modulation-based circuits, adapter-mediated CARs, multi-specific antibodies, and cell engagers could minimize adverse effects while recognizing tumor signals. Ultimately, we highlight gene delivery, gene editing, and other technologies facilitating tailored immunotherapy, and discuss the promising prospects of artificial intelligence in gene-edited immune cells.
Collapse
Affiliation(s)
- Hongzhuo Qin
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhaokai Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Run Shi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yumiao Mai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yudi Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China
| | - Guangyang Cheng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenjie Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Yun Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Yajun Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China.
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
3
|
Lysandrou M, Zeiser R. Strategies to enhance anti-leukaemia immunotherapy. Curr Opin Pharmacol 2025; 82:102525. [PMID: 40267742 DOI: 10.1016/j.coph.2025.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Acute myeloid leukaemia (AML) was an incurable disease prior to allogeneic haematopoietic cell transplantation (allo-HCT), which was proven to be a potent cellular immunotherapy-approach. However, allo-HCT has major side effects, with disease relapse presenting as a frequent complication. Novel immunotherapies aim to reduce toxicity and increase the anti-leukaemia activity of allo-HCT. Technological advancements in genetic engineering approaches enable potent immunotherapeutic activity while limiting toxicities. A biology-driven application of small molecules that target AML vulnerabilities holds promise to enhance anti-leukaemia immunotherapy. Extensive preclinical testing of these approaches is essential to reduce toxicity and to find the ideal combination partners for future clinical testing.
Collapse
Affiliation(s)
- Memnon Lysandrou
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University Freiburg, Albert-Ludwigs University of Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University Freiburg, Albert-Ludwigs University of Freiburg, Germany.
| |
Collapse
|
4
|
Hoffmann GV, Gottschlich A, Subklewe M, Kobold S. Novel approaches to CAR T cell target identification in acute myeloid leukemia. Curr Opin Pharmacol 2025; 82:102524. [PMID: 40311558 DOI: 10.1016/j.coph.2025.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Identifying safe and effective CAR T cell targets in acute myeloid leukemia (AML) is challenging due to the disease's complexity and overlap with normal hematopoiesis. This review highlights advances in target discovery for AML, emphasizing innovative approaches. Structural surfaceomics identifies tumor-specific protein conformations, while AI-driven single-cell RNA sequencing integrates multi-source data to pinpoint optimal targets. Refined cell surface capture technology maps the AML surfaceome without relying on predefined antibodies. These strategies enhance CAR T cell specificity and minimize off-tumor effects, offering promising pathways for safer and more effective AML treatments and broader cancer therapies.
Collapse
Affiliation(s)
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
5
|
Huang KY, Ng KF, I KY, Chang YC, Chen HY, Chiu YF, Hung CM, Yu WC, Chen TC, Stacey M, Lin HH. GPR56/ADGRG1 induces biased Rho-ROCK-MLC and JAK-STAT3 signaling to promote amoeboid-like morphology and IL-6 upregulation in melanoma cells. Cell Commun Signal 2025; 23:251. [PMID: 40442782 PMCID: PMC12123722 DOI: 10.1186/s12964-025-02267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 05/24/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND GPR56/ADGRG1 is an adhesion G protein-coupled receptor involved in cell-matrix interactions and metastasis of human melanoma cells. Previously, we demonstrated that GPR56 activation in melanoma cells triggers Gα12/13-RhoA signaling, leading to increased IL-6 production and enhanced cell migration. Yet little is known of the downstream signaling effectors and their specific roles in regulating melanoma cellular phenotypes. RESULTS In this study, we show that GPR56 activation induces Rho-ROCK-MLC and JAK-STAT3 signaling, which temporally and differentially drive amoeboid-like morphology and IL-6 upregulation. Interestingly, GPR56-induced JAK-STAT3 activation is partially regulated by Rho-ROCK-MLC signaling but not vice versa. Moreover, receptor auto-proteolysis modulates the magnitude of GPR56-mediated signaling, and its unique intracellular regions contribute to the selective regulation of unique signaling pathways and associated cellular phenotypes. CONCLUSION Our findings reveal complex GPR56-mediated biased signaling through the Rho-ROCK-MLC and JAK-STAT3 pathways, highlighting these networks as potential therapeutic targets for modulating distinct tumorigenic phenotypes in human melanoma cells.
Collapse
Grants
- NSTC-108-2811-B-182-507, NSTC-110-2320-B-182-024, NSTC-113-2918-I-182-001, NSTC-113-2320-B-182-009 National Science and Technology Council
- NSTC-108-2811-B-182-507, NSTC-110-2320-B-182-024, NSTC-113-2918-I-182-001, NSTC-113-2320-B-182-009 National Science and Technology Council
- CMRPG3M0461, CMRPG3M1941, CMRPD1M0033, CMRPD1M0323 Chang Gung Memorial Hospital, Linkou
- CMRPG3M0461, CMRPG3M1941, CMRPD1M0033, CMRPD1M0323 Chang Gung Memorial Hospital, Linkou
Collapse
Affiliation(s)
- Kuan-Yeh Huang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Kwai-Fong Ng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Kuan-Yu I
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Yu-Chi Chang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Hsin-Yi Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | | | | | - Tse-Ching Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Martin Stacey
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan.
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan.
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Stucchi S, Borea R, Garcia-Recio S, Zingarelli M, Rädler PD, Camerini E, Marnata Pellegry C, O'Connor S, Earp HS, Carey LA, Perou CM, Savoldo B, Dotti G. B7-H3 and CSPG4 co-targeting as Pan-CAR-T cell treatment of triple-negative breast cancer. J Immunother Cancer 2025; 13:e011533. [PMID: 40425233 PMCID: PMC12107568 DOI: 10.1136/jitc-2025-011533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
PURPOSE Chimeric antigen receptor T (CAR-T) cell therapy is under clinical investigation in patients with metastatic triple-negative breast cancer (TNBC). However, the identification of targetable antigens remains a high priority to avoid toxicity and prevent tumor escape. EXPERIMENTAL DESIGN Here we analyzed the gene expression of B7-H3 (CD276) and chondroitin sulfate proteoglycan 4 (CSPG4) in 98 TNBC samples identified in the AURORA US Network and Rapid Autopsy RNA sequencing data set at University of North Carolina (UNC). We then performed immunohistochemistry analysis for B7-H3 and CSPG4 protein expression in 151 TNBC samples collected at UNC. Finally, the validity of the proposed B7-H3 and CSGP4 co-targeting was tested in clinically relevant TNBC patient derived xenograft (PDX) models. RESULTS We observed that CD276 and CSPG4 genes are broadly and comparably expressed in TNBC samples, and gene expression is generally conserved in tumor metastases. None of the TNBC analyzed met the criteria for simultaneous low expression of CSPG4 and CD276 genes. Immunohistochemistry analysis showed a median H-score of 138 (105-168, lower and upper quartile, respectively) for B7-H3 expression and a median H-score of 33 (14-78 lower and upper quartile, respectively) for CSPG4 expression. Notably, 49% of the TNBC cores with B7-H3 H-score ≤105 exhibited a CSPG4 H-score exceeding its median value, and 37% and 18% of the TNBC cores with low B7-H3 expression scored CSPG4 expression above its median H-score or exceeded its upper quartile, respectively, confirming that at least one of these two proteins is expressed in 94% of the analyzed tumors. Finally, optimized dual-specific B7-H3 and CSPG4 CAR-T cells eradicated tumors with mixed antigen expression in TNBC PDX models. CONCLUSIONS These data highlight the clinical potential of the proposed approach that could be applicable to the great majority of patients with TNBC as well as most of patients with breast cancer in general.
Collapse
Affiliation(s)
- Simone Stucchi
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Roberto Borea
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Susana Garcia-Recio
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Manuela Zingarelli
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Patrick D Rädler
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elena Camerini
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Siobhan O'Connor
- Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - H Shelton Earp
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lisa A Carey
- Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles M Perou
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Barbara Savoldo
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gianpietro Dotti
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Didi-Zurinam S, Katzman E, Cohen CJ. Potentiating T cell tumor targeting using a combination of TCR with a Siglec-7 based CSR. Front Immunol 2025; 16:1536868. [PMID: 40433387 PMCID: PMC12106334 DOI: 10.3389/fimmu.2025.1536868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/11/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction Tumors may utilize different strategies to escape T cell immunosurveillance. Besides the overexpression of checkpoint ligands (such as PDL1) or the secretion of immunosuppressive agents, several studies have shown that cancer aberrant sialylation can, through interaction with selected receptors such as those from the Siglec family, neutralize NK and T cell function. Methods Herein, we wanted to take advantage of the presence of inhibitory sialic acid ligands on the tumor cell surface to enhance T cell anti-tumor activity. To this end, we devised a novel chimeric receptor consisting of the extracellular portion of Siglec-7 and the intracellular portion of 41BB, which can convert inhibitory signals into stimulatory ones when expressed in human T-cells. Results This co-stimulatory chimeric switch receptor (CSR), when co-expressed with a tumor-specific TCR, facilitated higher cytokine secretion and activation profiles following co-culture with tumor cells. Additionally, T cells equipped with Siglec-7 CSR demonstrated improved anti-tumor function in vivo. Discussion Given the broad expression pattern of Siglec-7 ligands on tumor cells, our data suggest this CSR may act as a general adjuvant to boost TCR T cell function. Overall, this work provides an approach to improve engineered T-cell-based cancer treatment.
Collapse
MESH Headings
- Humans
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Lectins/genetics
- Lectins/immunology
- Lectins/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Mice
- Cell Line, Tumor
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Lymphocyte Activation/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Immunotherapy, Adoptive/methods
- Cytokines/metabolism
- Neoplasms/immunology
- Neoplasms/therapy
Collapse
Affiliation(s)
| | | | - Cyrille J. Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
8
|
Kondo T, Bourassa FXP, Achar S, DuSold J, Céspedes PF, Ando M, Dwivedi A, Moraly J, Chien C, Majdoul S, Kenet AL, Wahlsten M, Kvalvaag A, Jenkins E, Kim SP, Ade CM, Yu Z, Gaud G, Davila M, Love P, Yang JC, Dustin ML, Altan-Bonnet G, François P, Taylor N. Engineering TCR-controlled fuzzy logic into CAR T cells enhances therapeutic specificity. Cell 2025; 188:2372-2389.e35. [PMID: 40220754 DOI: 10.1016/j.cell.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/16/2024] [Accepted: 03/09/2025] [Indexed: 04/14/2025]
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy represents a breakthrough in the treatment of hematological malignancies, but poor specificity has limited its applicability to solid tumors. By contrast, natural T cells harboring T cell receptors (TCRs) can discriminate between neoantigen-expressing cancer cells and self-antigen-expressing healthy tissues but have limited potency against tumors. We used a high-throughput platform to systematically evaluate the impact of co-expressing a TCR and CAR on the same CAR T cell. While strong TCR-antigen interactions enhanced CAR activation, weak TCR-antigen interactions actively antagonized their activation. Mathematical modeling captured this TCR-CAR crosstalk in CAR T cells, allowing us to engineer dual TCR/CAR T cells targeting neoantigens (HHATL8F/p53R175H) and human epithelial growth factor receptor 2 (HER2) ligands, respectively. These T cells exhibited superior anti-cancer activity and minimal toxicity against healthy tissue compared with conventional CAR T cells in a humanized solid tumor mouse model. Harnessing pre-existing inhibitory crosstalk between receptors, therefore, paves the way for the design of more precise cancer immunotherapies.
Collapse
MESH Headings
- Humans
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Immunotherapy, Adoptive/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Fuzzy Logic
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Cell Line, Tumor
- Neoplasms/therapy
- Neoplasms/immunology
- Antigens, Neoplasm/immunology
Collapse
Affiliation(s)
- Taisuke Kondo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - François X P Bourassa
- Department of Physics, McGill University, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Sooraj Achar
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Justyn DuSold
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Pablo F Céspedes
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK; CAMS Oxford Institute, University of Oxford, Oxford, UK
| | - Makoto Ando
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alka Dwivedi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Josquin Moraly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Chien
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Saliha Majdoul
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adam L Kenet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Madison Wahlsten
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Edward Jenkins
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sanghyun P Kim
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Catherine M Ade
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zhiya Yu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Guillaume Gaud
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Marco Davila
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - James C Yang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Paul François
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; MILA Québec, Montréal, QC, Canada.
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Université de Montpellier, Institut de Génétique Moléculaire de Montpellier, Montpellier, France.
| |
Collapse
|
9
|
Mulvey A, Trueb L, Coukos G, Arber C. Novel strategies to manage CAR-T cell toxicity. Nat Rev Drug Discov 2025; 24:379-397. [PMID: 39901030 DOI: 10.1038/s41573-024-01100-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 02/05/2025]
Abstract
The immune-related adverse events associated with chimeric antigen receptor (CAR)-T cell therapy result in substantial morbidity as well as considerable cost to the health-care system, and can limit the use of these treatments. Current therapeutic strategies to manage immune-related adverse events include interleukin-6 receptor (IL-6R) blockade and corticosteroids. However, because these interventions do not always address the side effects, nor prevent progression to higher grades of adverse events, new approaches are needed. A deeper understanding of the cell types involved, and their associated signalling pathways, cellular metabolism and differentiation states, should provide the basis for alternative strategies. To preserve treatment efficacy, cytokine-mediated toxicity needs to be uncoupled from CAR-T cell function, expansion, long-term persistence and memory formation. This may be achieved by targeting CAR or independent cytokine signalling axes transiently, and through novel T cell engineering strategies, such as low-affinity CAR-T cells, reversible on-off switches and versatile adaptor systems. We summarize the current management of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, and review T cell- and myeloid cell-intrinsic druggable targets and cellular engineering strategies to develop safer CAR-T cells.
Collapse
Affiliation(s)
- Arthur Mulvey
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Lionel Trueb
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland.
- Departments of Oncology UNIL-CHUV and Laboratory Medicine and Pathology, Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
10
|
Yu R, Ji X, Zhang P, Zhang H, Qu H, Dong W. The potential of chimeric antigen receptor -T cell therapy for endocrine cancer. World J Surg Oncol 2025; 23:153. [PMID: 40264184 PMCID: PMC12012980 DOI: 10.1186/s12957-025-03745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/07/2025] [Indexed: 04/24/2025] Open
Abstract
Endocrine cancer, a relatively rare and heterogeneous tumor with diverse clinical features. The facile synthesis of hormones further complicates endocrine cancer treatment. Thus, the development of safe and effective systemic treatment approaches, such as chimeric antigen receptor (CAR) T cell therapy, is imperative to enhance the prognosis of patients with endocrine cancer. Although this therapy has achieved good results in the treatment of hematological malignancies, it encounters diverse complications and challenges in the context of endocrine cancer. This review delineates the generation of CAR-T cells, examines the potential of CAR-T cell therapy for endocrine cancer, enumerates pivotal antigens linked to endocrine cancer, encapsulates the challenges confronted with CAR-T cell therapy for endocrine cancer, and expounds upon strategies to overcome these limitations. The primary objective is to provide insightful perspectives that can contribute to the advancement of CAR-T cell therapy in the field of endocrine cancer.
Collapse
Affiliation(s)
- Ruonan Yu
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Xiaoyu Ji
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Ping Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Huiling Qu
- Department of Neurology, The General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, Liaoning, 110840, China.
| | - Wenwu Dong
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
11
|
Dong J, Konopleva M. Preclinical targeting of leukemia-initiating cells in the development future biologics for acute myeloid leukemia. Expert Opin Ther Targets 2025; 29:223-237. [PMID: 40304258 DOI: 10.1080/14728222.2025.2500417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Leukemia-initiating cells (LICs) are a critical subset of cells driving acute myeloid leukemia (AML) relapse and resistance to therapy. They possess unique properties, including metabolic, epigenetic, and microenvironmental dependencies, making them promising therapeutic targets. AREAS COVERED This review summarizes preclinical advances in targeting AML LICs, including strategies to exploit metabolic vulnerabilities, such as the reliance on oxidative phosphorylation (OXPHOS), through the use of mitochondrial inhibitors; target epigenetic regulators like DOT1L (Disruptor of Telomeric Silencing 1-like) to disrupt LIC survival mechanisms; develop immunotherapies, including CAR (chimeric antigen receptor) T-cell therapy, and bispecific antibodies; and disrupt LIC interactions with the bone marrow microenvironment by inhibiting supportive niches. EXPERT OPINION LIC-targeted therapies hold significant promise for revolutionizing AML treatment by reducing relapse rates and improving long-term outcomes. However, challenges such as LIC heterogeneity, therapy resistance, and associated toxicity persist. Recent studies have illuminated the distinct biological characteristics of LICs, advancing our understanding of their behavior and vulnerabilities. These insights offer new opportunities to target LICs at earlier disease stages and to explore combination therapies with other targeted treatments, ultimately enhancing therapeutic efficacy and improving patient outcomes.
Collapse
Affiliation(s)
- Jiaxin Dong
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marina Konopleva
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
12
|
Deng H, Wang Q, Tong X, Cui Z, Yang Y, Xiang Y. Recent advances of CAR-T cells in acute myeloid leukemia. Ther Adv Hematol 2025; 16:20406207251326802. [PMID: 40144774 PMCID: PMC11938459 DOI: 10.1177/20406207251326802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 03/28/2025] Open
Abstract
Acute myeloid leukemia (AML), the most common type of leukemia in adults, is a highly heterogeneous and aggressive hematologic malignancy. Since the 20th century, the combination of cytosine arabinoside and anthracyclines has been the most common chemotherapy drug used to treat patients with AML. Although, new targeted medicines have emerged, such as midostaurin and gilteritinib targeting FMS-like tyrosine kinase 3 (FLT3), ivosidenib (isocitrate dehydrogenase 1 (IDH1) inhibitor) and enasidenib (IDH2 inhibitor) targeting IDH, and gemtuzumab ozogamicin targeting CD33, which have changed the treatment strategies of AML. But, until now, hematopoietic stem cell transplantation remains the best treatment option in most cases. However, treatment resistance and relapse are still the major consequences of disease progression in AML, highlighting the urgent need for novel therapeutic approaches. As an alternative, chimeric antigen receptor (CAR)-T cells are engineered T-cells developed as a breakthrough in cancer therapy in recent years, and explored and used in various tumor types. In particular, it has achieved remarkable efficacy in the field of relapsed and refractory B lymphocyte tumors. This review mainly summarizes and discusses the research progress and the clinical application of CAR-T cell immunotherapy in AML in recent years.
Collapse
Affiliation(s)
- Huan Deng
- Department of Medical Laboratory, The People’s Hospital of Leshan, No. 238, Baita Street, Shizhong District, Leshan, Sichuan 614000, China
| | - Qi Wang
- Department of Medical Records and Statistics Room, The People’s Hospital of Leshan, Leshan, Sichuan, China
| | - Xiaodong Tong
- Department of Medical Laboratory, The People’s Hospital of Leshan, Leshan, Sichuan, China
| | - Zhiwei Cui
- Department of Medical Laboratory, The People’s Hospital of Leshan, Leshan, Sichuan, China
| | - Yang Yang
- Department of Medical Laboratory, The People’s Hospital of Leshan, Leshan, Sichuan, China
| | - Ying Xiang
- Department of Medical Laboratory, The People’s Hospital of Leshan, Leshan, Sichuan, China
| |
Collapse
|
13
|
Bubb QR, Balood M, Seir GE, Swartzrock L, Haslett E, Ho K, Xu P, Wiltz SG, Sotillo E, Gruber TA, Richards RM, Mackall CL, Czechowicz A. Development of multivalent CAR T cells as dual immunotherapy and conditioning agents. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200944. [PMID: 40034967 PMCID: PMC11872492 DOI: 10.1016/j.omton.2025.200944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/18/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Hematopoietic stem cell transplantation (HSCT) is the only definitive cure for pediatric acute myeloid leukemia (AML). Despite adjustments in HSCT protocols and improvements in supportive care, 30% of high-risk patients who receive HSCT as part of their therapy still experience disease relapse with high transplant-related mortality. Relapsed AML has a dismal prognosis, and novel therapies are needed. To improve upon the status quo, HSCT would more effectively eliminate relapse-initiating leukemic cells and be delivered with safer, non-genotoxic conditioning. Here, we investigate hematopoietic cytokine receptors (HCRs) and identify that KIT, MPL, and FLT3 are collectively highly expressed in virtually all pediatric AML samples studied. Further, we establish proof-of-concept of a first-in-class chimeric antigen receptor (CAR) T cell that enables simultaneous targeting of KIT, MPL, and FLT3 through a single receptor, which we term the extracellularly linked concatemeric trivalent cytokine (ELECTRIC) CAR. ELECTRIC CARs exhibit potent cytotoxicity against normal and malignant hematopoietic cells in vitro and display anti-HCR activity in a murine xenograft model. We propose that the ELECTRIC system can be the foundation to developing a non-genotoxic, anti-leukemic conditioning regimen to enable safer, more durable efficacy with minimal toxicity.
Collapse
Affiliation(s)
- Quenton Rashawn Bubb
- Stem Cell Biology and Regenerative Medicine Graduate Program, Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammad Balood
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabe Eduardo Seir
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Leah Swartzrock
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ethan Haslett
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katie Ho
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Xu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Saida G. Wiltz
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena Sotillo
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tanja A. Gruber
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca M. Richards
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Crystal L. Mackall
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Blood and Stem Cell Transplantation and Cell Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Agnieszka Czechowicz
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Zhang Y, Chen Z, Zheng J, Chen S, Zhong L, Chen J, Chen C, Sui S, Li Y. Gene Signature-Based Prognostic Model for Acute Myeloid Leukemia: The Role of BATF, EGR1, PD-1, PD-L1, and TIM-3. Int J Med Sci 2025; 22:1875-1884. [PMID: 40225861 PMCID: PMC11983303 DOI: 10.7150/ijms.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/05/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Acute myeloid leukemia (AML) is a malignancy of hematopoietic stem and progenitor cells, with T cell exhaustion linked to poor outcomes. Our previous research has shown that basic leucine zipper ATF-like transcription factor (BATF) and early growth response 1 (EGR1) play a role in chimeric antigen receptor T (CAR-T) cell exhaustion during AML tumor elimination. However, the roles of BATF and EGR1 and their association with immune checkpoint genes in AML prognosis remain underexplored. Methods: Bone marrow (BM) samples from 92 newly diagnosed AML patients at our clinical center (JUN-dataset) were analyzed to detect the expression levels of BATF, EGR1, programmed cell death 1 (PD-1), programmed death-ligand 1 (PD-L1), T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) together with conducting a prognostic assessment. Our findings were validated using RNA sequencing data from 155 AML patients from the TCGA database and 199 AML patients from the Beat-AML database. Results: High BATF expression correlated with poor overall survival (OS) (P = 0.030), whereas high EGR1 expression indicated a favorable prognosis (P = 0.040). Patients with high BATF and low EGR1 expression had worst outcomes (P < 0.001). Among those receiving allogenic hematopoietic stem cell transplantation (allo-HSCT), high BATF expression was linked to shorter OS (P = 0.004). Moreover, a prognostic model incorporating BATF, EGR1, PD-1, PD-L1, and TIM-3 calculated a risk score, with high-risk patients demonstrating significantly shorter OS than low-risk patients in both total AML patients and allo-HSCT recipients (P < 0.001). Similar results were found in both the TCGA and Beat-AML datasets. Conclusions: We establish a prognostic model based on BATF, EGR1, PD-1, PD-L1, and TIM-3 expression that effectively predicts survival outcomes for AML patients and allo-HSCT recipients. This model may provide valuable insights for prognosis assessment and treatment strategies.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/therapy
- Hepatitis A Virus Cellular Receptor 2/genetics
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Prognosis
- Male
- Female
- Early Growth Response Protein 1/genetics
- Early Growth Response Protein 1/metabolism
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Middle Aged
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- Adult
- Biomarkers, Tumor/genetics
- Aged
- Gene Expression Regulation, Leukemic
- Young Adult
Collapse
Affiliation(s)
- Yupei Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Zhixi Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Jiamian Zheng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Liye Zhong
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Jie Chen
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Songnan Sui
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, China
- Central People's Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Peter J, Toppeta F, Trubert A, Danhof S, Hudecek M, Däullary T. Multi-Targeting CAR-T Cell Strategies to Overcome Immune Evasion in Lymphoid and Myeloid Malignancies. Oncol Res Treat 2025; 48:265-279. [PMID: 40090318 DOI: 10.1159/000543806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has become a groundbreaking treatment for hematological malignancies, particularly lymphomas and multiple myeloma, with high remission rates in refractory and relapsed patients. However, most CAR-T therapies target a single antigen, such as CD19, which can result in immune evasion through antigen escape. This mechanism describes the downregulation or complete loss of the targeted antigen by the tumor cells, eventually leading to relapse. To address this issue, multi-targeting strategies like logic-gated CARs, adapter CARs, or combination therapies can increase the potency of CAR-T cells. These approaches aim to minimize immune evasion by targeting multiple antigens simultaneously, thereby increasing treatment durability. Additionally, advanced tools such as next-generation sequencing (NGS), direct stochastic optical reconstruction microscopy (dSTORM), or multiparametric flow cytometry are helping to identify novel tumor-specific targets and improve therapy designs. SUMMARY This review explores the current landscape of CAR-T cell therapies in lymphoid and myeloid malignancies, highlights ongoing clinical trials, and discusses the future of these innovative multi-targeting approaches to improve patient outcome. KEY MESSAGES Antigen escape limits CAR-T cell therapy success, but multi-targeting strategies like logic gates and adapter CARs offer solutions. Optimizing antigen selection and CAR design, along with larger clinical trials, is essential for improving patient outcomes. Personalization using advanced technologies like CRISPR screening and single-cell RNA sequencing can enhance durability and effectiveness of treatments for heavily pretreated patients.
Collapse
Affiliation(s)
- Jessica Peter
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Fabio Toppeta
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Alexandre Trubert
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Sophia Danhof
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Michael Hudecek
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Thomas Däullary
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| |
Collapse
|
16
|
Haubner S, Subklewe M, Sadelain M. Honing CAR T cells to tackle acute myeloid leukemia. Blood 2025; 145:1113-1125. [PMID: 39630061 DOI: 10.1182/blood.2024024063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 03/14/2025] Open
Abstract
ABSTRACT Acute myeloid leukemia (AML) remains a dismal disease with poor prognosis, particularly in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR) therapy has yielded remarkable clinical results in other leukemias and thus has, in principle, the potential to achieve similar outcomes in R/R AML. Redirecting the approved CD19-specific CAR designs against the myeloid antigens CD33, CD123, or CLEC12A has occasionally yielded morphologic leukemia-free states but has so far been marred by threatening myeloablation and early relapses. These safety and efficacy limitations are largely due to the challenge of identifying suitable target antigens and designing adequate receptors for effective recognition and safe elimination of AML. Building on lessons learned from the initial clinical attempts, a new wave of CAR strategies relying on alternative target antigens and innovative CAR designs is about to enter clinical evaluation. Adapted multiantigen targeting, logic gating, and emerging cell engineering solutions offer new possibilities to better direct T-cell specificity and sensitivity toward AML. Pharmacologic modulation and genetic epitope engineering may extend these approaches by augmenting target expression in AML cells or minimizing target expression in normal hematopoietic cells. On/off switches or CAR T-cell depletion may curb excessive or deleterious CAR activity. Investigation of AML-intrinsic resistance and leukemic microenvironmental factors is poised to reveal additional targetable AML vulnerabilities. We summarize here the findings, challenges, and new developments of CAR therapy for AML. These illustrate the need to specifically adapt CAR strategies to the complex biology of AML to achieve better therapeutic outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- Animals
- Antigens, Neoplasm/immunology
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Sascha Haubner
- Columbia Initiative in Cell Engineering and Therapy, Department of Medicine, Columbia University, New York, NY
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Michel Sadelain
- Columbia Initiative in Cell Engineering and Therapy, Department of Medicine, Columbia University, New York, NY
| |
Collapse
|
17
|
Wang Y, Yang X, Liu Y, Li Y. A review of common immunotherapy and nano immunotherapy for acute myeloid leukemia. Front Immunol 2025; 16:1505247. [PMID: 40129984 PMCID: PMC11931025 DOI: 10.3389/fimmu.2025.1505247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy. Traditional chemotherapy methods not only bring serious side effects, but also lead to high recurrence rate and drug resistance in some patients. However, as an emerging therapeutic strategy, immunotherapy has shown great potential in the field of AML treatment in recent years. At present, common immunotherapy methods for AML include monoclonal antibodies, CAR-T cell therapy, and immune checkpoint inhibitors. With the deepening of research and technological progress, especially the application of nanotechnology in medicine, new immunotherapy is expected to become one of the important means for the treatment of acute myeloid leukemia in the future.
Collapse
Affiliation(s)
- Yaoyao Wang
- Department of Pediatrics of Yantai Affiliated Hospital, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Xiancong Yang
- Laboratory Department, Qilu Hospital of ShanDong University Dezhou Hospital, Dezhou, Shandong, China
| | - Yalin Liu
- Department of Pediatrics of Yantai Affiliated Hospital, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
18
|
Du W, Noyan F, McCallion O, Drosdek V, Kath J, Glaser V, Fuster-Garcia C, Yang M, Stein M, Franke C, Pu Y, Weber O, Polansky JK, Cathomen T, Jaeckel E, Hester J, Issa F, Volk HD, Schmueck-Henneresse M, Reinke P, Wagner DL. Gene editing of CD3 epsilon to redirect regulatory T cells for adoptive T cell transfer. Mol Ther 2025; 33:997-1013. [PMID: 39905729 PMCID: PMC11897813 DOI: 10.1016/j.ymthe.2025.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/20/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Adoptive transfer of antigen-specific regulatory T cells (Tregs) is a promising strategy to combat immunopathologies in transplantation and autoimmune diseases. However, their low frequency in peripheral blood poses challenges for both manufacturing and clinical application. Chimeric antigen receptors have been used to redirect the specificity of Tregs, using retroviral vectors. However, retroviral gene transfer is costly, time consuming, and raises safety issues. Here, we explored non-viral CRISPR-Cas12a gene editing to redirect Tregs, using human leukocyte antigen (HLA)-A2-specific constructs for proof-of-concept studies in transplantation models. Knock-in of an antigen-binding domain into the N terminus of CD3 epsilon (CD3ε) gene generates Tregs expressing a chimeric CD3ε-T cell receptor fusion construct (TRuC) protein that integrates into the endogenous TCR/CD3 complex. These CD3ε-TRuC Tregs exhibit potent antigen-dependent activation while maintaining responsiveness to TCR/CD3 stimulation. This enables preferential enrichment of TRuC-redirected Tregs over CD3ε knockout Tregs via repetitive CD3/CD28 stimulation in a good manufacturing practice-compatible expansion system. CD3ε-TRuC Tregs retained their phenotypic, epigenetic, and functional identity. In a humanized mouse model, HLA-A2-specific CD3ε-TRuC Tregs demonstrate superior protection of allogeneic HLA-A2+ skin grafts from rejection compared with polyclonal Tregs. This approach provides a pathway for developing clinical-grade CD3ε-TRuC-based Treg cell products for transplantation immunotherapy and other immunopathologies.
Collapse
Affiliation(s)
- Weijie Du
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Fatih Noyan
- Department of Gastroenterology, Infectious Diseases and Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Oliver McCallion
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Science, University of Oxford, Oxford OX3 9DU, UK
| | - Vanessa Drosdek
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jonas Kath
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Viktor Glaser
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Carla Fuster-Garcia
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mingxing Yang
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Maik Stein
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Clemens Franke
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Yaolin Pu
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Olaf Weber
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), University of Bonn, Biomedical Center II, Venusberg Campus 1, 53127 Bonn, Germany
| | - Julia K Polansky
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; German Rheumatism Research Centre, Deutsches Rheuma-Forschungszentrum, ein Leibniz Institut, Berlin, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Infectious Diseases and Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany; Department of Liver Transplantation, Multi Organ Transplant Program, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Science, University of Oxford, Oxford OX3 9DU, UK
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Science, University of Oxford, Oxford OX3 9DU, UK
| | - Hans-Dieter Volk
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dimitrios L Wagner
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany; Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Ye X, Ge M, Tan M, Wu Y, Zhang H, Fu Z. CD19 -targeted CAR T therapy treating hematologic malignancies: hidden danger is the next neighbor to security? Front Immunol 2025; 16:1490491. [PMID: 40103829 PMCID: PMC11914092 DOI: 10.3389/fimmu.2025.1490491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
CD19-targeted chimeric antigen receptor (CAR) T-cell therapy has achieved marvelous results in the treatment of patients with relapsed and/or refractory B-cell lymphomas, B-cell acute lymphoblastic leukemia, and multiple myeloma. As a new treatment method that has changed the existing treatment paradigm, there has been a short time from its emergence to FDA approval. However, with the increasing number of cases and the passage of time, hidden problems have gradually been exposed. In this review, we summarize the short- and long-term toxicity, such as secondary T-cell tumors and lethal CAR tumors, of patients with hematologic malignancies treated with CD19-CAR-T cells, including cytokine release syndrome (CRS), ICANS, and secondary malignancies with low occurrence rates but high mortality, such as secondary T cell tumors and lethal CAR tumors, which may be related to the gene modification mechanism of viral vectors currently approved for CAR-T cells. We also discuss potential investigational strategies designed to improve the safety of CAR-T-cell therapy.
Collapse
Affiliation(s)
- Xueshuai Ye
- Affiliated Hospital of Hebei Engineering University and School of Clinical Medicine, Hebei University of Engineering, Handan, China
| | - Min Ge
- Affiliated Hospital of Hebei Engineering University and School of Clinical Medicine, Hebei University of Engineering, Handan, China
| | - Mengtian Tan
- Affiliated Hospital of Hebei Engineering University and School of Clinical Medicine, Hebei University of Engineering, Handan, China
| | - Yongqiang Wu
- Gene Editing Research Center, Hebei University of Science and Technology, Shijiazhuang, China
| | - Haiqiang Zhang
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zexian Fu
- Medical College, Hebei University of Engineering, Handan, China
| |
Collapse
|
20
|
Wang X, Li L, Liu D, Jin Y, Zhao X, Li S, Hou R, Guan Z, Ma W, Zheng J, Lv M, Shi M. LILRB4 as a novel immunotherapeutic target for multiple diseases. Biochem Pharmacol 2025; 233:116762. [PMID: 39842553 DOI: 10.1016/j.bcp.2025.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Immune checkpoints are critical for maintaining autoimmune homeostasis and are implicated in various autoimmune diseases, with their significance increasingly recognized. Investigating the functions and mechanisms of these checkpoints is essential for the development of more effective treatments. Leukocyte immunoglobulin-like receptor subfamily B member 4 (LILRB4) stands out as a unique immune checkpoint, with limited expression in most normal tissues but prominent presence in various hematological and solid tumors. It is also expressed on numerous immune and stromal cells, functioning as both a "Tumor Immune Checkpoint" and a "Tumor Stromal Immune Checkpoint." Due to its distinct expression profile, LILRB4 plays a pivotal role in tumors, autoimmune diseases, allergic reactions, and the maintenance of immune homeostasis during transplantation and pregnancy. A thorough understanding of its ligands, functions, mechanisms, and ongoing therapeutic strategies targeting LILRB4 will be crucial for the development of advanced therapeutic options. This review examines LILRB4 expression and function across multiple diseases and discusses therapeutic approaches targeting LILRB4 in various contexts. Additionally, the potential of combining current drugs with LILRB4-targeted therapies is explored. Challenges in developing LILRB4-targeting drugs are also addressed, offering valuable insights for future research.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Lanying Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Yuhang Jin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Wen Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Ming Lv
- Hangzhou Sumgen Biotech Co., Ltd., Hangzhou, Zhejiang, PR China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
21
|
Zhang B, Wu J, Jiang H, Zhou M. Strategies to Overcome Antigen Heterogeneity in CAR-T Cell Therapy. Cells 2025; 14:320. [PMID: 40072049 PMCID: PMC11899321 DOI: 10.3390/cells14050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Chimeric antigen receptor (CAR) gene-modified T-cell therapy has achieved significant success in the treatment of hematological malignancies. However, this therapy has not yet made breakthroughs in the treatment of solid tumors and still faces issues of resistance and relapse in hematological cancers. A major reason for these problems is the antigenic heterogeneity of tumor tissues. This review outlines the antigenic heterogeneity encountered in CAR-T cell therapy and the corresponding strategies to address it. These strategies include using combination therapy to increase the abundance of target antigens, optimizing the structure of CARs to enhance sensitivity to low-density antigens, developing multi-targeted CAR-T cells, and reprogramming the TME to activate endogenous immunity. These approaches offer new directions for overcoming tumor antigenic heterogeneity in CAR-T cell therapy.
Collapse
Affiliation(s)
- Bohan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| | - Jiawen Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| | - Hua Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
- CARsgen Therapeutics, Shanghai 200231, China
| | - Min Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| |
Collapse
|
22
|
Tharakan S, Tremblay D, Azzi J. Adoptive cell therapy in acute myeloid leukemia: the current landscape and emerging strategies. Leuk Lymphoma 2025; 66:204-217. [PMID: 39453877 DOI: 10.1080/10428194.2024.2414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/27/2024]
Abstract
Efforts to produce adoptive cell therapies in AML have been largely unfruitful, despite the success seen in lymphoid malignancies. Identifying targetable antigens on leukemic cells that are absent on normal progenitor cells remains a major obstacle, as is the hostile tumor microenvironment created by AML blasts. In this review, we summarize the challenges in the development of adoptive cell therapies such as CAR-T, CAR-NK, and TCR-T cells in AML, discussing both autologous and allogeneic therapies. We also discuss methods to address myelotoxicity associated with these therapies, including rapidly switchable CAR platforms and CRISPR-Cas9 genetic engineering of hematopoietic stem cells. Finally, we present the current clinical landscape in these areas, along with future directions in the field.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/trends
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Tumor Microenvironment/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Animals
- Hematopoietic Stem Cell Transplantation
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
Collapse
Affiliation(s)
- Serena Tharakan
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacques Azzi
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Sui M, Liu T, Song X, Li J, Ding H, Liu Y, Wang X, Liu H, Xue Y, Qi J, Zhang M, Zhao S, Zhu Q. The molecular receptor NKBB enhances the persistence and anti-hepatocellular carcinoma activity of GPC3 CAR-T cells. Pharmacol Res 2025; 212:107619. [PMID: 39842473 DOI: 10.1016/j.phrs.2025.107619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Chimeric antigen receptor (CAR) T cells have encouraging results in the treatment of hematological malignancies. However, CAR-T therapy still faces numerous challenges against solid tumors, such as hepatocellular carcinoma (HCC), owing to heterogeneous antigen expression in tumor cells, limited persistence of CAR-T cells, etc. Therefore, to treat HCC more effectively, we connected the molecular receptor NKBB to a second-generation glypican-3 (GPC3) CAR to construct GC3328z-NKBB CAR-T cells, which have double specific targets of GPC3 and NKG2DLs (natural killer group 2, member D ligands), dual co-stimulation of CD28 and 41BB, and a single CD3ζ chain. Our study showed that the molecular receptor NKBB conferred GPC3 CAR-T cells with enhanced migration and infiltration abilities towards HCC, higher central memory T (TCM) cell proportion and proliferation capacity, and reduced exhaustion level. GC3328z-NKBB CAR-T cells exhibited improved cytotoxicity against HCC cells and prolonged persistence. The cathepsin L/interleukin-17 (CTSL/IL-17) axis contributed to the superior anti-HCC activity of GC3328z-NKBB CAR-T cells. Overall, the molecular receptor NKBB significantly increased the persistence of GPC3 CAR-T cells, and GC3328z-NKBB CAR-T cells possessed potent anti-HCC activity in mice, providing a new strategy for the potential improvement of adoptive T cell therapy in the treatment of HCC.
Collapse
Affiliation(s)
- Minghao Sui
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Tiantian Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xuanli Song
- Institute for Bacterial Diseases, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Ji Li
- Department of Spleen and stomach Hepatology, Digestive Center, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, China
| | - Han Ding
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yuqian Liu
- Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xinyu Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Huimin Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuchan Xue
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jianni Qi
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Miao Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Songbo Zhao
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Qiang Zhu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
24
|
Shan M, Xu L, Yang W, Liu S, Cui Z. Identification of hub genes and immune-related pathways in acute myeloid leukemia: insights from bioinformatics and experimental validation. Front Immunol 2025; 15:1511824. [PMID: 39867885 PMCID: PMC11757261 DOI: 10.3389/fimmu.2024.1511824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Background This study aims to identify the hub genes and immune-related pathways in acute myeloid leukemia (AML) to provide new theories for immunotherapy. Methods We use bioinformatics methods to find and verify the hub gene. At the same time, we use the results of GSEA enrichment analysis to find immune-related mediators. Through Mendelian randomization(MR) analysis, on the one hand, we look for related immune cells, and on the other hand, we use it to determine the causal relationship among immune cells, immune mediators, and AML. Finally, in vitro experiments are conducted to further verify and improve the reliability and physiological functions of the hub gene and its immune-related pathways. Results Complement Factor D(CFD) gene is identified as the highly expressed hub gene and is positively correlated with IL-2. IL-2 is also positively correlated with CD27 on CD24+CD27+B cells, JAK/STAT, and PI3K/Akt. The latter three are positively correlated with the occurrence and development of AML. Conclusion We conclude that CFD gene uses IL-2 as a mediator to promote the disease progression of AML by promoting the CD27 on CD24+CD27+B cells, JAK-STAT, and PI3K-Akt pathways.
Collapse
Affiliation(s)
- Mingliang Shan
- Postdoctoral Workstation, Liaocheng People’s Hospital, Liaocheng, China
- Postdoctoral Mobile Stations, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Management, Shandong Second Medical University, Weifang, China
| | - Li Xu
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhe Yang
- Post - Doctoral Innovation Practice Base, Gaomi Maternity and Child Health Hospital, Gaomi, China
| | - Shiguo Liu
- Postdoctoral Mobile Stations, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhaoqing Cui
- Postdoctoral Workstation, Liaocheng People’s Hospital, Liaocheng, China
| |
Collapse
|
25
|
Jambon S, Sun J, Barman S, Muthugounder S, Bito XR, Shadfar A, Kovach AE, Wood BL, Thoppey Manoharan V, Morrissy AS, Bhojwani D, Wayne AS, Pulsipher MA, Kim YM, Asgharzadeh S, Parekh C, Moghimi B. CD33-CD123 IF-THEN Gating Reduces Toxicity while Enhancing the Specificity and Memory Phenotype of AML-Targeting CAR-T Cells. Blood Cancer Discov 2025; 6:55-72. [PMID: 39624992 PMCID: PMC11707512 DOI: 10.1158/2643-3230.bcd-23-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/11/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
SIGNIFICANCE Our study demonstrates the use of "IF-THEN" SynNotch-gated CAR-T cells targeting CD33 and CD123 in AML reduces off-tumor toxicity. This strategy enhances T-cell phenotype, improves expansion, preserves HSPCs, and mitigates cytokine release syndrome-addressing critical limitations of existing AML CAR-T therapies.
Collapse
MESH Headings
- Humans
- Sialic Acid Binding Ig-like Lectin 3/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Interleukin-3 Receptor alpha Subunit/metabolism
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Phenotype
- Animals
Collapse
Affiliation(s)
- Samy Jambon
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jianping Sun
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shawn Barman
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sakunthala Muthugounder
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Xue Rachel Bito
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Armita Shadfar
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alexandra E. Kovach
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brent L. Wood
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - A. Sorana Morrissy
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Deepa Bhojwani
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alan S. Wayne
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Michael A. Pulsipher
- Division of Hematology and Oncology, Primary Children’s Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, Utah
| | - Yong-Mi Kim
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shahab Asgharzadeh
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chintan Parekh
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Babak Moghimi
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
26
|
Yao CD, Davis KL. Correlative studies reveal factors contributing to successful CAR-T cell therapies in cancer. Cancer Metastasis Rev 2024; 44:15. [PMID: 39625613 DOI: 10.1007/s10555-024-10232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Cellular and targeted immunotherapies have revolutionized cancer treatments in the last several decades. Successful cellular therapies require both effective and durable cytotoxic activity from the immune cells as well as an accessible and susceptible response from targeted cancer cells. Correlative studies from clinical trials as well as real-world data from FDA-approved therapies have revealed invaluable insights about immune cell factors and cancer cell factors that impact rates of response and relapse to cellular therapies. This review focuses on the flagship cellular therapy of engineered chimeric antigen receptor T-cells (CAR-T cells). Within the CAR-T cell compartment, we discuss discoveries about T-cell phenotype, transcriptome, epigenetics, cytokine signaling, and metabolism that inform the cell manufacturing process to produce the most effective and durable CAR-T cells. Within the cancer cell compartment, we discuss mechanisms of resistance and relapse caused by mutations, alternative splicing, post-transcriptional modifications, and cellular reprogramming. Continued correlative and mechanistic studies are required to help us further optimize cellular therapies in a variety of malignancies.
Collapse
Affiliation(s)
- Catherine D Yao
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kara L Davis
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
27
|
Volta L, Myburgh R, Pellegrino C, Koch C, Maurer M, Manfredi F, Hofstetter M, Kaiser A, Schneiter F, Müller J, Buehler MM, De Luca R, Favalli N, Magnani CF, Schroeder T, Neri D, Manz MG. Efficient combinatorial adaptor-mediated targeting of acute myeloid leukemia with CAR T-cells. Leukemia 2024; 38:2598-2613. [PMID: 39294295 PMCID: PMC11588662 DOI: 10.1038/s41375-024-02409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
CAR T-cell products targeting lineage-specific cell-of-origin antigens, thereby eliminating both tumor and healthy counterpart cells, are currently clinically approved therapeutics in B- and plasma-cell malignancies. While they represent a major clinical improvement, they are still limited in terms of efficacy by e.g. single, sometimes low-expressed antigen targeting, and in terms of safety by e.g., lack of on-off activity. Successful cell-of-origin non-discriminative targeting of heterogeneous hematopoietic stem and progenitor cell malignancies, such as acute myeloid leukemia (AML), will require antigen-versatile targeting and off-switching of effectors in order to then allow rescue by hematopoietic stem cell transplantation (HSCT), preventing permanent myeloablation. To address this, we developed adaptor-CAR (AdFITC-CAR) T-cells targeting fluoresceinated AML antigen-binding diabody adaptors. This platform enables the use of adaptors matching the AML-antigen-expression profile and conditional activity modulation. Combining adaptors significantly improved lysis of AML cells in vitro. In therapeutic xenogeneic mouse models, AdFITC-CAR T-cells co-administered with single diabody adaptors were as efficient as direct CAR T-cells, and combinatorial use of adaptors further enhanced therapeutic efficacy against both, cell lines and primary AML. Collectively, this study provides proof-of-concept that AdFITC-CAR T-cells and combinations of adaptors can efficiently enhance immune-targeting of AML.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Humans
- Animals
- Mice
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Laura Volta
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Pellegrino
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Koch
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Monique Maurer
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Francesco Manfredi
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Mara Hofstetter
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Anne Kaiser
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Florin Schneiter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jan Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marco M Buehler
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Chiara F Magnani
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Dario Neri
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Philochem AG, Otelfingen, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
| |
Collapse
|
28
|
D'Avanzo C, Blaeschke F, Lysandrou M, Ingelfinger F, Zeiser R. Advances in cell therapy: progress and challenges in hematological and solid tumors. Trends Pharmacol Sci 2024; 45:1119-1134. [PMID: 39603960 DOI: 10.1016/j.tips.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024]
Abstract
Cell-based therapies harness the endogenous ability of the immune system to fight cancer and have shown promising results in the treatment of hematological malignancies. However, their clinical application beyond B cell malignancies is hampered by numerous hurdles, ranging from relapsed disease to a hostile tumor microenvironment (TME). Recent advances in cell engineering and TME modulation may expand the applicability of these therapies to a wider range of cancers, creating new treatment possibilities. Breakthroughs in advanced gene editing and sophisticated cell engineering, have also provided promising solutions to longstanding challenges. In this review, we examine the challenges and future directions of the most prominent cell-based therapies, including chimeric antigen receptor (CAR)-T cells, tumor-infiltrating lymphocytes (TILs), and natural killer (NK) cells, and emerging modalities. We provide a comprehensive analysis of emerging cell types and combination strategies translated into clinical trials, offering insights into the next generation of cell-based cancer treatments.
Collapse
Affiliation(s)
- Claudia D'Avanzo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Blaeschke
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Heidelberg University Hospital, Heidelberg, Germany
| | - Memnon Lysandrou
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Ingelfinger
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
29
|
Volta L, Myburgh R, Hofstetter M, Koch C, Kiefer JD, Gobbi C, Manfredi F, Zimmermann K, Kaufmann P, Fazio S, Pellegrino C, Russkamp NF, Villars D, Matasci M, Maurer M, Mueller J, Schneiter F, Büschl P, Harrer N, Mock J, Balabanov S, Nombela-Arrieta C, Schroeder T, Neri D, Manz MG. A single-chain variable fragment-based bispecific T-cell activating antibody against CD117 enables T-cell mediated lysis of acute myeloid leukemia and hematopoietic stem and progenitor cells. Hemasphere 2024; 8:e70055. [PMID: 39564539 PMCID: PMC11574467 DOI: 10.1002/hem3.70055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024] Open
Abstract
Acute myeloid leukemia (AML) derives from hematopoietic stem and progenitor cells (HSPCs). To date, no AML-exclusive, non-HSPC-expressed cell-surface target molecules for AML selective immunotherapy have been identified. Therefore, to still apply surface-directed immunotherapy in this disease setting, time-limited combined immune-targeting of AML cells and healthy HSPCs, followed by hematopoietic stem cell transplantation (HSCT), might be a viable therapeutic approach. To explore this, we generated a recombinant single-chain variable fragment-based bispecific T-cell engaging and activating antibody directed against CD3 on T-cells and CD117, the surface receptor for stem cell factor, expressed by both AML cells and healthy HSPCs. Bispecific CD117xCD3 targeting induced lysis of CD117-positive healthy human HSPCs, AML cell lines and patient-derived AML blasts in the presence of T-cells at subnanomolar concentrations in vitro. Furthermore, in immunocompromised mice, engrafted with human CD117-expressing leukemia cells and human T-cells, the bispecific molecule efficiently prevented leukemia growth in vivo. Additionally, in immunodeficient mice transplanted with healthy human HSPCs, the molecule decreased the number of CD117-positive cells in vivo. Therefore, bispecific CD117xCD3 targeting might be developed clinically in order to reduce CD117-expressing leukemia cells and HSPCs prior to HSCT.
Collapse
|
30
|
Meng S, Hara T, Miura Y, Ishii H. Fibroblast activation protein constitutes a novel target of chimeric antigen receptor T-cell therapy in solid tumors. Cancer Sci 2024; 115:3532-3542. [PMID: 39169645 PMCID: PMC11531970 DOI: 10.1111/cas.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/23/2024] Open
Abstract
With recent advances in tumor immunotherapy, chimeric antigen receptor T (CAR-T) cell therapy has achieved unprecedented success in several hematologic tumors, significantly improving patient prognosis. However, in solid tumors, the efficacy of CAR-T cell therapy is limited because of high antigen uncertainty and the extremely restrictive tumor microenvironment (TME). This challenge has led to the exploration of new targets, among which fibroblast activation protein (FAP) has gained attention for its relatively stable and specific expression in the TME of various solid tumors, making it a potential new target for CAR-T cell therapy. This study comprehensively analyzed the biological characteristics of FAP and discussed its potential application in CAR-T cell therapy, including the theoretical basis, and preclinical and clinical research progress of targeting FAP with CAR-T cell therapy for solid tumor treatment. The challenges and future optimization directions of this treatment strategy were also explored, providing new perspectives and strategies for CAR-T cell therapy in solid tumors.
Collapse
Grants
- 2024 Princess Takamatsu Cancer Research Fund
- JP23ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- JP24ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- A20H0054100 Ministry of Education, Culture, Sports, Science and Technology
- T23KK01530 Ministry of Education, Culture, Sports, Science and Technology
- T22K195590 Ministry of Education, Culture, Sports, Science and Technology
- A22H031460 Ministry of Education, Culture, Sports, Science and Technology
- T23K183130 Ministry of Education, Culture, Sports, Science and Technology
- T23K195050 Ministry of Education, Culture, Sports, Science and Technology
- T24K199920 Ministry of Education, Culture, Sports, Science and Technology
- IFO Research Communications (2024)
- Oceanic Wellness Foundation (2024)
- Princess Takamatsu Cancer Research Fund
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yutaka Miura
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research, Tokyo Institute of TechnologyYokohamaKanagawaJapan
- Department of Life Science and Technology, School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
31
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024; 17:797-818. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
32
|
Testa U, Castelli G, Pelosi E. Membrane Antigen Targeting in Acute Myeloid Leukemia Using Antibodies or CAR-T Cells. Cancers (Basel) 2024; 16:3627. [PMID: 39518068 PMCID: PMC11545207 DOI: 10.3390/cancers16213627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the emerging area of the therapeutic use of antibodies and chimeric antigen receptor (CAR)-T cells for the treatment of acute myeloid leukemia (AML). Through a detailed analysis of the existing literature, this paper highlights the different categories of AML antigens for immunotherapeutic targeting, the most recent applications on antibodies, including bispecific immune cell engagers and CAR-T cells, to the therapy of patients with refractory/relapsing AML The studies performed in AML patients using BisAbs and CAR-T cells have shown that only a limited number of AML patients show sustained responses to these therapies, thus underlying AML heterogeneity as a major challenge. Several studies have addressed the potential mechanisms underlying the resistance of AMLs to antibody-directed immunotherapies. A better understanding of the barriers hampering the successful development of AML immunotherapy is required. However, in spite of the limitations, the studies recently carried out have shown the peculiar sensitivity of some AML subtypes to immunotherapy and have provided the basis for future studies, such as multiplex antigen targeting, which hold the promise of successful development.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.C.); (E.P.)
| | | | | |
Collapse
|
33
|
Lv R, Guo Y, Liu W, Dong G, Liu X, Li C, Ren Y, Zhang Z, Neo SY, Mao W, Wu J. Revolutionizing cancer treatment: the emerging potential and potential challenges of in vivo self-processed CAR cell therapy. Theranostics 2024; 14:7424-7447. [PMID: 39659573 PMCID: PMC11626932 DOI: 10.7150/thno.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) cell immunotherapies, including CAR-T, CAR-Macrophages, CAR-Natural Killer, CAR-γδ T, etc., have demonstrated significant advancements in the treatment of both hematologic malignancies and solid tumors. Despite the notable successes of traditional CAR cell manufacturing, its application remains constrained by the complicated production process and expensive costs. Consequently, efforts are focused on streamlining CAR cell production to enhance efficacy and accessibility. Among numerous proposed strategies, direct in vivo generation of CAR cells represents the most substantial technical challenge, yet holding great promise for achieving clinical efficacy. Herein, we outlined the current state-of-the-art in vivo CAR therapy, including CAR technology development, transfection vectors, and influence factors of construction of CAR in vivo. We also reviewed the types and characteristics of different delivery systems and summarized the advantages of in vivo CAR cell therapy, such as rapid preparation and cost-effectiveness. Finally, we discussed the limitations, including technical issues, challenges in target and signal design, and cell-related constraints. Meanwhile, strategies have correspondingly been proposed to advance the development of CAR cell therapy, in order to open the new horizons on cancer treatment.
Collapse
Affiliation(s)
- Ruijie Lv
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yanting Guo
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Guangjian Dong
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiangyin Liu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Caihui Li
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yi Ren
- Department of Clinical Pharmacy, School of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261042, China
| | - Zipeng Zhang
- Medical Science and Technology Innovation Center Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117, China
| | - Shi-Yong Neo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jing Wu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
34
|
Saito S, Nakazawa Y. CAR-T cell therapy in AML: recent progress and future perspectives. Int J Hematol 2024; 120:455-466. [PMID: 38963636 DOI: 10.1007/s12185-024-03809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Despite several small-molecule drugs that have revolutionized the current treatment strategy for acute myeloid leukemia (AML), hematopoietic stem cell transplantation remains the only curative treatment in most cases to date. Chimeric antigen receptor (CAR)-T cell therapy is one of the most promising next-generation cancer therapies for hematological malignancies and is clinically available for treatment of AML. However, developing AML-targeted CAR-T therapy is challenging because of the heterogeneity of target antigen expression across leukemic cells and patients, the difficulty in excluding on-/off-target tumor effects, and the immunosuppressive tumor microenvironment. To date, various targets, including CD33, NKG2D, CD123, CLL-1, and CD7, have been actively studied for CAR-T cells. Although no CAR-T cell products are close to practical use, several clinical trials have shown promising results, particularly for CAR-T cells targeting CLL-1 or CD123. Meanwhile, research exploring the ideal target for AML-targeted CAR-T therapy continues. Furthermore, as collecting autologous lymphocytes from patients with AML is difficult, development of off-the-shelf CAR-T products is being actively pursued. This review discusses the challenges in AML-targeted CAR-T cell therapy development from the perspectives of target antigen characteristics and AML-specific on-target/off-tumor toxicity. Moreover, it discusses the clinical development and prospects of AML-targeting CAR-T cells.
Collapse
Affiliation(s)
- Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan.
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University, Matsumoto, Japan.
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University, Matsumoto, Japan
| |
Collapse
|
35
|
Frigault MJ, Graham CE, Berger TR, Ritchey J, Horick NK, El-Jawahri A, Scarfò I, Schmidts A, Haradhvala NJ, Wehrli M, Lee WH, Parker AL, Wiggin HR, Bouffard A, Dey A, Leick MB, Katsis K, Elder EL, Dolaher MA, Cook DT, Chekmasova AA, Huang L, Nikiforow S, Daley H, Ritz J, Armant M, Preffer F, DiPersio JF, Nardi V, Chen YB, Gallagher KME, Maus MV. Phase 1 study of CAR-37 T cells in patients with relapsed or refractory CD37+ lymphoid malignancies. Blood 2024; 144:1153-1167. [PMID: 38781564 PMCID: PMC11830985 DOI: 10.1182/blood.2024024104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT We report a first-in-human clinical trial using chimeric antigen receptor (CAR) T cells targeting CD37, an antigen highly expressed in B- and T-cell malignancies. Five patients with relapsed or refractory CD37+ lymphoid malignancies were enrolled and infused with autologous CAR-37 T cells. CAR-37 T cells expanded in the peripheral blood of all patients and, at peak, comprised >94% of the total lymphocytes in 4 of 5 patients. Tumor responses were observed in 4 of 5 patients with 3 complete responses, 1 mixed response, and 1 patient whose disease progressed rapidly and with relative loss of CD37 expression. Three patients experienced prolonged and severe pancytopenia, and in 2 of these patients, efforts to ablate CAR-37 T cells, which were engineered to coexpress truncated epidermal growth factor receptor, with cetuximab were unsuccessful. Hematopoiesis was restored in these 2 patients after allogeneic hematopoietic stem cell transplantation. No other severe, nonhematopoietic toxicities occurred. We investigated the mechanisms of profound pancytopenia and did not observe activation of CAR-37 T cells in response to hematopoietic stem cells in vitro or hematotoxicity in humanized models. Patients with pancytopenia had sustained high levels of interleukin-18 (IL-18) with low levels of IL-18 binding protein in their peripheral blood. IL-18 levels were significantly higher in CAR-37-treated patients than in both cytopenic and noncytopenic cohorts of CAR-19-treated patients. In conclusion, CAR-37 T cells exhibited antitumor activity, with significant CAR expansion and cytokine production. CAR-37 T cells may be an effective therapy in hematologic malignancies as a bridge to hematopoietic stem cell transplant. This trial was registered at www.ClinicalTrials.gov as #NCT04136275.
Collapse
Affiliation(s)
- Matthew J. Frigault
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Charlotte E. Graham
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Trisha R. Berger
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Julie Ritchey
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Nora K. Horick
- Department of Biostatistics, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Areej El-Jawahri
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Irene Scarfò
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Andrea Schmidts
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Nicholas J. Haradhvala
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Marc Wehrli
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Won-Ho Lee
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Aiyana L. Parker
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Hadley R. Wiggin
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Amanda Bouffard
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Aonkon Dey
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Mark B. Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Katelin Katsis
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Eva L. Elder
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Maria A. Dolaher
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Daniella T. Cook
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Alena A. Chekmasova
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Lu Huang
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Sarah Nikiforow
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
- Connell and O’Reilly Families Cell Manipulation Core Facility, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Heather Daley
- Connell and O’Reilly Families Cell Manipulation Core Facility, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jerome Ritz
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
- Connell and O’Reilly Families Cell Manipulation Core Facility, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Fred Preffer
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - John F. DiPersio
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Valentina Nardi
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Yi-Bin Chen
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Kathleen M. E. Gallagher
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Marcela V. Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
36
|
Di Meo F, Kale B, Koomen JM, Perna F. Mapping the cancer surface proteome in search of target antigens for immunotherapy. Mol Ther 2024; 32:2892-2904. [PMID: 39068512 PMCID: PMC11403220 DOI: 10.1016/j.ymthe.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
Immune-based therapeutic interventions recognizing proteins localized on the cell surface of cancer cells are emerging as a promising cancer treatment. Antibody-based therapies and engineered T cells are now approved by the Food and Drug Administration to treat some malignancies. These therapies utilize a few cell surface proteins highly expressed on cancer cells to release the negative regulation of immune activation that limits antitumor responses (e.g., PD-1, PD-L1, CTLA4) or to redirect the T cell specificity toward blood cancer cells (e.g., CD19 and B cell maturation antigen). One limitation preventing broader application of these novel therapeutic strategies to all cancer types is the lack of suitable target antigens for all indications owing in part to the challenges in identifying such targets. Ideal target antigens are cell surface proteins highly expressed on malignant cells and absent in healthy tissues. Technological advances in mass spectrometry, enrichment protocols, and computational tools for cell surface protein isolation and annotation have recently enabled comprehensive analyses of the cancer cell surface proteome, from which novel immunotherapeutic target antigens may emerge. Here, we review the most recent progress in this field.
Collapse
Affiliation(s)
- Francesco Di Meo
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Tampa, FL, USA
| | - Brandon Kale
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Tampa, FL, USA
| | - John M Koomen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Fabiana Perna
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Tampa, FL, USA.
| |
Collapse
|
37
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
38
|
Perna F, Parekh S, Diorio C, Smith M, Subklewe M, Mehta R, Locke FL, Shah NN. CAR T-cell toxicities: from bedside to bench, how novel toxicities inform laboratory investigations. Blood Adv 2024; 8:4348-4358. [PMID: 38861351 PMCID: PMC11375260 DOI: 10.1182/bloodadvances.2024013044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024] Open
Abstract
ABSTRACT Multiple chimeric antigen receptor (CAR) T-cell therapies are US Food and Drug Administration-approved, and several are under development. Although effective for some cancers, toxicities remain a limitation. The most common toxicities, that is, cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, are well described. With increasing utilization, providers worldwide are reporting other emergent and often complicated toxicities. Given the evolving toxicity profiles and urgent need to catalog these emerging and emergent CAR T-cell toxicities and describe management approaches, the American Society of Hematology Subcommittee on Emerging Gene and Cell Therapies organized the first scientific workshop on CAR T-cell toxicities during the annual society meeting. The workshop functioned to (1) aggregate reports of CAR T-cell emergent toxicities, including movement disorders after B-cell maturation antigen CAR T cell, coagulation abnormalities, and prolonged cytopenia; (2) disseminate bedside-to-bench efforts elucidating pathophysiological mechanisms of CAR T-cell toxicities, including the intestinal microbiota and systemic immune dysregulation; and (3) highlight gaps in the availability of clinical tests, such as cytokine measurements, which could be used to expand our knowledge around the monitoring of toxicities. Key themes emerged. First, although clinical manifestations may develop before the pathophysiologic mechanisms are understood, they must be studied to aid in the detection and prevention of such toxicities. Second, systemic immune dysregulation appears to be central to these emergent toxicities, and research is needed to elucidate the links between tumors, CAR T cells, and microbiota. Finally, there was a consensus around the urgency to create a repository to capture emergent CAR T-cell toxicities and the real-world management.
Collapse
Affiliation(s)
- Fabiana Perna
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Samir Parekh
- Division of Hematology and Medical Oncology, The Tish Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Caroline Diorio
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Melody Smith
- Department of Medicine, Stanford University, Stanford, CA
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rakesh Mehta
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Frederick L. Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
39
|
Canichella M, de Fabritiis P. Cell-Based Treatment in Acute Myeloid Leukemia Relapsed after Allogeneic Stem Cell Transplantation. Biomedicines 2024; 12:1721. [PMID: 39200186 PMCID: PMC11351713 DOI: 10.3390/biomedicines12081721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Allogeneic stem cell transplant (ASCT) remains the only treatment option for patients with high-risk acute myeloid leukemia (AML). Recurrence of leukemic cells after ASCT represents a dramatic event associated with a dismal outcome, with a 2-year survival rate of around 20%. Adoptive cell therapy (ACT) is a form of cell-based strategy that has emerged as an effective therapy to treat and prevent post-ASCT recurrence. Lymphocytes are the principal cells used in this therapy and can be derived from a hematopoietic stem cell donor, the patient themselves, or healthy donors, after being engineered to express the chimeric antigen receptor (CAR-T and UniCAR-T). In this review, we discuss recent advances in the established strategy of donor lymphocyte infusion (DLI) and the progress and challenges of CAR-T cells.
Collapse
Affiliation(s)
| | - Paolo de Fabritiis
- Hematology Unit, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy;
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
40
|
Keshari KR, Heller DA, Boltyanskiy R, Hricak H, Magaldi T, Overholtzer M. Engineering focusing on cancer. Cancer Cell 2024; 42:1138-1141. [PMID: 38848719 DOI: 10.1016/j.ccell.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
While cancer research and care have benefited from revolutionary advances in the ability to manipulate and study living systems, the field is limited by a lack of synergy to leverage the power of engineering approaches. Cancer engineering is an emerging subfield of biomedical engineering that unifies engineering and cancer biology to better understand, diagnose, and treat cancer. We highlight cancer engineering's unique challenges, the importance of creating dedicated centers and departments that enable translational collaboration, and educational approaches to arm a new generation of scientists with engineering expertise and a fundamental understanding of cancer biology to transform clinical cancer care.
Collapse
Affiliation(s)
- Kayvan R Keshari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Gerstner Sloan Kettering School for Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Molecular Imaging and Bioengineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Gerstner Sloan Kettering School for Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Molecular Imaging and Bioengineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Rostislav Boltyanskiy
- Center for Molecular Imaging and Bioengineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hedvig Hricak
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Gerstner Sloan Kettering School for Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Molecular Imaging and Bioengineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas Magaldi
- Gerstner Sloan Kettering School for Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Gerstner Sloan Kettering School for Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Molecular Imaging and Bioengineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
41
|
Restelli C, Ruella M, Paruzzo L, Tarella C, Pelicci PG, Colombo E. Recent Advances in Immune-Based Therapies for Acute Myeloid Leukemia. Blood Cancer Discov 2024; 5:234-248. [PMID: 38904305 PMCID: PMC11215380 DOI: 10.1158/2643-3230.bcd-23-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Despite advancements, acute myeloid leukemia (AML) remains unconquered by current therapies. Evidence of immune evasion during AML progression, such as HLA loss and T-cell exhaustion, suggests that antileukemic immune responses contribute to disease control and could be harnessed by immunotherapy. In this review, we discuss a spectrum of AML immunotherapy targets, encompassing cancer cell-intrinsic and surface antigens as well as targeting in the leukemic milieu, and how they can be tailored for personalized approaches. These targets are overviewed across major immunotherapy modalities applied to AML: immune checkpoint inhibitors, antibody-drug conjugates, therapeutic vaccines, bispecific/trispecific antibodies, and chimeric antigen receptor (CAR)-T and CAR-NK cells. Significance: Immune therapies in AML treatment show evolving promise. Ongoing research aims to customize approaches for varied patient profiles and clinical scenarios. This review covers immune surveillance mechanisms, therapy options like checkpoint inhibitors, antibodies, CAR-T/NK cells, and vaccines, as well as resistance mechanisms and microenvironment considerations.
Collapse
Affiliation(s)
- Cecilia Restelli
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
| | - Marco Ruella
- Center for Cellular Immunotherapies and Cellular Therapy and Transplant, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
| | - Luca Paruzzo
- Center for Cellular Immunotherapies and Cellular Therapy and Transplant, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
| | - Corrado Tarella
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| | - Emanuela Colombo
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
42
|
Naik S, Velasquez MP, Gottschalk S. Chimeric antigen receptor T-cell therapy in childhood acute myeloid leukemia: how far are we from a clinical application? Haematologica 2024; 109:1656-1667. [PMID: 38832421 PMCID: PMC11141645 DOI: 10.3324/haematol.2023.283817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/28/2024] [Indexed: 06/05/2024] Open
Abstract
Recurrent and/or refractory (R/R) pediatric acute myeloid leukemia (AML) remains a recalcitrant disease with poor outcomes. Cell therapy with genetically modified immune effector cells holds the promise to improve outcomes for R/R AML since it relies on cytotoxic mechanisms that are distinct from chemotherapeutic agents. While T cells expressing chimeric antigen receptors (CAR T cells) showed significant anti-AML activity in preclinical models, early phase clinical studies have demonstrated limited activity, irrespective of the targeted AML antigen. Lack of efficacy is most likely multifactorial, including: (i) a limited array of AML-specific targets and target antigen heterogeneity; (ii) the aggressive nature of R/R AML and heavy pretreatment of patients; (iii) T-cell product manufacturing, and (iv) limited expansion and persistence of the CAR T cells, which is in part driven by the immunosuppressive AML microenvironment. Here we review the results of early phase clinical studies with AML-specific CAR T cells, and avenues investigators are exploring to improve their effector function.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Receptors, Chimeric Antigen/immunology
- Immunotherapy, Adoptive/methods
- Child
- Clinical Trials as Topic
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Tumor Microenvironment/immunology
- Animals
Collapse
Affiliation(s)
| | | | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
43
|
Guijarro-Albaladejo B, Marrero-Cepeda C, Rodríguez-Arbolí E, Sierro-Martínez B, Pérez-Simón JA, García-Guerrero E. Chimeric antigen receptor (CAR) modified T Cells in acute myeloid leukemia: limitations and expectations. Front Cell Dev Biol 2024; 12:1376554. [PMID: 38694825 PMCID: PMC11061469 DOI: 10.3389/fcell.2024.1376554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with a poor prognosis despite the advent of novel therapies. Consequently, a major need exists for new therapeutic options, particularly for patients with relapsed/refractory (R/R) AML. In recent years, it has been possible to individualize the treatment of a subgroup of patients, particularly with the emergence of multiple targeted therapies. Nonetheless, a considerable number of patients remain without therapeutic options, and overall prognosis remains poor because of a high rate of disease relapse. In this sense, cellular therapies, especially chimeric antigen receptor (CAR)-T cell therapy, have dramatically shifted the therapeutic options for other hematologic malignancies, such as diffuse large B cell lymphoma and acute lymphoblastic leukemia. In contrast, effectively treating AML with CAR-based immunotherapy poses major biological and clinical challenges, most of them derived from the unmet need to identify target antigens with expression restricted to the AML blast without compromising the viability of the normal hematopoietic stem cell counterpart. Although those limitations have hampered CAR-T cell therapy translation to the clinic, there are several clinical trials where target antigens, such as CD123, CLL-1 or CD33 are being used to treat AML patients showing promising results. Moreover, there are continuing efforts to enhance the specificity and efficacy of CAR-T cell therapy in AML. These endeavors encompass the exploration of novel avenues, including the development of dual CAR-T cells and next-generation CAR-T cells, as well as the utilization of gene editing tools to mitigate off-tumor toxicities. In this review, we will summarize the ongoing clinical studies and the early clinical results reported with CAR-T cells in AML, as well as highlight CAR-T cell limitations and the most recent approaches to overcome these barriers. We will also discuss how and when CAR-T cells should be used in the context of AML.
Collapse
Affiliation(s)
- Beatriz Guijarro-Albaladejo
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Cristina Marrero-Cepeda
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Eduardo Rodríguez-Arbolí
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - José Antonio Pérez-Simón
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| |
Collapse
|
44
|
Zoine JT, Immadisetty K, Ibanez-Vega J, Moore SE, Nevitt C, Thanekar U, Tian L, Karouni A, Chockley PJ, Arthur B, Sheppard H, Klco JM, Langfitt DM, Krenciute G, Gottschalk S, Babu MM, Velasquez MP. Peptide-scFv antigen recognition domains effectively confer CAR T cell multiantigen specificity. Cell Rep Med 2024; 5:101422. [PMID: 38350450 PMCID: PMC10897625 DOI: 10.1016/j.xcrm.2024.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/06/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
The emergence of immune escape is a significant roadblock to developing effective chimeric antigen receptor (CAR) T cell therapies against hematological malignancies, including acute myeloid leukemia (AML). Here, we demonstrate feasibility of targeting two antigens simultaneously by combining a GRP78-specific peptide antigen recognition domain with a CD123-specific scFv to generate a peptide-scFv bispecific antigen recognition domain (78.123). To achieve this, we test linkers with varying length and flexibility and perform immunophenotypic and functional characterization. We demonstrate that bispecific CAR T cells successfully recognize and kill tumor cells that express GRP78, CD123, or both antigens and have improved antitumor activity compared to their monospecific counterparts when both antigens are expressed. Protein structure prediction suggests that linker length and compactness influence the functionality of the generated bispecific CARs. Thus, we present a bispecific CAR design strategy to prevent immune escape in AML that can be extended to other peptide-scFv combinations.
Collapse
Affiliation(s)
- Jaquelyn T Zoine
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kalyan Immadisetty
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Structural Biology and Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jorge Ibanez-Vega
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sarah E Moore
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chris Nevitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Unmesha Thanekar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Liqing Tian
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Karouni
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J Chockley
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bright Arthur
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Deanna M Langfitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - M Madan Babu
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - M Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
45
|
Arber C. Two to tango: engineered T cells against AML. Blood 2024; 143:476-478. [PMID: 38329777 DOI: 10.1182/blood.2023023004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
|
46
|
Langenhan T. Adhesion GPCRs in glioblastoma revisited. Cell Rep 2023; 42:113474. [PMID: 37995190 DOI: 10.1016/j.celrep.2023.113474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Glioblastoma is a devastating brain malignancy that has remained intractable to modern cancer treatments. Ravn-Boess et al.1 have discovered that the adhesion G protein-coupled receptor CD97/ADGRE5 contributes to glioblastogenesis and makes for an excellent molecular surface marker flagging the tumor cells.
Collapse
Affiliation(s)
- Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Germany; Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany.
| |
Collapse
|
47
|
Harrer DC, Li SS, Kaljanac M, Barden M, Pan H, Abken H. Fine-tuning the antigen sensitivity of CAR T cells: emerging strategies and current challenges. Front Immunol 2023; 14:1321596. [PMID: 38090558 PMCID: PMC10711209 DOI: 10.3389/fimmu.2023.1321596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells are "living drugs" that specifically recognize their target antigen through an antibody-derived binding domain resulting in T cell activation, expansion, and destruction of cognate target cells. The FDA/EMA approval of CAR T cells for the treatment of B cell malignancies established CAR T cell therapy as an emerging pillar of modern immunotherapy. However, nearly every second patient undergoing CAR T cell therapy is suffering from disease relapse within the first two years which is thought to be due to downregulation or loss of the CAR target antigen on cancer cells, along with decreased functional capacities known as T cell exhaustion. Antigen downregulation below CAR activation threshold leaves the T cell silent, rendering CAR T cell therapy ineffective. With the application of CAR T cells for the treatment of a growing number of malignant diseases, particularly solid tumors, there is a need for augmenting CAR sensitivity to target antigen present at low densities on cancer cells. Here, we discuss upcoming strategies and current challenges in designing CARs for recognition of antigen low cancer cells, aiming at augmenting sensitivity and finally therapeutic efficacy while reducing the risk of tumor relapse.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Deptartment of Hematology and Internal Oncology, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Chair Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Sin-Syue Li
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Chair Genetic Immunotherapy, University Regensburg, Regensburg, Germany
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Marcell Kaljanac
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Chair Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Markus Barden
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Chair Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Hong Pan
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Chair Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Chair Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| |
Collapse
|
48
|
Karsten H, Matrisch L, Cichutek S, Fiedler W, Alsdorf W, Block A. Broadening the horizon: potential applications of CAR-T cells beyond current indications. Front Immunol 2023; 14:1285406. [PMID: 38090582 PMCID: PMC10711079 DOI: 10.3389/fimmu.2023.1285406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Engineering immune cells to treat hematological malignancies has been a major focus of research since the first resounding successes of CAR-T-cell therapies in B-ALL. Several diseases can now be treated in highly therapy-refractory or relapsed conditions. Currently, a number of CD19- or BCMA-specific CAR-T-cell therapies are approved for acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), multiple myeloma (MM), and follicular lymphoma (FL). The implementation of these therapies has significantly improved patient outcome and survival even in cases with previously very poor prognosis. In this comprehensive review, we present the current state of research, recent innovations, and the applications of CAR-T-cell therapy in a selected group of hematologic malignancies. We focus on B- and T-cell malignancies, including the entities of cutaneous and peripheral T-cell lymphoma (T-ALL, PTCL, CTCL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), classical Hodgkin-Lymphoma (HL), Burkitt-Lymphoma (BL), hairy cell leukemia (HCL), and Waldenström's macroglobulinemia (WM). While these diseases are highly heterogenous, we highlight several similarly used approaches (combination with established therapeutics, target depletion on healthy cells), targets used in multiple diseases (CD30, CD38, TRBC1/2), and unique features that require individualized approaches. Furthermore, we focus on current limitations of CAR-T-cell therapy in individual diseases and entities such as immunocompromising tumor microenvironment (TME), risk of on-target-off-tumor effects, and differences in the occurrence of adverse events. Finally, we present an outlook into novel innovations in CAR-T-cell engineering like the use of artificial intelligence and the future role of CAR-T cells in therapy regimens in everyday clinical practice.
Collapse
Affiliation(s)
- Hendrik Karsten
- Faculty of Medicine, University of Hamburg, Hamburg, Germany
| | - Ludwig Matrisch
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Faculty of Medicine, University of Lübeck, Lübeck, Germany
| | - Sophia Cichutek
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Andreas Block
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|