1
|
Lee AH, Rodriguez Jimenez DM, Meisel M. Limosilactobacillus reuteri - a probiotic gut commensal with contextual impact on immunity. Gut Microbes 2025; 17:2451088. [PMID: 39825615 DOI: 10.1080/19490976.2025.2451088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
The gut microbiome plays a key role in human health, influencing various biological processes and disease outcomes. The historical roots of probiotics are traced back to Nobel Laureate Élie Metchnikoff, who linked the longevity of Bulgarian villagers to their consumption of sour milk fermented by Lactobacilli. His pioneering work led to the global recognition of probiotics as beneficial supplements, now a multibillion-dollar industry. Modern probiotics have been extensively studied for their immunomodulatory effects. Limosilactobacillus reuteri (L. reuteri), a widely used probiotic, has garnered significant attention for its systemic immune-regulatory properties, particularly in relation to autoimmunity and cancer. This review delves into the role of L. reuteri in modulating immune responses, with a focus on its impact on systemic diseases.
Collapse
Affiliation(s)
- Amanda H Lee
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Almonte AA, Thomas S, Zitvogel L. Microbiota-centered interventions to boost immune checkpoint blockade therapies. J Exp Med 2025; 222:e20250378. [PMID: 40261296 PMCID: PMC12013646 DOI: 10.1084/jem.20250378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Immune checkpoint blockade therapies have markedly advanced cancer treatment by invigorating antitumor immunity and extending patient survival. However, therapeutic resistance and immune-related toxicities remain major concerns. Emerging evidence indicates that microbial dysbiosis diminishes therapeutic response rates, while a diverse gut ecology and key beneficial taxa correlate with improved treatment outcomes. Therefore, there is a growing understanding that manipulating the gut microbiota could boost therapy efficacy. This review examines burgeoning methods that target the gut microbiome to optimize therapy and innovative diagnostic tools to detect dysbiosis, and highlights challenges that remain to be addressed in the field.
Collapse
Affiliation(s)
- Andrew A. Almonte
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
| | - Simon Thomas
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| |
Collapse
|
3
|
Liu W, Yang X, Zhou Y, Huang Z, Huang J. Gut microbiota in melanoma: Effects and pathogeneses. Microbiol Res 2025; 296:128144. [PMID: 40120565 DOI: 10.1016/j.micres.2025.128144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
The gut microbiota exhibits intricate connections with the body's immune system and holds significant implications for various diseases and cancers. Currently, accumulating evidence suggests a correlation between the composition of the gut microbiota and the development, treatment, and prognosis of melanoma. However, the underlying pathogenesis remains incompletely elucidated. In this comprehensive review, we present an in-depth review of the role played by gut microbiota in melanoma tumorigenesis, growth, metastasis, treatment response, and prognosis. Furthermore, we discuss the potential utility of gut microbiota as a promising prognostic marker. Lastly, we summarize three routes through which gut microbiota influences melanoma: immunity, aging, and the endocrine system. By modulating innate and adaptive immunity in patients with melanoma across different age groups and genders, the gut microbiota plays a crucial role in anti-tumor immune regulation from tumorigenesis to prognosis management, thereby impacting tumor growth and metastasis. This review also addresses current study limitations while highlighting future research prospects.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xin Yang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuwei Zhou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ziru Huang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jian Huang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Silveira MAD, Rodrigues RR, Trinchieri G. Intestinal Microbiome Modulation of Therapeutic Efficacy of Cancer Immunotherapy. Gastroenterol Clin North Am 2025; 54:295-315. [PMID: 40348489 PMCID: PMC12066836 DOI: 10.1016/j.gtc.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Bacteria are associated with certain cancers and may induce genetic instability and cancer progression. The gut microbiome modulates the response to cancer therapy. Training machine learning models with response associated taxa or bacterial genes predict patients' response to immunotherapies with moderate accuracy. Clinical trials targeting the gut microbiome to improve immunotherapy efficacy have been conducted. While single bacterial strains or small consortia have not be reported yet to be successful, encouraging results have been reported in small single arm and randomized studies using transplant of fecal microbiome from cancer patients who successfully responded to therapy or from healthy volunteers.
Collapse
Affiliation(s)
- Maruhen A D Silveira
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Building 37, Room 4146, Bethesda, MD 20852, USA
| | - Richard R Rodrigues
- Microbiome and Genetics Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Building 37, Room 4140B, Bethesda, MD 20852, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Giorgio Trinchieri
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Building 37, Room 4146, Bethesda, MD 20852, USA.
| |
Collapse
|
5
|
Joo H, Olea XD, Zhuang A, Zheng B, Kim H, Ronai ZA. Epigenetic mechanisms in melanoma development and progression. Trends Cancer 2025:S2405-8033(25)00099-8. [PMID: 40328568 DOI: 10.1016/j.trecan.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
Knowledge of cancer development and progression gained over the last few decades has enabled mapping of genetic and epigenetic changes unique to different phases of tumor evolution. Here we focus on epigenetic changes that drive melanoma development and progression. We highlight the importance of epigenetic mechanisms which encompass crosstalk with melanoma microenvironment that affect metastasis and therapy resistance. This review summarizes recent advances and describes potential strategies to leverage this knowledge to devise new therapies.
Collapse
Affiliation(s)
- Hyunjeong Joo
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ximena Diaz Olea
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aojia Zhuang
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bin Zheng
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hyungsoo Kim
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ze'ev A Ronai
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Translational Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
6
|
Hsu CY, Chandramoorthy HC, Mohammed JS, Al-Hasnaawei S, Yaqob M, Kundlas M, Samikan K, Sahoo S, Sunori SK, Abbas ZA. Exosomes as key mediators in immune and cancer cell interactions: insights in melanoma progression and therapy. Arch Dermatol Res 2025; 317:729. [PMID: 40252131 DOI: 10.1007/s00403-025-04237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Exosomes (30-150 nm) are small extracellular vesicles that are secreted by cells into the extracellular environment and are known to mediate cell-to-cell communication. Exosomes contain proteins, lipids, and RNA molecules in relative abundance, capable of modifying the activity of target cells. Melanoma-derived exosomes (MEXs) promote the transfer of oncogenic signals and immunosuppressive factors into immune cells, resulting in a bias of the immune response towards tumor-promoting processes. MEXs could suppress the activation and proliferation of T cells and dendritic cells and induce differentiation of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). They can induce apoptosis of antigen-specific CD8 + T cells and promote the transfer of tumor antigens, resulting in immune evasion. Specifically, MEXs can shuttle cytokines like interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) to immune cells or express programmed death-ligand 1 (PD-L1 or CD274), creating an immune-suppressive microenvironment that promotes tumorigenesis. Since exosomes preferentially accumulate in melanoma tissues, this targeted delivery could enhance the bioavailability of treatments while limiting side effects. Here, we review the molecular composition of melanoma-derived exosomes, their mechanisms of action, and their potential as therapeutic targets or biomarkers in melanoma. The summarizations of these mechanisms to appropriately influence exosome-mediated interactions could yield new tactics to elicit anti-melanoma immunity or augment the therapeutic effects of current therapies.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, AZ, 85004, USA.
| | - Harish C Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine and Central Research Laboratories, King Khalid University, Abha, Saudi Arabia
| | | | - Shaker Al-Hasnaawei
- College of Pharmacy, the Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Mohammed Yaqob
- Department of Biology, Mazaya University College, Dhiqar, Iraq
| | - Mayank Kundlas
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Krishnakumar Samikan
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Samir Sahoo
- Department of General Medicine, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - S K Sunori
- Graphic Era Hill University, Bhimtal, Uttarakhand, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Zainab Ahmed Abbas
- College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
7
|
Block MS, Nelson GD, Chen J, Johnson S, Yang L, Flotte TJ, Grewal EP, McWilliams RR, Kottschade LA, Domingo-Musibay E, Markovic SN, Dimou A, Montane HN, Piltin MA, Price DL, Khariwala SS, Hui JYC, Erskine CL, Strand CA, Zahrieh D, Dong H, Hieken TJ. Neoadjuvant cobimetinib and atezolizumab with or without vemurafenib for stage III melanoma: outcomes and the impact of the microbiome from the NeoACTIVATE trial. J Immunother Cancer 2025; 13:e011706. [PMID: 40234093 PMCID: PMC12001372 DOI: 10.1136/jitc-2025-011706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Neoadjuvant treatment has become standard for patients with high-risk operable stage III melanoma, but the optimal regimen is unknown. Targeted therapy approaches yield high pathological response rates, while immunotherapy regimens show favorable recurrence-free survival (RFS). NeoACTIVATE was designed to address whether a neoadjuvant combination of both targeted therapy and immunotherapy might leverage the benefits of each. METHODS We tested neoadjuvant treatment with 12 weeks of vemurafenib, cobimetinib, and atezolizumab for patients with BRAF-mutated (BRAFm) melanoma (cohort A) and cobimetinib and atezolizumab for patients with BRAF-wild-type (BRAFwt) melanoma (cohort B), regimens which we have shown generate a substantial major pathological response. After therapeutic lymph node dissection, patients received 24 weeks of adjuvant atezolizumab. Here, we report survival outcomes and their association with biomarkers assayed among the gut microbiome and peripheral blood immune subsets. RESULTS With 49 months median follow-up, the median RFS was not reached for cohort A and was 40.8 months for cohort B. At 24 months after operation, 2 of 14 cohort A patients and 4 of 13 cohort B patients had experienced distant relapse. Key findings from correlative analyses included diversity, taxonomic and functional metagenomic gut microbiome signals associated with distant metastasis-free survival at 2 years. Notably, we observed a strong correlation between low microbial arginine biosynthesis (required for T-cell activation and effector function) and early distant recurrence (p=0.0005), which correlated with taxonomic differential abundance findings. Peripheral blood immune monitoring revealed increased double-positive (CD4+CD8+) T cells in patients with early recurrence. CONCLUSIONS Neoadjuvant treatment with cobimetinib and atezolizumab±vemurafenib was associated with a low rate of distant metastasis in patients with high-risk stage III melanoma. Freedom from early distant metastasis was highly associated with taxonomic differences in gut microbiome structure and with functional pathway alterations known to modulate T cell immunity. Identification of predictive biomarkers will permit optimization of neoadjuvant therapy regimens for individual patients. TRIAL REGISTRATION NUMBER NCT03554083.
Collapse
Affiliation(s)
- Matthew S Block
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Garth D Nelson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jun Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen Johnson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Lu Yang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas James Flotte
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric P Grewal
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Evidio Domingo-Musibay
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | - Mara A Piltin
- Division of Breast and Melanoma Surgical Oncology, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel L Price
- Department of Otolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samir S Khariwala
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jane Yuet Ching Hui
- Division of Surgical Oncology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | | | - Carrie A Strand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - David Zahrieh
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tina J Hieken
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Liu S, Liu J, Mei Y, Zhang W. Gut microbiota affects PD-L1 therapy and its mechanism in melanoma. Cancer Immunol Immunother 2025; 74:169. [PMID: 40214675 PMCID: PMC11992302 DOI: 10.1007/s00262-025-04018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
Immune checkpoint inhibitors (ICIs), particularly PD-1/PD-L1 blockade, have shown great success in treating melanoma. PD-L1 (B7-H1, CD274), a ligand of PD-1, binds to PD-1 on T cells, inhibiting their activation and proliferation through multiple pathways, thus dampening tumor-reactive T cell activity. Studies have linked PD-L1 expression in melanoma with tumor growth, invasion, and metastasis, making the PD-1/PD-L1 pathway a critical target in melanoma therapy. However, immune-related adverse events are common, reducing the effectiveness of anti-PD-L1 treatments. Recent evidence suggests that the gut microbiome significantly influences anti-tumor immunity, with the microbiome potentially reprogramming the tumor microenvironment and overcoming resistance to anti-PD-1 therapies in melanoma patients. This review explores the mechanisms of PD-1/PD-L1 in melanoma and examines how gut microbiota and its metabolites may help address resistance to anti-PD-1 therapy, offering new insights for improving melanoma treatment strategies.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jiahui Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yingwu Mei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Wenjuan Zhang
- Beijing Life Science Academy (BLSA), Beijing, China.
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Diop K, Mbaye B, Nili S, Filin A, Benlaifaoui M, Malo J, Renaud AS, Belkaid W, Hunter S, Messaoudene M, Lee KA, Elkrief A, Routy B. Coupling culturomics and metagenomics sequencing to characterize the gut microbiome of patients with cancer treated with immune checkpoint inhibitors. Gut Pathog 2025; 17:21. [PMID: 40217292 PMCID: PMC11992761 DOI: 10.1186/s13099-025-00694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The gut microbiome represents a novel biomarker for melanoma and non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICI). Gut microbiome metagenomics profiling studies of patients treated with immunotherapy identified bacteria associated with ICI efficacy, while others have been linked to resistance. However, limitations of metagenomics sequencing, such as complex bioinformatic processing requirements, necessity of a threshold for positive detection, and the inability to detect live organisms, have hindered our ability to fully characterize the gut microbiome. Therefore, combining metagenomics with high-throughput culture-based techniques (culturomics) represents an ideal strategy to fully characterize microbiome composition to more robustly position the microbiome as a biomarker of response to ICI. METHODS We performed culturomics using fecal samples from 22 patients from two academic centres in Canada and the United Kingdom with NSCLC and cutaneous melanoma treated with ICI (cancer group), comparing their microbiome composition to that of 7 healthy volunteers (HV), along with matching shotgun metagenomics sequencing. RESULTS For culturomics results, 221 distinct species were isolated. Among these 221 distinct species, 182 were identified in the cancer group and 110 in the HV group. In the HV group, the mean species richness was higher compared to the cancer group (34 vs. 18, respectively, p = 0.002). Beta diversity revealed separate clusters between groups (p = 0.004). Bifidobacterium spp. and Bacteroides spp. were enriched in HV, while cancer patients showed an overrepresentation of Enterocloster species, as well as Veillonella parvula. Next, comparing cancer patients' clinical outcomes to ICI, we observed that among the 20 most abundant bacteria present in non-responder patients, 2 belonged to the genus Enterocloster, along with an enrichment of Hungatella hathewayi and Cutibacterium acnes. In contrast, responders to ICI exhibited a predominance of Bacteroides spp. In NSCLC patients, metagenomics analysis revealed that of the 154 bacteria species isolated through culturomics, 61/154 (39%) were also identified by metagenomics sequencing. Importantly, 94 individual species were uniquely detected by culturomics. CONCLUSION These findings highlight that culturomics and metagenomics can serve as complementary tools to characterize the microbiome in patients with cancer. This integrated approach uncovers specific microbiome signatures that differentiate HV from cancer patients, and identifies specific species associated with therapy response and resistance.
Collapse
Affiliation(s)
| | | | | | - Alysé Filin
- Centre de Recherche du CHUM, Montreal, Canada
| | | | - Julie Malo
- Centre de Recherche du CHUM, Montreal, Canada
| | | | | | | | | | - Karla A Lee
- Departement of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Arielle Elkrief
- Centre de Recherche du CHUM, Montreal, Canada.
- Departement of Hemato-Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
| | - Bertrand Routy
- Centre de Recherche du CHUM, Montreal, Canada.
- Departement of Hemato-Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
| |
Collapse
|
10
|
Wang X, Li A, Wang A, He M, Zeng Y, Li D, Rong R, Liu J. Exosome-Based Vaccines: Pioneering New Frontiers in Combating Infectious Diseases and Cancer. SMALL METHODS 2025:e2402222. [PMID: 40195907 DOI: 10.1002/smtd.202402222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Exosomes, small extracellular vesicles with lipid bilayer membranes, play a crucial role in cellular communication and can transfer diverse biological cargo, including proteins, lipids, and nucleic acids, from donor to recipient cells. Exosomes possess diverse immunological properties, such as antigen delivery and immune activation, along with excellent drug delivery capabilities, making them promising candidates for vaccine development. For different diseases, exosome-based vaccines can be designed as therapeutic or prophylactic vaccines by leveraging cellular immunity or humoral immunity. With the emergence of precision medicine, exosome-based personalized vaccines demonstrate exceptional therapeutic potential. This review systematically introduces the sources, biogenesis mechanisms, and components of exosomes and describes their regulatory roles in the immune system. Subsequently, the preparation, administration, and personalized therapy of exosome-based vaccines are discussed. Finally, the applications and clinical trials of exosome-based vaccines in the fields of anti-infection and anti-tumor therapies are particularly highlighted, with an analysis of the potential challenges in future vaccine development.
Collapse
Affiliation(s)
- Xuejun Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ailing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanye Zeng
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiyong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| |
Collapse
|
11
|
Pascal-Moussellard V, Alcaraz JP, Tanguy S, Salomez-Ihl C, Cinquin P, Boucher F, Boucher E. Molecular hydrogen as a potential mediator of the antitumor effect of inulin consumption. Sci Rep 2025; 15:11482. [PMID: 40181080 PMCID: PMC11968927 DOI: 10.1038/s41598-025-96346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025] Open
Abstract
Inulin consumption and dihydrogen (H2) administration both exert antitumor effects on preclinical models as well as in clinical trials. As H2 is one of the major byproducts of inulin fermentation by bacterial species of the gut microbiota (GM), we hypothesized that H2 could mediate the antitumor effects of inulin. To provide evidence in favor of this hypothesis, we first determined the pattern of H2-exposure to which mice are subjected after inulin administration and developed an inhaled hydrogen therapy (H2T) protocol replicating this pattern. We then compared the effects on circulating immunity of a two-week daily inulin gavage with those of the corresponding H2T. We also compared the effects of inulin supplementation to those of the corresponding H2T on implanted melanoma growth and infiltration by T lymphocytes. Inulin and H2T induced a similar increase in circulating CD4+ and CD8+ T cells. In addition, both treatments similarly inhibited melanoma tumor growth. These results support a mechanism by which the H2 resulting from inulin fermentation by the GM diffuses across the intestinal barrier and stimulates the immunosurveillance responsible for the antitumor effect.
Collapse
Affiliation(s)
| | - Jean-Pierre Alcaraz
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, 38000, France
| | - Stéphane Tanguy
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, 38000, France
| | - Cordélia Salomez-Ihl
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, 38000, France
- Univ. Grenoble Alpes, CHU Grenoble Alpes, Inserm, Grenoble, CIC1406, 38000, France
| | - Philippe Cinquin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, 38000, France
- Univ. Grenoble Alpes, CHU Grenoble Alpes, Inserm, Grenoble, CIC1406, 38000, France
| | - François Boucher
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, 38000, France.
- Bâtiment Jean Roget, Université Grenoble Alpes, TIMC UMR, 5525, Equipe PRETA, La Tronche, 38700, France.
| | - Emilie Boucher
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, 38000, France
| |
Collapse
|
12
|
Zitvogel L, Derosa L, Routy B, Loibl S, Heinzerling L, de Vries IJM, Engstrand L, Segata N, Kroemer G. Impact of the ONCOBIOME network in cancer microbiome research. Nat Med 2025; 31:1085-1098. [PMID: 40217075 DOI: 10.1038/s41591-025-03608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/24/2025] [Indexed: 04/18/2025]
Abstract
The European Union-sponsored ONCOBIOME network has spurred an international effort to identify and validate relevant gut microbiota-related biomarkers in oncology, generating a unique and publicly available microbiome resource. ONCOBIOME explores the effects of the microbiota on gut permeability and metabolism as well as on antimicrobial and antitumor immune responses. Methods for the diagnosis of gut dysbiosis have been developed based on oncomicrobiome signatures associated with the diagnosis, prognosis and treatment responses in patients with cancer. The mechanisms explaining how dysbiosis compromises natural or therapy-induced immunosurveillance have been explored. Through its integrative approach of leveraging multiple cohorts across populations, cancer types and stages, ONCOBIOME has laid the theoretical and practical foundations for the recognition of microbiota alterations as a hallmark of cancer. ONCOBIOME has launched microbiota-centered interventions and lobbies in favor of official guidelines for avoiding diet-induced or iatrogenic (for example, antibiotic- or proton pump inhibitor-induced) dysbiosis. Here, we review the key advances of the ONCOBIOME network and discuss the progress toward translating these into oncology clinical practice.
Collapse
Affiliation(s)
- Laurence Zitvogel
- INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
- Clinicobiome, Gustave Roussy, Villejuif, France.
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.
| | - Lisa Derosa
- INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Clinicobiome, Gustave Roussy, Villejuif, France
| | - Bertrand Routy
- University of Montreal Research Center (CR-CHUM), Montreal, Quebec, Canada
- Department of Hematology-Oncology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Sibylle Loibl
- German Breast Group c/ GBG Forschungs GmbH, Neu-Isenburg, Goethe University, Frankfurt, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - I Jolanda M de Vries
- Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lars Engstrand
- Department of Microbiology Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- European Institute of Oncology IRCCS, Milan, Italy
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
13
|
L'Orphelin J, Dompmartin A, Dréno B. The Skin Microbiome: A New Key Player in Melanoma, From Onset to Metastatic Stage. Pigment Cell Melanoma Res 2025; 38:e13224. [PMID: 40016867 PMCID: PMC11868406 DOI: 10.1111/pcmr.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
The skin microbiome plays a crucial role in maintaining skin health, defending the body against harmful pathogens, and interacting with melanoma. The composition of the skin microbiome can be affected by factors like age, gender, ethnicity, lifestyle, diet, and UV exposure. Certain bacteria like Staphylococcus and Veillonella are important for wound healing, while Cutibacterium acnes can play a role in dermatoses. UV radiation alters the skin microbiome, originates a "UV-resistome" and can lead to skin cancer initiation. Specifically, Staphylococcus epidermidis has shown protective effects against skin cancer, whereas Cutibacterium acnes can induce apoptosis in melanocytes postirradiation. The microbiome also interacts with melanoma treatment, affecting responses to immune checkpoint inhibitors. Strategies like bacteriotherapy, involving the manipulation of the gut microbiome but also the skin microbiome (with the gut-skin axis or through topical treatment) could improve treatment outcomes and show promise in melanoma therapy. Understanding the complex interplay between the skin microbiome, UV exposure, and melanoma development is crucial for developing personalized therapeutic approaches. Investigation into the skin microbiome and its potential role in melanoma progression continues to be an exciting area of research with implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Jean‐Matthieu L'Orphelin
- Unicaen, Inserm U1086 AnticipeNormandie UnivCaenFrance
- Department of DermatologyCaen‐Normandy University HospitalCaenFrance
| | - Anne Dompmartin
- Department of DermatologyCaen‐Normandy University HospitalCaenFrance
| | - Brigitte Dréno
- Inserm, Cnrs, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001Nantes UniversitéNantesFrance
| |
Collapse
|
14
|
Martin Fuentes A. The role of the microbiome in skin cancer development and treatment. Curr Opin Oncol 2025; 37:121-125. [PMID: 39869016 DOI: 10.1097/cco.0000000000001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
PURPOSE OF REVIEW Recent research underscores the significant influence of the skin and gut microbiota on melanoma and nonmelanoma skin cancer (NMSC) development and treatment outcomes. This review aims to synthesize current findings on how microbiota modulates immune responses, particularly enhancing the efficacy of immunotherapies such as immune checkpoint inhibitors (ICIs). RECENT FINDINGS The microbiota's impact on skin cancer is multifaceted, involving immune modulation, inflammation, and metabolic interactions. Beneficial strains like Bifidobacterium and Lactobacillus have shown potential in supporting anti-PD-1 and anti-CTLA-4 therapies by promoting T-cell activation and immune surveillance. Evidence from preclinical and clinical studies, including fecal microbiota transplantation (FMT), highlights improved response rates in patients with microbiota-rich profiles. Notably, certain bacterial metabolites, such as inosine, contribute to enhanced antitumor activity by stimulating IFN-γ in CD8 + T cells. SUMMARY Understanding the interplay between microbiota and skin cancer treatment opens promising avenues for adjunctive therapies. Probiotic and prebiotic interventions, FMT, and microbiota modulation are emerging as complementary strategies to improve immunotherapy outcomes and address treatment resistance in melanoma and NMSC.
Collapse
|
15
|
Oyler HJ, Callister AW, Kutch MN, Wakefield MR, Fang Y. Leveraging Microorganisms to Combat Skin Cancer. Microorganisms 2025; 13:462. [PMID: 40005824 PMCID: PMC11858759 DOI: 10.3390/microorganisms13020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Skin cancer, including melanoma and non-melanoma types, presents a significant and growing global health challenge due to its increasing incidence and mortality rates. While conventional treatments such as surgical excision, immunotherapy, and targeted therapies are well-established, microorganism-based approaches represent an innovative and promising alternative. These therapies employ live, genetically engineered, or commensal bacteria, viral vectors, or bacterial components to achieve various therapeutic mechanisms, including tumor targeting, immune system modulation, vascular disruption, competitive exclusion, drug delivery, and direct oncolysis. Despite their potential, these approaches require further investigation to address safety concerns, optimize treatment protocols, and gain a comprehensive understanding of their long-term outcomes.
Collapse
Affiliation(s)
- Hayden J. Oyler
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA;
| | - Austen W. Callister
- Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84132, USA;
| | - Makenzi N. Kutch
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA (M.R.W.)
| | - Mark R. Wakefield
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA (M.R.W.)
- Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA;
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA (M.R.W.)
- Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
16
|
Jin H, He H, Li J, Liu X, Cai Q, Shi J, Hao Z, He J. Mannose Inhibits NSCLC Growth and Inflammatory Microenvironment by Regulating Gut Microbiota and Targeting OGT/hnRNP R/JUN/IL-8 Axis. Int J Biol Sci 2025; 21:1566-1584. [PMID: 39990658 PMCID: PMC11844275 DOI: 10.7150/ijbs.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/18/2025] [Indexed: 02/25/2025] Open
Abstract
Recent studies have reported direct antitumor effects of mannose, a natural six-carbon monosaccharide, in the treatment of cancer. Herein, we utilized cancer cell lines, animal models, organoids and experimental techniques such as multi-omics and cellular experiments to investigate the regulatory effects of mannose on NSCLC growth and the inflammatory microenvironment. We demonstrated that mannose can inhibit cancer cell growth, inflammatory cell infiltration and inflammatory cytokine expression in NSCLC tissue, and enhance the antitumor efficacy of immune checkpoint inhibitor both in vitro and in vivo. Orally administered mannose increased the proportion of probiotics in the gut microbiota, the abundance of anti-inflammatory and antitumor metabolites in the blood and feces of NSCLC-bearing mice. In NSCLC cells, mannose reduced JUN mRNA stability and subsequent IL-8 transcription of NSCLC cells by directly targeting OGT to suppress the O-GlcNAc glycosylation of hnRNP R, which bound and stabilized JUN mRNA in an O-GlcNAc glycosylation dependent manner. Taken together, our study demonstrated that mannose can suppress NSCLC by inhibiting tumor growth and the inflammatory microenvironment, and serve as a promising adjunct medication.
Collapse
Affiliation(s)
- Haoyi Jin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, Liaoning, China
| | - Huanghe He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Jijia Li
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, Liaoning, China
| | - Xi Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, Liaoning, China
| | - Qi Cai
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Jiang Shi
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Zhexue Hao
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| |
Collapse
|
17
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
18
|
Li D, Cai Y, Liu K, Lv D, Zeng M, Wen L, Lv C, Guo J, Xu K, Ding N, Li Y, Xu J. MicroEpitope: an atlas of immune epitopes derived from cancer microbiomes. Nucleic Acids Res 2025; 53:D1435-D1442. [PMID: 39380496 PMCID: PMC11701614 DOI: 10.1093/nar/gkae877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
The majority of human cancers harbor molecular evidence of intratumoral microbiota. Microbiota-derived epitopes as molecular mimics of tumor antigens can bind human leukocyte antigen (HLA), thereby modulating host immunity. However, many questions remain regarding the mechanisms underlying the interactions between microbiota and the host's immune system in cancer. Here, MicroEpitope (http://bio-bigdata.hrbmu.edu.cn/MicroEpitope) was developed to provide and analyze the atlas of microbiota-derived epitopes in cancer. We manually collected available mass spectrometry (MS)-based HLA immunopeptidomes of 1190 samples across 24 cancer types. Alignment was performed against an in-house constructed theoretical library of human and intratumor microbiome encoded proteins, including 1298 bacterial and 124 viral species. Currently, MicroEpitope contains 51 497 bacteria and 767 virus-derived epitopes, mainly originating from Bacillus subtilis, Buchnera aphidicola and human cytomegalovirus. The common immunogenic features of epitopes were calculated, as well as their biochemical properties and the clinical relevance of corresponding bacteria and viruses across cancers. MicroEpitope also provides five analytical tools, and multiple visualization methods to facilitate understanding of the roles of microbiota-derived epitopes in cancer immunity. In summary, MicroEpitope represents a vital resource for investigating HLA-presented immunopeptidomes derived from cancer microbiomes, and could further enable rich insight in tumor antigen prioritization strategies.
Collapse
Affiliation(s)
- Donghao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Yangyang Cai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Kefan Liu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Dezhong Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Mengqian Zeng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Luan Wen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Chongwen Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Jiyu Guo
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Kang Xu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| |
Collapse
|
19
|
Chen L, Tan H, Geng R, Li Y, Wang Y, Li T. Immune Signatures of Solid Tumor Patients Treated With Immune Checkpoint Inhibitors: An Observational Study. Thorac Cancer 2025; 16:e15493. [PMID: 39582218 PMCID: PMC11729440 DOI: 10.1111/1759-7714.15493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Abstract
PURPOSE Our study aimed to comprehensively describe the features of peripheral blood multiple immune cell phenotypes in solid tumor patients during pretreatment and after immunotherapy, providing a more convenient approach for studying the prognosis of immunotherapy in different solid tumor patients. METHODS We prospectively recruited patients with advanced solid tumors from Peking Union Medical College Hospital (PUMCH) between February 2023 and April 2024. Using multicolor flow cytometry, our study comprehensively observed and described the signatures of peripheral blood lymphocyte subsets including activation, proliferation, function, naïve memory, and T cell exhaustion immune cell subsets in this population of pretreatment and after immunotherapy. RESULTS Our study enrolled 59 advanced solid tumor patients with immunotherapy and 59 healthy controls were matched by age and gender. The results demonstrated a marked upregulation in the expression of lymphocyte activation markers CD38 and HLA-DR, as well as exhaustion and proliferation markers PD-1 and Ki67, in solid tumor patients compared to healthy controls. After immune checkpoint blockade (ICB) treatment, mainly the expression of Ki67CD4+T and HLA-DRCD38CD4+T, was significantly upregulated compared to pretreatment levels (p = 0.017, p = 0.019, respectively). We further found that gynecological tumors with better prognoses had higher baseline activation levels of CD4+ T cells compared to other solid tumors with poorer prognoses. CONCLUSION Our study elucidated the characteristics of different lymphocyte subsets in the peripheral blood of solid tumor patients. Further research revealed changes in the phenotypes of different lymphocyte subsets after ICIs treatment, with the activated phenotype of CD4+ T cells playing a crucial role in the antitumor effect. This lays the groundwork for further exploration of prognostic biomarkers and predictive models for cancer patients with immunotherapy.
Collapse
Affiliation(s)
- Ling Chen
- Department of Infectious DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Hourui Tan
- Department of Medical OncologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ruixuan Geng
- Department of International Medical ServicesPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yifan Li
- Department of Gynecologic OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yingyi Wang
- Department of Medical OncologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Taisheng Li
- Department of Infectious DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
20
|
Otálora-Otálora BA, Payán-Gómez C, López-Rivera JJ, Pedroza-Aconcha NB, Arboleda-Mojica SL, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Interplay of Transcriptomic Regulation, Microbiota, and Signaling Pathways in Lung and Gut Inflammation-Induced Tumorigenesis. Cells 2024; 14:1. [PMID: 39791702 PMCID: PMC11720097 DOI: 10.3390/cells14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Inflammation can positively and negatively affect tumorigenesis based on the duration, scope, and sequence of related events through the regulation of signaling pathways. A transcriptomic analysis of five pulmonary arterial hypertension, twelve Crohn's disease, and twelve ulcerative colitis high throughput sequencing datasets using R language specialized libraries and gene enrichment analyses identified a regulatory network in each inflammatory disease. IRF9 and LINC01089 in pulmonary arterial hypertension are related to the regulation of signaling pathways like MAPK, NOTCH, human papillomavirus, and hepatitis c infection. ZNF91 and TP53TG1 in Crohn's disease are related to the regulation of PPAR, MAPK, and metabolic signaling pathways. ZNF91, VDR, DLEU1, SATB2-AS1, and TP53TG1 in ulcerative colitis are related to the regulation of PPAR, AMPK, and metabolic signaling pathways. The activation of the transcriptomic network and signaling pathways might be related to the interaction of the characteristic microbiota of the inflammatory disease, with the lung and gut cell receptors present in membrane rafts and complexes. The transcriptomic analysis highlights the impact of several coding and non-coding RNAs, suggesting their relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during lung and gut cell adaptation to inflammatory phenotypes.
Collapse
Affiliation(s)
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia; (C.P.-G.); (N.B.P.-A.)
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| | - Natalia Belén Pedroza-Aconcha
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia; (C.P.-G.); (N.B.P.-A.)
| | | | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Carlos Arturo Álvarez-Moreno
- Infectious Diseases Department, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| |
Collapse
|
21
|
Zhang X, Deng J, Wu R, Hu J. Manganese improves anti-PD-L1 immunotherapy via eliciting type I interferon signaling in melanoma. Invest New Drugs 2024; 42:685-693. [PMID: 39592531 DOI: 10.1007/s10637-024-01484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The immune checkpoint inhibitor therapy represented by blocking programmed cell death protein 1/ programmed cell death-ligand 1 (PD-1/PD-L1) has made significant progress in melanoma treatment. However, the response rate and therapeutic effect of immunotherapy alone are still not ideal for melanoma. In this study, we aimed to evaluate the defects of treating anti-PD-L1 alone and the therapeutic effect and molecular mechanism of combined therapy with anti-PD-L1 and MnCl2. We detected the changes of immune cell populations after anti-PD-L1 treatment in melanoma xenograft mouse model. Further, we evaluated the regulatory effect of MnCl2 on dendritic cells (DCs) maturation in vitro. Next, we tested the therapeutic effect and regulatory effect on the tumor microenvironment with anti-PD-L1 and MnCl2 via combining treatment with anti-PD-L1 and MnCl2. Anti-PD-L1 therapy has a certain tumor suppressive function, but the effect is not ideal. The results of flow cytometry showed that the number of CD4+ T cells and CD8+ T cells significantly increased after anti-PD-L1 treatment. However, the number of DCs remained basically unchanged after anti-PD-L1 treatment. In vitro, we confirmed that MnCl2 significantly promoted DCs maturation vis activating cGAS-STING signaling pathway. The combination of anti-PD-L1 and MnCl2 displayed the best tumor suppression effect in melanoma xenograft mouse model. In tumor microenvironment, the infiltration of T cells and the maturation of DCs were significantly promoted, demonstrating a strong anti-tumor immune response. In summary, we conclude that combining anti-PD-L1 with MnCl2 is a promising therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jianhua Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Renjie Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian Hu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Kroemer G, Montégut L, Kepp O, Zitvogel L. The danger theory of immunity revisited. Nat Rev Immunol 2024; 24:912-928. [PMID: 39511426 DOI: 10.1038/s41577-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
The danger theory of immunity, introduced by Polly Matzinger in 1994, posits that tissue stress, damage or infection has a decisive role in determining immune responses. Since then, a growing body of evidence has supported the idea that the capacity to elicit cognate immune responses (immunogenicity) relies on the combination of antigenicity (the ability to be recognized by T cell receptors or antibodies) and adjuvanticity (additional signals arising owing to tissue damage). Here, we discuss the molecular foundations of the danger theory while focusing on immunologically relevant damage-associated molecular patterns, microorganism-associated molecular patterns, and neuroendocrine stress-associated immunomodulatory molecules, as well as on their receptors. We critically evaluate patient-relevant evidence, examining how cancer cells and pathogenic viruses suppress damage-associated molecular patterns to evade immune recognition, how intestinal dysbiosis can reduce immunostimulatory microorganism-associated molecular patterns and compromise immune responses, and which hereditary immune defects support the validity of the danger theory. Furthermore, we incorporate the danger hypothesis into a close-to-fail-safe hierarchy of immunological tolerance mechanisms that also involve the clonal deletion and inactivation of immune cells.
Collapse
Affiliation(s)
- Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Léa Montégut
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France.
- INSERM UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Université Paris-Saclay, Ile-de-France, Paris, France.
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| |
Collapse
|
23
|
Lou J, Xiang Z, Zhu X, Fan Y, Li J, Jin G, Cui S, Huang N, Le X. A two-step, two-sample Mendelian randomization analysis investigating the interplay between gut microbiota, immune cells, and melanoma skin cancer. Medicine (Baltimore) 2024; 103:e40432. [PMID: 39533622 PMCID: PMC11557063 DOI: 10.1097/md.0000000000040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
This study aims to rigorously explore the potential causal relationships among gut microbiota (GM), immune cells, and melanoma skin cancer among participants from Europe, where this disease exhibits significant prevalence and profound societal impact. Using the genome-wide association analysis database, a double-sample Mendelian randomization (MR) analysis was drawn upon to investigate GM, immune cells, and melanoma skin cancer. The inverse variance weighted approach was applied to estimate the causal connections among these variables. A two-step MR analysis was employed to quantitatively gauge the impact of immune cells mediated GM on melanoma skin cancer. To address potential sources of bias, such as pleiotropy and heterogeneity, multiple analytical techniques were integrated. The MR analysis pinpointed 6 GM taxa related to either an augmented or declined risk of late-stage melanoma skin cancer. In the same vein, 32 immune cell phenotypes were noticed as correlates with modified risk of melanoma skin cancer. Our study also implies that the probable association between GM and melanoma could be facilitated by 5 immune cell phenotypes. The findings of our study underline certain GM taxa and immune cells as potential influencers on the onset and development of melanoma skin cancer. Importantly, our results spotlight 5 immune cell phenotypes as potential agents mediating this association.
Collapse
Affiliation(s)
- Jiaqi Lou
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Ziyi Xiang
- Department of Psychiatry and Psychotherapy, Section of Medical Psychology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Xiaoyu Zhu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Youfen Fan
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Jiliang Li
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Guoying Jin
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Shengyong Cui
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Neng Huang
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Xin Le
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| |
Collapse
|
24
|
Messaoudene M, Ferreira S, Saint-Lu N, Ponce M, Truntzer C, Boidot R, Le Bescop C, Loppinet T, Corbel T, Féger C, Bertrand K, Elkrief A, Isaksen M, Vitry F, Sablier-Gallis F, Andremont A, Bod L, Ghiringhelli F, de Gunzburg J, Routy B. The DAV132 colon-targeted adsorbent does not interfere with plasma concentrations of antibiotics but prevents antibiotic-related dysbiosis: a randomized phase I trial in healthy volunteers. Nat Commun 2024; 15:8083. [PMID: 39278946 PMCID: PMC11402973 DOI: 10.1038/s41467-024-52373-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
The deleterious impact of antibiotics (ATB) on the microbiome negatively influences immune checkpoint inhibitors (ICI) response in patients with cancer. We conducted a randomized phase I study (EudraCT:2019-A00240-57) with 148 healthy volunteers (HV) to test two doses of DAV132, a colon-targeted adsorbent, alongside intravenous ceftazidime-avibactam (CZA), piperacillin-tazobactam (PTZ) or ceftriaxone (CRO) and a group without ATB. The primary objective of the study was to assess the effect of DAV132 on ATB plasma concentrations and both doses of DAV132 did not alter ATB levels. Secondary objectives included safety, darkening of the feces, and fecal ATB concentrations. DAV132 was well tolerated, with no severe toxicity and similar darkening at both DAV132 doses. DAV132 led to significant decrease in CZA or PTZ feces concentration. When co-administered with CZA or PTZ, DAV132 preserved microbiome diversity, accelerated recovery to baseline composition and protected key commensals. Fecal microbiota transplantation (FMT) in preclinical cancer models in female mice from HV treated with CZA or PTZ alone inhibited anti-PD-1 response, while transplanted samples from HV treated with ATB + DAV132 circumvented resistance to anti-PD-1. This effect was linked to activated CD8+ T cell populations in the tumor microenvironment. DAV132 represents a promising strategy for overcoming ATB-related dysbiosis and further studies are warranted to evaluate its efficacy in cancer patients.
Collapse
Affiliation(s)
- Meriem Messaoudene
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | | | - Mayra Ponce
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, Dijon, France
- UMR INSERM 1231, Dijon, France
| | - Romain Boidot
- Molecular Biology, Georges François Leclerc Cancer Center-Unicancer, Dijon, France
| | | | | | | | - Céline Féger
- Da Volterra, Paris, France
- Medical, EMI Biotech, Paris, France
| | | | - Arielle Elkrief
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Hemato-Oncology Division, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | | | | | | | | | - Lloyd Bod
- Krantz Family Cancer Center, Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - François Ghiringhelli
- Department of Medical Oncology, Georges François Leclerc Cancer Center-Unicancer, Dijon, France
| | | | - Bertrand Routy
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
- Hemato-Oncology Division, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada.
| |
Collapse
|
25
|
Dastgheib ZS, Abolmaali SS, Farahavar G, Salmanpour M, Tamaddon AM. Gold nanostructures in melanoma: Advances in treatment, diagnosis, and theranostic applications. Heliyon 2024; 10:e35655. [PMID: 39170173 PMCID: PMC11336847 DOI: 10.1016/j.heliyon.2024.e35655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/16/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Melanoma, a lethal form of skin cancer, poses a significant challenge in oncology due to its aggressive nature and high mortality rates. Gold nanostructures, including gold nanoparticles (GNPs), offer myriad opportunities in melanoma therapy and imaging due to their facile synthesis and functionalization, robust stability, tunable physicochemical and optical properties, and biocompatibility. This review explores the emerging role of gold nanostructures and their composites in revolutionizing melanoma treatment paradigms, bridging the gap between nanotechnology and clinical oncology, and offering insights for researchers, clinicians, and stakeholders. It begins by elucidating the potential of nanotechnology-driven approaches in cancer therapy, highlighting the unique physicochemical properties and versatility of GNPs in biomedical applications. Various therapeutic modalities, including photothermal therapy, photodynamic therapy, targeted drug delivery, gene delivery, and nanovaccines, are discussed in detail, along with insights from ongoing clinical trials. In addition, the utility of GNPs in melanoma imaging and theranostics is explored, showcasing their potential in diagnosis, treatment monitoring, and personalized medicine. Furthermore, safety considerations and potential toxicities associated with GNPs are addressed, underscoring the importance of comprehensive risk assessment in clinical translation. Finally, the review concludes by discussing current challenges and future directions, emphasizing the need for innovative strategies to maximize the clinical impact of GNPs in melanoma therapy.
Collapse
Affiliation(s)
- Zahra Sadat Dastgheib
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Mohsen Salmanpour
- Cellular and Molecular Biology Research Center, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| |
Collapse
|
26
|
Lee AH, Randhawa SK, Meisel M. Dietary Commensal Wrestles Iron from Tumor Microenvironment to Activate Antitumoral Macrophages. Cancer Res 2024; 84:2400-2402. [PMID: 38832925 PMCID: PMC11552448 DOI: 10.1158/0008-5472.can-24-1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
The microbiome dictates the response to cancer immunotherapy efficacy. However, the mechanisms of how the microbiota impacts therapy efficacy remain poorly understood. In a recent issue of Nature Immunology, Sharma and colleagues elucidate a multifaceted, macrophage-driven mechanism exerted by a specific strain of fermented food commensal plantarum strain IMB19, LpIMB19. LpIMB19 activates tumor macrophages, resulting in the enhancement of cytotoxic cluster differentiation 8 (CD8) T cells. LpIMB19 administration led to an expansion of tumor-infiltrating CD8 T cells and improved the efficacy of anti-PD-L1 therapy. Rhamnose-rich heteropolysaccharide, a strain-specific cell wall component, was identified as the primary effector molecule of LplMB19. Toll-like receptor 2 signaling and the ability of macrophages to sequester iron were both critical for rhamnose-rich heteropolysaccharide-mediated macrophage activation upstream of the CD8 T-cell effector response and contributed to tumor cell apoptosis through iron deprivation. These findings reveal a well-defined mechanism connecting diet and health outcomes, suggesting that diet-derived commensals may warrant further investigation. Additionally, this work emphasizes the importance of strain-specific differences in studying microbiome-cancer interactions and the concept of "nutritional immunity" to enhance microbe-triggered antitumor immunity.
Collapse
Affiliation(s)
- Amanda H. Lee
- Department of Immunology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simran K. Randhawa
- Department of Immunology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center; Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Wu Z, Guo J, Zhang Z, Gao S, Huang M, Wang Y, Zhang Y, Li Q, Li J. Bacteroidetes promotes esophageal squamous carcinoma invasion and metastasis through LPS-mediated TLR4/Myd88/NF-κB pathway and inflammatory changes. Sci Rep 2024; 14:12827. [PMID: 38834834 PMCID: PMC11150411 DOI: 10.1038/s41598-024-63774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/02/2024] [Indexed: 06/06/2024] Open
Abstract
Gut microbiota plays a crucial role in gastrointestinal tumors. Additionally, gut microbes influence the progression of esophageal cancer. However, the major bacterial genera that affect the invasion and metastasis of esophageal cancer remain unknown, and the underlying mechanisms remain unclear. Here, we investigated the gut flora and metabolites of patients with esophageal squamous cell carcinoma and found abundant Bacteroides and increased secretion and entry of the surface antigen lipopolysaccharide (LPS) into the blood, causing inflammatory changes in the body. We confirmed these results in a mouse model of 4NQO-induced esophageal carcinoma in situ and further identified epithelial-mesenchymal transition (EMT) occurrence and TLR4/Myd88/NF-κB pathway activation in mouse esophageal tumors. Additionally, in vitro experiments revealed that LPS from Bacteroides fragile promoted esophageal cancer cell proliferation, migration, and invasion, and induced EMT by activating the TLR4/Myd88/NF-κB pathway. These results reveal that Bacteroides are closely associated with esophageal cancer progression through a higher inflammatory response level and signaling pathway activation that are both common to inflammation and tumors induced by LPS, providing a new biological target for esophageal cancer prevention or treatment.
Collapse
Affiliation(s)
- Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jianxin Guo
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhenhan Zhang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Wang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yushuang Zhang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Qinghuan Li
- Department of Traditional Chinese Medicine, ShiJiaZhuang Medical College, Shijiazhuang, 050011, China.
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
28
|
Maleki Vareki S, Davar D. Identification of dynamic microbiota signatures in patients with melanoma receiving ICIs: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:405-406. [PMID: 38509333 DOI: 10.1038/s41571-024-00882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Affiliation(s)
- Saman Maleki Vareki
- Department of Oncology, Western University, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Verspeeten Family Cancer Centre, Lawson Health Research Institute, London, Ontario, Canada
| | - Diwakar Davar
- Division of Medical Oncology, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Sudo M, Tsutsui H, Fujimoto J. Carbon Ion Irradiation Activates Anti-Cancer Immunity. Int J Mol Sci 2024; 25:2830. [PMID: 38474078 DOI: 10.3390/ijms25052830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Carbon ion beams have the unique property of higher linear energy transfer, which causes clustered damage of DNA, impacting the cell repair system. This sometimes triggers apoptosis and the release in the cytoplasm of damaged DNA, leading to type I interferon (IFN) secretion via the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway. Dendritic cells phagocytize dead cancer cells and damaged DNA derived from injured cancer cells, which together activate dendritic cells to present cancer-derived antigens to antigen-specific T cells in the lymph nodes. Thus, carbon ion radiation therapy (CIRT) activates anti-cancer immunity. However, cancer is protected by the tumor microenvironment (TME), which consists of pro-cancerous immune cells, such as regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. The TME is too robust to be destroyed by the CIRT-mediated anti-cancer immunity. Various modalities targeting regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages have been developed. Preclinical studies have shown that CIRT-mediated anti-cancer immunity exerts its effects in the presence of these modalities. In this review article, we provide an overview of CIRT-mediated anti-cancer immunity, with a particular focus on recently identified means of targeting the TME.
Collapse
Affiliation(s)
- Makoto Sudo
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Hiroko Tsutsui
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Jiro Fujimoto
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Osaka Heavy Ion Therapy Center, Osaka 540-0008, Japan
| |
Collapse
|
30
|
Cai R, Zhou C, Tang R, Meng Y, Zeng J, Li Y, Wen X. Current insights on gut microbiome and chronic urticaria: progress in the pathogenesis and opportunities for novel therapeutic approaches. Gut Microbes 2024; 16:2382774. [PMID: 39078229 PMCID: PMC11290762 DOI: 10.1080/19490976.2024.2382774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic urticaria (CU) is a prevalent skin disorder greatly impacting the patients' life quality, in which immune dysregulation mediated by gut microbiome plays a significant role. Several studies have found the gut dysbiosis exists in patients with CU. In addition, infection may also be one of the causes of CU. The primary treatment currently used for CU is the second-generation non-sedating H1-antihistamines (nsAH). However, there are some limitations in current therapies. Based on the latest evidence, this review provides an updated overview of how the gut dysbiosis influences CU development, explores potential therapeutic approaches based on the gut microbiota and summarizes the interaction between gut microbiota and current treatment.
Collapse
Affiliation(s)
- Rui Cai
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruisi Tang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanling Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|