1
|
Cuervo L, McAlpine PL, Olano C, Fernández J, Lombó F. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Int J Mol Sci 2024; 25:10397. [PMID: 39408727 PMCID: PMC11477366 DOI: 10.3390/ijms251910397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is the main cause of mortality in industrialized countries, with over 500 million people affected worldwide. In this work, the roles of low-molecular-weight metabolites originating from the gut microbiome, such as short-chain fatty acids, hydrogen sulfide, trimethylamine, phenylacetic acid, secondary bile acids, indoles, different gases, neurotransmitters, vitamins, and complex lipids, are discussed in relation to their CVD-promoting or preventing activities. Molecules of mixed microbial and human hepatic origin, such as trimethylamine N-oxide and phenylacetylglutamine, are also presented. Finally, dietary agents with cardioprotective effects, such as probiotics, prebiotics, mono- and poly-unsaturated fatty acids, carotenoids, and polyphenols, are also discussed. A special emphasis is given to their gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Lorena Cuervo
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Javier Fernández
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Felipe Lombó
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
2
|
Wu H, Zhang P, Zhou J, Hu S, Hao J, Zhong Z, Yu H, Yang J, Chi J, Guo H. Paeoniflorin confers ferroptosis resistance by regulating the gut microbiota and its metabolites in diabetic cardiomyopathy. Am J Physiol Cell Physiol 2024; 326:C724-C741. [PMID: 38223927 DOI: 10.1152/ajpcell.00565.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
Diabetic cardiomyopathy (DCM) is closely related to ferroptosis, a new type of cell death that mainly manifests as intracellular iron accumulation and lipid peroxidation. Paeoniflorin (PA) helps to improve impaired glucose tolerance, influences the distribution of the intestinal flora, and induces significant resistance to ferroptosis in several models. In this study, we found that PA improved cardiac dysfunction in mice with DCM by alleviating myocardial damage, resisting oxidative stress and ferroptosis, and changing the community composition and structure of the intestinal microbiota. Metabolomics analysis revealed that PA-treated fecal microbiota transplantation affected metabolites in DCM mice. Based on in vivo and in vitro experiments, 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor that mediates the cardioprotective and antiferroptotic effects of PA-treated fecal microbiota transplantation (FMT) in DCM mice.NEW & NOTEWORTHY This study demonstrated for the first time that paeoniflorin (PA) exerts protective effects in diabetic cardiomyopathy mice by alleviating myocardial damage, resisting ferroptosis, and changing the community composition and structure of the intestinal microbiota, and 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor in its therapeutic efficacy.
Collapse
Affiliation(s)
- Haowei Wu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Peipei Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiedong Zhou
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Songqing Hu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jinjin Hao
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zuoquan Zhong
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Haijun Yu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Juntao Yang
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jufang Chi
- Department of Cardiology, Zhuji People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Hangyuan Guo
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Jain H, Marsool MDM, Goyal A, Sulaiman SA, Fatima L, Idrees M, Sharma B, Borra V, Gupta P, Nadeem A, Jain J, Ali H, Sohail AH. Unveiling the relationship between gut microbiota and heart failure: Recent understandings and insights. Curr Probl Cardiol 2024; 49:102179. [PMID: 37923029 DOI: 10.1016/j.cpcardiol.2023.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Gut microbiota, which comprises a broad range of bacteria inhabiting the human intestines, plays a crucial role in establishing a mutually beneficial relationship with the host body. Dysbiosis refers to the perturbations in the composition or functioning of the microbial community, which can result in a shift from a balanced microbiota to an impaired state. This alteration has the potential to contribute to the development of chronic systemic inflammation. Heart failure (HF) is a largely prevalent clinical condition that has been demonstrated to have variations in the gut microbiome, indicating a potential active involvement in the pathogenesis and advancement of the disease. The exploration of the complex interplay between the gut microbiome and HF presents a potential avenue for the discovery of innovative biomarkers, preventive measures, and therapeutic targets. This review aims to investigate the impact of gut bacteria on HF.
Collapse
Affiliation(s)
- Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India.
| | | | - Aman Goyal
- Department of Internal Medicine, Seth GS Medical College and KEM Hospital, Mumbai, India
| | | | | | | | - Bhavya Sharma
- Department of Internal Medicine, Baroda Medical College and SSG Hospital, Vadodara, India
| | - Vamsikalyan Borra
- Department of Internal Medicine, University of Texas Rio Grande Valley, TX, United States
| | - Prakash Gupta
- Virgen Milagrosa University Foundation College of Medicine, San Carlos City, Philippines
| | - Abdullah Nadeem
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Jyoti Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Hassam Ali
- Department of Gastroenterology, East Carolina University, North Carolina, United States
| | - Amir H Sohail
- Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
4
|
Karmazyn M, Gan XT. Probiotics as potential treatments to reduce myocardial remodelling and heart failure via the gut-heart axis: State-of-the-art review. Mol Cell Biochem 2023; 478:2539-2551. [PMID: 36892791 DOI: 10.1007/s11010-023-04683-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
Probiotics are considered to represent important modulators of gastrointestinal health through increased colonization of beneficial bacteria thus altering the gut microflora. Although these beneficial effects of probiotics are now widely recognized, emerging evidence suggests that alterations in the gut microflora also affect numerous other organ systems including the heart through a process generally referred to as the gut-heart axis. Moreover, cardiac dysfunction such as that seen in heart failure can produce an imbalance in the gut flora, known as dysbiosis, thereby further contributing to cardiac remodelling and dysfunction. The latter occurs by the production of gut-derived pro-inflammatory and pro-remodelling factors which exacerbate cardiac pathology. One of the key contributors to gut-dependent cardiac pathology is trimethylamine N-oxide (TMAO), a choline and carnitine metabolic by-product first synthesized as trimethylamine which is then converted into TMAO by a hepatic flavin-containing monooxygenase. The production of TMAO is particularly evident with regular western diets containing high amounts of both choline and carnitine. Dietary probiotics have been shown to reduce myocardial remodelling and heart failure in animal models although the precise mechanisms for these effects are not completely understood. A large number of probiotics have been shown to possess a reduced capacity to synthesize gut-derived trimethylamine and therefore TMAO thereby suggesting that inhibition of TMAO is a factor mediating the beneficial cardiac effects of probiotics. However, other potential mechanisms may also be important contributing factors. Here, we discuss the potential benefit of probiotics as effective therapeutic tools for attenuating myocardial remodelling and heart failure.
Collapse
Affiliation(s)
- Morris Karmazyn
- Department of Pharmacology and Physiology, University of Western Ontario, London, ON, N6G 2X6, Canada.
| | - Xiaohong Tracey Gan
- Department of Pharmacology and Physiology, University of Western Ontario, London, ON, N6G 2X6, Canada
| |
Collapse
|
5
|
Paraskevaidis I, Xanthopoulos A, Tsougos E, Triposkiadis F. Human Gut Microbiota in Heart Failure: Trying to Unmask an Emerging Organ. Biomedicines 2023; 11:2574. [PMID: 37761015 PMCID: PMC10526035 DOI: 10.3390/biomedicines11092574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
There is a bidirectional relationship between the heart and the gut. The gut microbiota, the community of gut micro-organisms themselves, is an excellent gut-homeostasis keeper since it controls the growth of potentially harmful bacteria and protects the microbiota environment. There is evidence suggesting that a diet rich in fatty acids can be metabolized and converted by gut microbiota and hepatic enzymes to trimethyl-amine N-oxide (TMAO), a product that is associated with atherogenesis, platelet dysfunction, thrombotic events, coronary artery disease, stroke, heart failure (HF), and, ultimately, death. HF, by inducing gut ischemia, congestion, and, consequently, gut barrier dysfunction, promotes the intestinal leaking of micro-organisms and their products, facilitating their entrance into circulation and thus stimulating a low-grade inflammation associated with an immune response. Drugs used for HF may alter the gut microbiota, and, conversely, gut microbiota may modify the pharmacokinetic properties of the drugs. The modification of lifestyle based mainly on exercise and a Mediterranean diet, along with the use of pre- or probiotics, may be beneficial for the gut microbiota environment. The potential role of gut microbiota in HF development and progression is the subject of this review.
Collapse
Affiliation(s)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Filippos Triposkiadis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| |
Collapse
|
6
|
Lee C, Lee J, Eor JY, Kwak MJ, Huh CS, Kim Y. Effect of Consumption of Animal Products on the Gut Microbiome Composition and Gut Health. Food Sci Anim Resour 2023; 43:723-750. [PMID: 37701742 PMCID: PMC10493557 DOI: 10.5851/kosfa.2023.e44] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
The gut microbiome is critical in human health, and various dietary factors influence its composition and function. Among these factors, animal products, such as meat, dairy, and eggs, represent crucial sources of essential nutrients for the gut microbiome. However, the correlation and characteristics of livestock consumption with the gut microbiome remain poorly understood. This review aimed to delineate the distinct effects of meat, dairy, and egg products on gut microbiome composition and function. Based on the previous reports, the impact of red meat, white meat, and processed meat consumption on the gut microbiome differs from that of milk, yogurt, cheese, or egg products. In particular, we have focused on animal-originated proteins, a significant nutrient in each livestock product, and revealed that the major proteins in each food elicit diverse effects on the gut microbiome. Collectively, this review highlights the need for further insights into the interactions and mechanisms underlying the impact of animal products on the gut microbiome. A deeper understanding of these interactions would be beneficial in elucidating the development of dietary interventions to prevent and treat diseases linked to the gut microbiome.
Collapse
Affiliation(s)
- Chaewon Lee
- WCU Biomodulation Major, Department of
Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul
National University, Seoul 08826, Korea
| | - Junbeom Lee
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Chul Sung Huh
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
7
|
Lupu VV, Adam Raileanu A, Mihai CM, Morariu ID, Lupu A, Starcea IM, Frasinariu OE, Mocanu A, Dragan F, Fotea S. The Implication of the Gut Microbiome in Heart Failure. Cells 2023; 12:1158. [PMID: 37190067 PMCID: PMC10136760 DOI: 10.3390/cells12081158] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Heart failure is a worldwide health problem with important consequences for the overall wellbeing of affected individuals as well as for the healthcare system. Over recent decades, numerous pieces of evidence have demonstrated that the associated gut microbiota represent an important component of human physiology and metabolic homeostasis, and can affect one's state of health or disease directly, or through their derived metabolites. The recent advances in human microbiome studies shed light on the relationship between the gut microbiota and the cardiovascular system, revealing its contribution to the development of heart failure-associated dysbiosis. HF has been linked to gut dysbiosis, low bacterial diversity, intestinal overgrowth of potentially pathogenic bacteria and a decrease in short chain fatty acids-producing bacteria. An increased intestinal permeability allowing microbial translocation and the passage of bacterial-derived metabolites into the bloodstream is associated with HF progression. A more insightful understanding of the interactions between the human gut microbiome, HF and the associated risk factors is mandatory for optimizing therapeutic strategies based on microbiota modulation and offering individualized treatment. The purpose of this review is to summarize the available data regarding the influence of gut bacterial communities and their derived metabolites on HF, in order to obtain a better understanding of this multi-layered complex relationship.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Anca Adam Raileanu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | | | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ancuta Lupu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Iuliana Magdalena Starcea
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Otilia Elena Frasinariu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Adriana Mocanu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Silvia Fotea
- Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| |
Collapse
|