1
|
Lv QY, Cui HF, Song X. Aptamer-based technology for gastric cancer theranostics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2142-2153. [PMID: 37114324 DOI: 10.1039/d3ay00415e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Gastric cancer is one of the most common causes of cancer death worldwide. This cancer exhibits high molecular and phenotype heterogeneity. The overall survival rate for gastric cancer is very low because it is always diagnosed in the advanced stages. Therefore, early detection and treatment are of great significance. Currently, biomedical studies have tapped the potential clinical applicability of aptamer-based technology for gastric cancer diagnosis and targeted therapy. Herein, we summarize the enrichment and evolution of relevant aptamers, followed by documentation of the recent developments in aptamer-based techniques for early diagnosis and precision therapy for gastric cancers.
Collapse
Affiliation(s)
- Qi-Yan Lv
- School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, People's Republic of China.
| | - Hui-Fang Cui
- School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, People's Republic of China.
| | - Xiaojie Song
- School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
2
|
Simple Detection of DNA Methyltransferase with an Integrated Padlock Probe. BIOSENSORS 2022; 12:bios12080569. [PMID: 35892466 PMCID: PMC9332213 DOI: 10.3390/bios12080569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
DNA methyltransferases (MTases) can be regarded as biomarkers, as demonstrated by many studies on genetic diseases. Many researchers have developed biosensors to detect the activity of DNA MTases, and nucleic acid amplification, which need other probe assistance, is often used to improve the sensitivity of DNA MTases. However, there is no integrated probe that incorporates substrates and template and primer for detecting DNA MTases activity. Herein, we first designed a padlock probe (PP) to detect DNA MTases, which combines target detection with rolling circle amplification (RCA) without purification or other probe assistance. As the substrate of MTase, the PP was methylated and defended against HpaII, lambda exonuclease, and ExoI cleavage, as well as digestion, by adding MTase and the undestroyed PP started RCA. Thus, the fluorescent signal was capable of being rapidly detected after adding SYBRTM Gold to the RCA products. This method has a detection limit of approximately 0.0404 U/mL, and the linear range was 0.5–110 U/mL for M.SssI. Moreover, complex biological environment assays present prospects for possible application in intricacy environments. In addition, the designed detection system can also screen drugs or inhibitors for MTases.
Collapse
|
3
|
A primer-initiated strand displacement amplification strategy for sensitive detection of 5-hydroxymethylcytosine in genomic DNA. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Chen J, Zhang Y, Chen D, Wang T, Yin W, Yang HH, Xu Y, Chen JX, Dai Z, Zou X. Toehold-mediated ligation-free rolling circle amplification enables sensitive and rapid imaging of messenger RNAs in situ in cells. Anal Chim Acta 2021; 1160:338463. [PMID: 33894961 DOI: 10.1016/j.aca.2021.338463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 11/27/2022]
Abstract
In situ analysis of tumor-related messenger RNAs (mRNAs) is significant in identifying cancer cells at the genetic level in the early stage. Rolling circle amplification (RCA)-based methods are primary tools for in situ mRNA assay, however, the necessary ligation reaction not only shows low ligation efficiency, but also greatly prolongs the assay time that increases the risk of cells losing and mRNAs leakage. In this work, we propose a novel toehold-mediated ligation-free RCA (TMLFRCA) on a designed structure-switchable dumbbell-shaped probe (SDP). Target mRNA can specifically activate SDP from its circular form by toehold strand displacement, thereby initiates in situ RCA for mRNA imaging with the help of a short DNA primer. For the proof-of-concept demonstration, the TK1 mRNA was sensitively detected by TMLFRCA in less than 3.5 h with a limit of detection (LOD) of 0.39 fM (corresponds to 2.39×108copiesL-1), and significantly improved specificity capable for distinguishing single base difference. The sensitivity of the TMLFRCA for TK1 mRNA in situ assay is ∼29-fold and ∼7-fold higher than that of FISH and ligase-assisted RCA method, respectively, which enables the TMLFRCA method capability of highly sensitive and specific distinction mRNA expression levels between cancer cells and normal cells. We believe this TMLFRCA strategy would be of great value in both basic research and clinical diagnosis.
Collapse
Affiliation(s)
- Jun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Danping Chen
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Tianchen Wang
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Wen Yin
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Hui-Hui Yang
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Yuzhi Xu
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Jin-Xiang Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Zong Dai
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 511400, PR China.
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| |
Collapse
|
5
|
Huang R, He L, Xia Y, Xu H, Liu C, Xie H, Wang S, Peng L, Liu Y, Liu Y, He N, Li Z. A Sensitive Aptasensor Based on a Hemin/G-Quadruplex-Assisted Signal Amplification Strategy for Electrochemical Detection of Gastric Cancer Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900735. [PMID: 30963720 DOI: 10.1002/smll.201900735] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/19/2019] [Indexed: 05/27/2023]
Abstract
Emerging evidence indicates that exosomes derived from gastric cancer cells enhance tumor migration and invasion through the modulation of the tumor microenvironment. However, it remains a major problem to detect cancer-specific exosomes due to technical and biological challenges. Most of the methods reported could not achieve efficient detection of tumor-derived exosomes in the background of normal exosomes. Herein, a label-free electrochemical aptasensor is presented for specific detection of gastric cancer exosomes. This platform contains an anti-CD63 antibody modified gold electrode and a gastric cancer exosome specific aptamer. The aptamer is linked to a primer sequence that is complementary to a G-quadruplex circular template. The presence of target exosomes could trigger rolling circle amplification and produce multiple G-quadruplex units. This horseradish peroxidase mimicking DNAzyme could catalyze the reduction of H2 O2 and generate electrochemical signals. This aptasensor exhibits high selectivity and sensitivity toward gastric cancer exosomes with a detection limit of 9.54 × 102 mL-1 and a linear response range from 4.8 × 103 to 4.8 × 106 exosomes per milliliter. Therefore, this electrochemical aptasensor is expected to become a useful tool for the early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Rongrong Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing, 210096, P. R. China
| | - Lei He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing, 210096, P. R. China
| | - Yanyan Xia
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Hongpan Xu
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Chang Liu
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Hui Xie
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Su Wang
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Lijun Peng
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Yufeng Liu
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Yuan Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing, 210096, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing, 210096, P. R. China
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, P. R. China
| | - Zhiyang Li
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| |
Collapse
|
6
|
Zhang C, Chen G, Wang Y, Zhou J, Li C. Establishment and application of hyperbranched rolling circle amplification coupled with lateral flow dipstick for the sensitive detection of Karenia mikimotoi. HARMFUL ALGAE 2019; 84:151-160. [PMID: 31128799 DOI: 10.1016/j.hal.2019.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
The dinoflagellate Karenia mikimotoi is a noxious and harmful algal bloom (HAB)-forming microalga. Establishing a rapid, accurate, and sensitive method of detecting this harmful alga is necessary to provide warnings of imminent HABs through field monitoring. Here, an isothermal amplification technique combined with a rapid analytical method for nucleic acid-based amplified products, i.e., hyperbranched rolling circle amplification (HRCA) coupled with lateral flow dipstick (LFD), hereafter denoted as HRCA-LFD, was established to detect K. mikimotoi. The HRCA-LFD assay relied on a padlock probe (PLP) targeting DNA template and an LFD probe targeting PLP. The sequenced internal transcribed spacer of K. mikimotoi through molecular cloning was used as the target of PLP. The optimized HRCA conditions was determined to be as follows: PLP concentration, 20 pM; ligation temperature, 65 °C; ligation time, 10 min; amplification temperature, 61 °C; and amplification time, 30 min. The developed HRCA-LFD assay was specific for K. mikimotoi, displaying no cross-reactivity with other common microalgae. Sensitivity-comparison tests indicated that HRCA-LFD assay was 100-fold more sensitive than PCR, with a detection limit of 0.1 cell mL-1 when used to analyze spiked field samples. The analysis with field samples also indicated that HRCA-LFD assay was suitable for samples with a target cell density range of 1-1000 cells mL-1. All of these results suggested that HRCA-LFD assay is an alternative method for the sensitive and reliable detection of K. mikimotoi from marine water samples.
Collapse
Affiliation(s)
- Chunyun Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Jin Zhou
- Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
7
|
Zhang C, Wang Y, Guo C, Chen G, Kan G, Cai P, Zhou J. Comparison of loop-mediated isothermal amplification with hyperbranched rolling circle amplification as a simple detection method for Heterosigma akashiwo. HARMFUL ALGAE 2018; 73:1-11. [PMID: 29602497 DOI: 10.1016/j.hal.2018.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
The fish-killing alga Heterosigma akashiwo is a globally distributed, toxic, and bloom-forming raphidophyte that has caused great losses to the fishing industry in many coastal countries. Therefore, rapid and sensitive detection methods should be developed to present timely warning of harmful algal blooms. In this study, hyperbranched rolling circle amplification (HRCA) was established for the detection of H. akashiwo and compared with loop-mediated isothermal amplification (LAMP) in terms of specificity and sensitivity. The partial D1-D2 sequence of the large subunit (LSU) of rDNA of H. akashiwo was used to design a specific padlock probe for HRCA and two pairs of specific primers for LAMP. The parameters for HRCA were optimized. Cross-reactivity tests showed that the specificity of the developed HRCA for H. akashiwo was greater than that of LAMP in this study. The sensitivities of HRCA and LAMP were comparable and were 10-fold higher than that of regular PCR. These methods also yielded a detection limit of 20 fg/μL for the recombinant plasmid containing the target LSU D1-D2 and 1 cell for target species. The test with the simulated field samples indicated that the developed HRCA obtained a detection limit of 5 cells mL-1, which was lower than the warning cell density (100 cells mL-1) of H. akashiwo. The visual detection of positive HRCA could be achieved via coloration reaction with the addition of fluorescent SYBR Green I dye to the amplification products. The developed HRCA was also efficient for field samples with target cell densities ranging from 10 cells mL-1 to 1000 cells mL-1. Therefore, the proposed HRCA detection protocols are possibly applicable to the field monitoring of H. akashiwo.
Collapse
Affiliation(s)
- Chunyun Zhang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Yuanyuan Wang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Changlu Guo
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Guangfeng Kan
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Panpan Cai
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Jin Zhou
- Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| |
Collapse
|
8
|
Huang W, Lan MD, Qi CB, Zheng SJ, Wei SZ, Yuan BF, Feng YQ. Formation and determination of the oxidation products of 5-methylcytosine in RNA. Chem Sci 2016; 7:5495-5502. [PMID: 30034689 PMCID: PMC6021781 DOI: 10.1039/c6sc01589a] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/07/2016] [Indexed: 12/22/2022] Open
Abstract
Chemical labeling coupled with LC-MS enables the sensitive and simultaneous detection of the oxidative products of 5-methylcytosine. With this method, we can determine 5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in RNA of mammals.
Similar to the reversible epigenetic modifications on DNA, dynamic RNA modifications were recently considered to constitute another realm for biological regulation in the form of “RNA epigenetics”. 5-Methylcytosine (5-mC) has long been known to be present in RNA from all three kingdoms of life. However, the functions of 5-mC in RNA have not been fully understood, especially for the RNA demethylation mechanism. The discovery of 5-hydroxymethylcytosine (5-hmC) in RNA together with our recently reported 5-formylcytosine (5-foC) in RNA indicated that 5-mC in RNA may undergo the same cytosine oxidation demethylation pathway with generating intermediates 5-hmC, 5-foC, and 5-carboxylcytosine (5-caC) by ten–eleven translocation (Tet) proteins as that in DNA. However, endogenous 5-caC in RNA has not been observed so far. In the current study, we established a method using chemical labeling coupled with liquid chromatography-mass spectrometry analysis for the sensitive and simultaneous determination of the oxidative products of 5-mC. Our results demonstrated that the detection sensitivities of 5-mC, 5-hmC, 5-foC and 5-caC in RNA increased by 70–313 folds upon 2-bromo-1-(4-diethylaminophenyl)-ethanone (BDEPE) labeling. Using this method, we discovered the existence of 5-caC in the RNA of mammals. In addition, we found the 5-mC occurs in all RNA species including mRNA, 28S rRNA, 18S rRNA and small RNA (<200 nt). However, 5-hmC, 5-foC and 5-caC mainly occur in mRNA, and barely detected in other types of RNA. Furthermore, we found that the content of 5-hmC in the RNA of human colorectal carcinoma (CRC) and hepatocellular carcinoma (HCC) tissues significantly decreased compared to tumor adjacent normal tissues, suggesting that 5-hmC in RNA may play certain functional roles in the regulation of cancer development and formation.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| | - Meng-Dan Lan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| | - Chu-Bo Qi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595.,Department of Pathology , Hubei Cancer Hospital , Wuhan , Hubei 430079 , P. R. China
| | - Shu-Jian Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| | - Shao-Zhong Wei
- Department of Pathology , Hubei Cancer Hospital , Wuhan , Hubei 430079 , P. R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| |
Collapse
|
9
|
Huang W, Qi CB, Lv SW, Xie M, Feng YQ, Huang WH, Yuan BF. Determination of DNA and RNA Methylation in Circulating Tumor Cells by Mass Spectrometry. Anal Chem 2016; 88:1378-84. [PMID: 26707930 DOI: 10.1021/acs.analchem.5b03962] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
DNA methylation (5-methylcytosine, 5-mC) is the best characterized epigenetic mark that has regulatory roles in diverse biological processes. Recent investigation of RNA modifications also raises the possible functions of RNA adenine and cytosine methylations on gene regulation in the form of "RNA epigenetics." Previous studies demonstrated global DNA hypomethylation in tumor tissues compared to healthy controls. However, DNA and RNA methylation in circulating tumor cells (CTCs) that are derived from tumors are still a mystery due to the lack of proper analytical methods. In this respect, here we established an effective CTCs capture system conjugated with a combined strategy of sample preparation for the captured CTCs lysis, nucleic acids digestion, and nucleosides extraction in one tube. The resulting nucleosides were then further analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). With the developed method, we are able to detect DNA and RNA methylation (5-methyl-2'-deoxycytidine, 5-methylcytidine, and N(6)-methyladenosine) in a single cell. We then further successfully determined DNA and RNA methylation in CTCs from lung cancer patients. Our results demonstrated, for the first time, a significant decrease of DNA methylation (5-methyl-2'-deoxycytidine) and increase of RNA adenine and cytosine methylations (N(6)-methyladenosine and 5-methylcytidine) in CTCs compared with whole blood cells. The discovery of DNA hypomethylation and RNA hypermethylation in CTCs in the current study together with previous reports of global DNA hypomethylation in tumor tissues suggest that nucleic acid modifications play important roles in the formation and development of cancer cells. This work constitutes the first step for the investigation of DNA and RNA methylation in CTCs, which may facilitate uncovering the metastasis mechanism of cancers in the future.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China
| | - Chu-Bo Qi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China.,Department of Pathology, Hubei Cancer Hospital , Wuhan, Hubei 430079, Peoples' Republic of China
| | - Song-Wei Lv
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China
| | - Min Xie
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China
| |
Collapse
|