1
|
Gao Y, Liu Y, Hao H. A 10-year knowledge mapping of T cells in rheumatoid arthritis: A bibliometric analysis. Hum Vaccin Immunother 2025; 21:2450855. [PMID: 39962980 PMCID: PMC11845019 DOI: 10.1080/21645515.2025.2450855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 02/23/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease of autoimmune origin. T cells play crucial roles in the initiation and progression of RA. Although bibliometric methods have been widely used to synthesize knowledge trajectories across different biomedical fields, it has hardly been used to underscore the knowledge trends in relation to T cell and RA. This study used bibliometric methods to delineate the evolution of research on T cells and RA. Data were sourced from the Web of Science™ Core Collection and were scientometrically analyzed using CiteSpace and VOSviewer. From 2014 to 2023, 7037 papers on T cells and RA were retrieved. The number of annual publications is stable between 600 and 800, and the citation frequency continues to rise. The United States, China, the United Kingdom and Japan were the most productive countries. Karolinska Institute, and Harvard Medical School were the institutions that published the most research papers. Wei W, Cho ML, and Park SH were the most prolific authors. Mclnnes IB and Smolen JS were the most frequently cited authors. The journals with the most articles are Frontiers in Immunology, Arthritis Research & Therapy, and Arthritis & Rheumatology. Current research hotspots include pathogenic factors and targeted biological therapy, immune mechanisms, inflammatory mechanisms, and bone destruction mechanisms. The current research frontiers in this field are gut microbiota, identification, fibroblast-like synoviocytes, biologic therapy, mesenchymal stem cells, and risk. This work provides new insights into the scientific research and clinical application of T cells to develop therapeutic targets for RA.
Collapse
Affiliation(s)
- Yanfang Gao
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yang Liu
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Huiqin Hao
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
2
|
Zhao X, Huang C, Liang X, Chang H, Zhang L. A sensitive fluorescent probe for monitoring hypochlorous acid levels in rheumatoid arthritis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126020. [PMID: 40081226 DOI: 10.1016/j.saa.2025.126020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease. Hypochlorous acid (HClO) is a signature reactive oxygen species (ROS) closely associated with the progression of RA. Here, we report a novel fluorescent probe, ZCP1, which exhibits high sensitivity to HClO. In the presence of HClO, ZCP1 demonstrates a rapid detection time of 20 s and a low detection limit of 19.1 nM, allowing for fast and sensitive reactions with HClO, with a 150-fold fluorescence enhancement. ZCP1 can be employed for fluorescent detection of both exogenous and endogenous HClO levels in live cells. Furthermore, ZCP1 has been utilized to detect endogenous HClO in a mouse model of RA. This work provides a reliable tool for monitoring endogenous HClO both in vivo and in vitro, offering significant potential for future biological and pathological studies related to HClO.
Collapse
Affiliation(s)
- Xin Zhao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Chi Huang
- Department of Medical Laboratory, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Xiao Liang
- College of Pharmacy, Heze University, Heze, Shandong Province, China.
| | - Hao Chang
- Department of Medical Laboratory, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China.
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China.
| |
Collapse
|
3
|
Chen X, Ma J, Dai D, Wang K, Yang M, Yi C. Facile Synthesis of Polymeric Nanoprobes for Actively Targeted and High-Performance MR/CT Dual-Modal Imaging of Rheumatoid Arthritis. ACS APPLIED BIO MATERIALS 2025; 8:2141-2150. [PMID: 39992815 DOI: 10.1021/acsabm.4c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
This study reports a facile approach for the green synthesis of a high-performance magnetic resonance/computed tomography (MR/CT) dual-modal imaging nanoprobe. The probe, designated as NPs-TCZ, is synthesized via one-step self-assembly of two amphiphilic block copolymers, namely, PEG-DTIPA-TCZ and pal-GGGGHHHHD. The NPs-TCZ exhibits a high longitudinal relaxivity (9.60 mM-1 s-1) and X-ray absorption (58.2 Hu mM-1), as well as excellent water solubility and biocompatibility. The MR/CT dual-modal imaging can synergistically visualize synovial inflammation and bone erosion, which are both important clinical indicators for assessing arthritis severity, enabling sensitive diagnosis and prognostic assessments of rheumatoid arthritis (RA). The active targeting capability of tocilizumab (TCZ) enables the specific accumulation of NPs-TCZ at inflamed joints rather than healthy joints, significantly enhancing the imaging signals and minimizing its potential side effects. In vivo assays using both collagen-induced arthritis mice and acute arthritis mice demonstrate high performance and effectiveness in MR/CT dual-modal imaging of inflamed joints. This study provides insights into not only RA diagnosis in a more accurate manner but also the synthesis of multifunctional nanoprobes in a more robust and mild manner.
Collapse
Affiliation(s)
- Xuan Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Junping Ma
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Deshen Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kang Wang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Changqing Yi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
4
|
Prabhu A, Baliga V, Shenoy R, Dessai AD, Nayak UY. 3D printed microneedles: revamping transdermal drug delivery systems. Drug Deliv Transl Res 2025; 15:436-454. [PMID: 39103595 PMCID: PMC11683023 DOI: 10.1007/s13346-024-01679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/07/2024]
Abstract
One of the advancements of the transdermal drug delivery system (TDDS) is the development of microneedles (MNs). These micron-sized needles are used for delivering various types of drugs to address the disadvantage of other transdermal techniques as well as oral drug delivery systems. MNs have high patient acceptance due to self-administration with minimally invasive and pain compared to the parenteral drug delivery. Over the years, various methods have been adopted to evolve the MNs and make them more cost-effective, accurate, and suitable for multiple applications. One such method is the 3D printing of MNs. The development of MN platforms using 3D printing has been made possible by improved features like precision, printing resolution, and the feasibility of using low-cost raw materials. In this review, we have tried to explain various types of MNs, fabrication methods, materials used in the formulation of MNs, and the recent applications that utilize 3D-printed MNs.
Collapse
Affiliation(s)
- Ashlesh Prabhu
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vishal Baliga
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raghavendra Shenoy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Akanksha D Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Tahir M, Saleem A, Akhtar MF. Diosgenin loaded-chitosan biodegradable nanoparticles ameliorate adjuvant-induced arthritis, pain, and peripheral neuropathy through moderation of inflammatory and oxidative stress biomarkers. Int J Biol Macromol 2025; 290:138926. [PMID: 39706407 DOI: 10.1016/j.ijbiomac.2024.138926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
This research work was designed to develop efficient Diosgenin (DGN) loaded biodegradable nanoparticles (DGN-NPs) for treating rheumatoid arthritis. The DGN-NPs were synthesized by ionic-gelation method using chitosan as a biodegradable polymer and in-vitro release study was performed followed by kinetics study. DGN-NPs had an average size of 290 nm, zeta potential of +11.5 mV with 72 % entrapment efficiency, and PDI of 0.398. XRD analysis of DGN-NPs indicated the crystallographic nature while SEM analysis showed the spherical morphology and smooth surface. The release of DGN from NPs occurred by diffusion and erosion mechanism. The anti-arthritic potential of DGN-NPs was investigated by injecting 0.1 ml Complete Freund's adjuvant in the left hind paw of Wistar rats on day 1 while oral therapy with DGN 15 mg/kg, and DGN-NPs at 5, 10, and 15 mg/kg was carried daily. Methotrexate (1 mg/kg) served as standard and was started on day 8 and continued till the 28th day by oral route. The DGN-NPs notably (p < 0.05-0.0001) reduced paw edema, pain, arthritic scoring, and improved body weight in contrast to DGN and standard therapy. The oxidative stress biomarkers were restored by GDN-NPs in the liver and sciatic nerve homogenates along with restoration of altered blood parameters as compared to disease control. The level of serotonin and nor-adrenaline in sciatic nerve homogenates was also profoundly elevated in DGN-NPs-treated arthritic rats. Treatment with DGN-NPs significantly (p < 0.01-0.0001) downregulated NF-κβ, IL-6, IL-1β, COX-2, and TNF-α while upregulated IL-4 in contrast to disease control which resulted in the improvement of the histological lesions in ankle joints and sciatic nerve. It can be inferred from the current study that DGN-NPs especially at 15 mg/kg exhibited notable anti-arthritic, and analgesic activity in contrast to DGN. Moreover, DGN-NPs are also effective against peripheral neuropathy.
Collapse
Affiliation(s)
- Maria Tahir
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 38000, Pakistan.
| |
Collapse
|
6
|
Pimple P, Shah J, Singh P. Emerging Phytochemical Formulations for Management of Rheumatoid Arthritis: A Review. Curr Drug Deliv 2025; 22:15-40. [PMID: 38299275 DOI: 10.2174/0115672018270434240105110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/02/2023] [Accepted: 12/17/2023] [Indexed: 02/02/2024]
Abstract
Rheumatoid arthritis (RA) is a T-cell-mediated chronic inflammatory disorder affecting 0.5-1% of the global population. The disease with unknown etiology causes slow destruction of joints, advancing to significant deterioration of an individual's quality of life. The present treatment strategy comprises the use of disease-modifying anti-rheumatic drugs (DMARDs) coupled with or without nonsteroidal anti-inflammatory drugs or glucocorticoids. Additionally, involves co-therapy of injectable biological DMARDs in case of persistent or recurrent arthritis. The availability of biological DMARDs and the implementation of the treat-to-target approach have significantly improved the outcomes for patients suffering from RA. Nevertheless, RA requires continuous attention due to inadequate response of patients, development of tolerance and severe side effects associated with long-term use of available treatment regimens. An estimated 60-90% of patients use alternative methods of treatment, such as herbal therapies, for the management of RA symptoms. Over the past few decades, researchers have exploring natural phytochemicals to alleviate RA and associated symptoms. Enormous plant-origin phytochemicals such as alkaloids, flavonoids, steroids, terpenoids and polyphenols have shown anti-inflammatory and immunomodulatory activity against RA. However, phytochemicals have certain limitations, such as high molecular weight, poor water solubility, poor permeability, poor stability and extensive first-pass metabolism, limiting absorption and bioavailability. The use of nanotechnology has aided to extensively improve the pharmacokinetic profile and stability of encapsulated drugs. The current review provides detailed information on the therapeutic potential of phytochemicals. Furthermore, the review focuses on developed phytochemical formulations for RA, with emphasis on clinical trials, regulatory aspects, present challenges, and future prospects.
Collapse
Affiliation(s)
- Prachi Pimple
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Jenny Shah
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Prabha Singh
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| |
Collapse
|
7
|
Priya S, Jain KK, Daryani J, Desai VM, Kathuria H, Singhvi G. Revolutionizing rheumatoid arthritis treatment with emerging cutaneous drug delivery systems: overcoming the challenges and paving the way forward. NANOSCALE 2024; 17:65-87. [PMID: 39560334 DOI: 10.1039/d4nr03611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder of the articulating joints. Though considerable progress has been made in understanding the disease in the past 50 years, its pathogenesis remains unclear. The therapies for RA, such as nonsteroidal anti-inflammatory drugs, disease-modifying antirheumatic drugs, and glucocorticoids through conventional therapeutic delivery systems by percutaneous, intra-articular, intraperitoneal, oral, and intravenous administration, have shown their own disadvantages, which eventually reduce patient compliance for long-term therapy. Recently, drug delivery via a topical or transdermal route has gained attention as an alternative to the conventional approach. Though skin acts as a barrier for the delivery of drugs due to its structure, various permeation pathways are manipulated to enhance the drug delivery across or into the skin. However, poor skin retention is the reason for the failure of many conventional topical dosage forms, such as gels, sprays, and creams. Hence, there is an urgent need for conquering the skin boundary to improve skin partitioning. Nanotechnology is a developing and dynamic field gaining popularity in the nanoscale design. This review extensively describes the potential of various nanoformulations, such as vesicular systems, lipid nanoparticles, and polymeric nanoparticles, with a targeted approach to deliver the drugs to the inflamed joint region. Limelight has also been provided to next-generation approaches like surface modification, stimuli-responsive formulations, multifunctional carrier systems, microneedles, and microsponge systems. Physical methods for enhancing the transdermal delivery, such as electroporation and sonophoresis, and emerging treatment therapies, such as gene therapy, photothermal therapy, and photodynamic therapy, have been evaluated to enhance the treatment efficacy. The clinical status, patents and current challenges associated with nanotechnology and the future prospects of targeted drug delivery have also been discussed.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India - 333031.
| | - Kaushal Kailash Jain
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India - 333031.
| | - Jeevika Daryani
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India - 333031.
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India - 333031.
| | - Himanshu Kathuria
- Nusmetics Pte Ltd, 3791 Jalan Bukit Merah, E-Centre@Redhill, Singapore - 159471
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India - 333031.
| |
Collapse
|
8
|
Zewail MB, Doghish AS, El-Husseiny HM, Mady EA, Mohammed OA, Elbadry AMM, Elbokhomy AS, Bhnsawy A, El-Dakroury WA. Lipid-based nanocarriers: an attractive approach for rheumatoid arthritis management. Biomater Sci 2024; 12:6163-6195. [PMID: 39484700 DOI: 10.1039/d4bm01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as transformative tools in modern drug delivery, offering unparalleled potential in enhancing the efficacy and safety of various therapeutics. In the context of rheumatoid arthritis (RA), a disabling autoimmune disorder characterized by chronic inflammation, joint damage, and limited patient mobility, LNPs hold significant promise for revolutionizing treatment strategies. LNPs offer several advantages over traditional drug delivery systems, including improved pharmacokinetics, enhanced tissue penetration, and reduced systemic toxicity. This article concisely summarizes the pathogenesis of RA, its associated risk factors, and therapeutic techniques and their challenges. Additionally, it highlights the noteworthy advancements made in managing RA through LNPs, including liposomes, niosomes, bilosomes, cubosomes, spanlastics, ethosomes, solid lipid nanoparticles, lipid micelles, lipid nanocapsules, nanostructured lipid carriers, etc. It also delves into the specific functional attributes of these nanocarrier systems, focusing on their role in treating and monitoring RA.
Collapse
Affiliation(s)
- Moataz B Zewail
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 17 Cairo, 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, 10 Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amir S Elbokhomy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdelmenem Bhnsawy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
9
|
Pouyanfar N, Farnam G, Ahmadi M, Masoudifar R, Banan K, Asadian E, Shahhosseini S, Shahbazi MA, Shirazi FH, Ghorbani-Bidkorpeh F. Synthesis, modification, characterization, and in vitro evaluation of chitosan-hyaluronic acid coated MIL-100 (Fe) nanoparticles for methotrexate delivery in rheumatoid arthritis. Int J Biol Macromol 2024; 283:137715. [PMID: 39551326 DOI: 10.1016/j.ijbiomac.2024.137715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the joints, leading to pain, swelling, and potential joint destruction. Effective management of RA is crucial to improve patients' quality of life and prevent long-term disability. Methotrexate (MTX) is a widely used disease-modifying antirheumatic drug (DMARD) that has shown efficacy in treating RA. However, its use is often limited by significant adverse effects, particularly on healthy tissues and organs, including hepatotoxicity, myelosuppression, and gastrointestinal complications. Therefore, developing targeted drug delivery systems (DDSs) for MTX is essential to enhance its therapeutic effects while minimizing systemic toxicity. Metal-organic frameworks (MOFs), specifically MIL-100(Fe), present a promising approach for targeted drug delivery in RA treatment due to their high porosity, large surface area, and excellent loading capacity. The acid-responsive properties of MIL-100(Fe) make it particularly suitable for targeting the acidic microenvironment of inflamed joints. In this study, we synthesized MIL-100(Fe) using a microwave-assisted method and embedded MTX within these nanocarriers. The nanocarriers were subsequently coated with chitosan and modified with hyaluronic acid through 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). Comprehensive characterization techniques such as dynamic light scattering (DLS), zeta potential analysis, Brunauer-Emmett-Teller (BET) surface area measurement, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and field emission scanning electron microscopy (FESEM) were employed to evaluate the nanoparticles. Additionally, we assessed cell cytotoxicity and cellular uptake in macrophage cell lines. Overall, the results indicate that the prepared MIL-100(Fe) nanoparticles are a suitable DDS for targeted MTX delivery in RA treatment.
Collapse
Affiliation(s)
- Niki Pouyanfar
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golrokh Farnam
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Masoudifar
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Banan
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Asadian
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Farshad H Shirazi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Elbeialy A, Sawy SE, Elzomor H, Haddad R. Environmental pollution impact on the severity of some rheumatic diseases: a comparative analytical study on inflammatory and non-inflammatory samples. BMC Rheumatol 2024; 8:50. [PMID: 39380067 PMCID: PMC11460183 DOI: 10.1186/s41927-024-00420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE Environmental pollution of heavy metals is increasingly a problem and has become of great concern due to the adverse effects it causes worldwide. Heavy metal exposure has been implicated in health problems, including fibromyalgia and rheumatoid arthritis. We aim to evaluate the rule of chronic heavy metals toxicity on the induction of vitamin D3 (VD) deficiency and parathyroid hormone (PTH) disturbances in an inflammatory disease like rheumatoid arthritis (RA) and non-inflammatory disease like fibromyalgia syndrome (FMS). METHODS This comparative analytical study was conducted on sixty adults (age ≥ 18 years). Participants were divided into three groups. Group I: twenty patients diagnosed with RA according to the specific ACR/EULAR criteria for RA. Group II: twenty patients diagnosed with FMS according to the specific 2010 (ACR) criteria for FMS. Group III: twenty healthy adults. All patients and controls were subjected to routine laboratory tests as well as the measurement of PTH, VD and estimation of serum levels of lead, cadmium, and chromium. RESULTS VD was significantly inversely correlated to PTH, lead, cadmium, chromium, and activity scores in the RA and FMS groups. Lead, Cadmium and Chromium had a significant independent risk on the VD level in RA patients, while lead had a significant independent risk on the VD level in FMS patients. CONCLUSION Heavy metals may affect VD synthesis, leading to hypovitaminosis D and secondary hyperparathyroidism in RA and FMS patients. Heavy metals play a key role in the pathogenesis of RA, FMS, and their disease activity.
Collapse
Affiliation(s)
- Adel Elbeialy
- Rheumatology and Rehabilitation, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt.
| | - Soaad El Sawy
- Rheumatology and Rehabilitation, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Hala Elzomor
- Rheumatology and Rehabilitation, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Rana Haddad
- Rheumatology and Rehabilitation, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| |
Collapse
|
11
|
Zhang B, Guo Y, Lu Y, Ma D, Wang X, Zhang L. Bibliometric and visualization analysis of the application of inorganic nanomaterials to autoimmune diseases. Biomater Sci 2024; 12:3981-4005. [PMID: 38979695 DOI: 10.1039/d3bm02015k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Objective: To conduct bibliometric analysis of the application of inorganic nanomaterials to autoimmune diseases to characterize current research trends and to visualize past and emerging trends in this field in the past 15 years. Methods: The evolution and thematic trends of the application of inorganic nanomaterials to autoimmune diseases from January 1, 1985, to March 15, 2024, were analyzed by bibliometric analysis of data retrieved and extracted from the Web of Science Core Collection (WoSCC) database. A total of 734 relevant reports in the literature were evaluated according to specific characteristics such as year of publication, journal, institution, country/region, references, and keywords. VOSviewer was used to build co-authorship analysis, co-occurrence analysis, co-citation analysis, and network visualization. Some important subtopics identified by bibliometric characterization are further discussed and reviewed. Result: From 2009 to 2024, annual publications worldwide increased from 11 to 95, an increase of 764%. ACS Nano published the most papers (14) with the most citations (1372). China (230 papers, 4922 citations) and the Chinese Academy of Sciences (36 papers, 718 citations) are the most productive and influential country and institution, respectively. The first 100 keywords were co-clustered to form four clusters: (1) the application of inorganic nanomaterials in drug delivery, (2) the application of inorganic nano-biosensing to autoimmune diseases, (3) the use of inorganic nanomaterials for imaging applied to autoimmune diseases, and (4) the application of inorganic nanomaterials in the treatment of autoimmune diseases. Combination therapy, microvesicles, photothermal therapy (PTT), targeting, diagnostics, transdermal, microneedling, silver nanoparticles, psoriasis, and inflammatory cytokines are the latest high-frequency keywords, marking the emerging frontier of inorganic nanomaterials in the field of autoimmune diseases. Sub-topics were further discussed to help researchers determine the scope of research topics and plan research directions. Conclusion: Over the past 39 years, the application of inorganic nanotechnology to the field of autoimmune diseases shows extensive cooperation between countries and institutions, showing a continuous increase in the number of reports in the literature, and has clinical translation prospects. Future research should further improve the safety of inorganic nanomaterials, clarify the mechanism of action of nanomaterials, establish a standardized nanomaterial preparation and performance evaluation system, and ultimately achieve the goal of early detection and precise treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Baiyan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
- School of Pharmacy, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Yuanyuan Guo
- School of Pharmacy, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Yu Lu
- The First Clinical Medical College of Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Xiahui Wang
- School of Pharmacy, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| |
Collapse
|
12
|
Angela S, Fadhilah G, Hsiao WWW, Lin HY, Ko J, Lu SCW, Lee CC, Chang YS, Lin CY, Chang HC, Chiang WH. Nanomaterials in the treatment and diagnosis of rheumatoid arthritis: Advanced approaches. SLAS Technol 2024; 29:100146. [PMID: 38844139 DOI: 10.1016/j.slast.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory condition that affects persons between the ages of 20 and 40, causes synovium inflammation, cartilage loss, and joint discomfort as some of its symptoms. Diagnostic techniques for RA have traditionally been split into two main categories: imaging and serological tests. However, significant issues are associated with both of these methods. Imaging methods are costly and only helpful in people with obvious symptoms, while serological assays are time-consuming and require specialist knowledge. The drawbacks of these traditional techniques have led to the development of novel diagnostic approaches. The unique properties of nanomaterials make them well-suited as biosensors. Their compact dimensions are frequently cited for their outstanding performance, and their positive impact on the signal-to-noise ratio accounts for their capacity to detect biomarkers at low detection limits, with excellent repeatability and a robust dynamic range. In this review, we discuss the use of nanomaterials in RA theranostics. Scientists have recently synthesized, characterized, and modified nanomaterials and biomarkers commonly used to enhance RA diagnosis and therapy capabilities. We hope to provide scientists with the promising potential that nanomaterials hold for future theranostics and offer suggestions on further improving nanomaterials as biosensors, particularly for detecting autoimmune disorders.
Collapse
Affiliation(s)
- Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsuan-Yi Lin
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Joshua Ko
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Steven Che-Wei Lu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Lin
- The Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
13
|
Ren S, Xu Y, Dong X, Mu Q, Chen X, Yu Y, Su G. Nanotechnology-empowered combination therapy for rheumatoid arthritis: principles, strategies, and challenges. J Nanobiotechnology 2024; 22:431. [PMID: 39034407 PMCID: PMC11265020 DOI: 10.1186/s12951-024-02670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with multifactorial etiology and intricate pathogenesis. In RA, repeated monotherapy is frequently associated with inadequate efficacy, drug resistance, and severe side effects. Therefore, a shift has occurred in clinical practice toward combination therapy. However, conventional combination therapy encounters several hindrances, including low selectivity to arthritic joints, short half-lives, and varying pharmacokinetics among coupled drugs. Emerging nanotechnology offers an incomparable opportunity for developing advanced combination therapy against RA. First, it allows for co-delivering multiple drugs with augmented physicochemical properties, targeted delivery capabilities, and controlled release profiles. Second, it enables therapeutic nanomaterials development, thereby expanding combination regimens to include multifunctional nanomedicines. Lastly, it facilitates the construction of all-in-one nanoplatforms assembled with multiple modalities, such as phototherapy, sonodynamic therapy, and imaging. Thus, nanotechnology offers a promising solution to the current bottleneck in both RA treatment and diagnosis. This review summarizes the rationale, advantages, and recent advances in nano-empowered combination therapy for RA. It also discusses safety considerations, drug-drug interactions, and the potential for clinical translation. Additionally, it provides design tips and an outlook on future developments in nano-empowered combination therapy. The objective of this review is to achieve a comprehensive understanding of the mechanisms underlying combination therapy for RA and unlock the maximum potential of nanotechnology, thereby facilitating the smooth transition of research findings from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Shujing Ren
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Xingpeng Dong
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Xia Chen
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| |
Collapse
|
14
|
Qu Y, Chu B, Li J, Deng H, Niu T, Qian Z. Macrophage-Biomimetic Nanoplatform-Based Therapy for Inflammation-Associated Diseases. SMALL METHODS 2024; 8:e2301178. [PMID: 38037521 DOI: 10.1002/smtd.202301178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Inflammation-associated diseases are very common clinically with a high incidence; however, there is still a lack of effective treatments. Cell-biomimetic nanoplatforms have led to many breakthroughs in the field of biomedicine, significantly improving the efficiency of drug delivery and its therapeutic implications especially for inflammation-associated diseases. Macrophages are an important component of immune cells and play a critical role in the occurrence and progression of inflammation-associated diseases while simultaneously maintaining homeostasis and modulating immune responses. Therefore, macrophage-biomimetic nanoplatforms not only inherit the functions of macrophages including the inflammation tropism effect for targeted delivery of drugs and the neutralization effect of pro-inflammatory cytokines and toxins via membrane surface receptors or proteins, but also maintain the functions of the inner nanoparticles. Macrophage-biomimetic nanoplatforms are shown to have remarkable therapeutic efficacy and excellent application potential in inflammation-associated diseases. In this review, inflammation-associated diseases, the physiological functions of macrophages, and the classification and construction of macrophage-biomimetic nanoplatforms are first introduced. Next, the latest applications of different macrophage-biomimetic nanoplatforms for the treatment of inflammation-associated diseases are summarized. Finally, challenges and opportunities for future biomedical applications are discussed. It is hoped that the review will provide new ideas for the further development of macrophage-biomimetic nanoplatforms.
Collapse
Affiliation(s)
- Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianan Li
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
15
|
Chen L, Zhao M, Kang W, Yu L, Zhang C, Wu S, Song X, Zhao K, Liu P, Liu Q, Dai R, Zheng Z, Zhang R. Endogenous Melanin and Hydrogen-Based Specific Activated Theranostics Nanoagents: A Novel Multi-Treatment Paradigm for Rheumatoid Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401046. [PMID: 38666450 PMCID: PMC11220692 DOI: 10.1002/advs.202401046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/20/2024] [Indexed: 07/04/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by excessive proliferation of rheumatoid arthritis synovial fibroblasts (RASFs) and accumulation of inflammatory cytokines. Exploring the suppression of RASFs and modulation of the RA microenvironment is considered a comprehensive strategy for RA. In this work, specifically activated nanoagents (MAHI NGs) based on the hypoxic and weakly acidic RA microenvironment are developed to achieve a second near-infrared fluorescence (NIR-II FL)/photoacoustic (PA) dual-model imaging-guided multi-treatment. Due to optimal size, the MAHI NGs passively accumulate in the diseased joint region and undergo rapid responsive degradation, precisely releasing functionalized components: endogenous melanin-nanoparticles (MNPs), hydrogen gas (H2), and indocyanine green (ICG). The released MNPs play a crucial role in ablating RASFs within the RA microenvironment through photothermal therapy (PTT) guided by accurate PA imaging. However, the regional hyperthermia generated by PTT may exacerbate reactive oxygen species (ROS) production and inflammatory response following cell lysis. Remarkably, under the acidic microenvironment, the controlled release of H2 exhibits precise synergistic antioxidant and anti-inflammatory effects with MNPs. Moreover, the ICG, the second near-infrared dye currently approved for clinical use, possesses excellent NIR-II FL imaging properties that facilitate the diagnosis of deep tissue diseases and provide the right time-point for PTT.
Collapse
Affiliation(s)
- Lin Chen
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Mingxin Zhao
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Weiwei Kang
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Lujie Yu
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Chongqing Zhang
- Medical Imaging DepartmentShanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University)Taiyuan030001China
| | - Shutong Wu
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Xiaorui Song
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Keqi Zhao
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Pengmin Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Qin Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Rong Dai
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Medical Imaging DepartmentShanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University)Taiyuan030001China
| | - Ziliang Zheng
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Ruiping Zhang
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| |
Collapse
|
16
|
Kaur C, Mishra Y, Kumar R, Singh G, Singh S, Mishra V, Tambuwala MM. Pathophysiology, diagnosis, and herbal medicine-based therapeutic implication of rheumatoid arthritis: an overview. Inflammopharmacology 2024; 32:1705-1720. [PMID: 38528307 PMCID: PMC11136810 DOI: 10.1007/s10787-024-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/10/2024] [Indexed: 03/27/2024]
Abstract
Rheumatoid arthritis (RA) stands as an autoimmune disorder characterized by chronic joint inflammation, resulting in profound physiological alterations within the body. Affecting approximately 0.4-1.3% of the global population, this condition poses significant challenges as current therapeutic approaches primarily offer symptomatic relief, with the prospect of complete recovery remaining elusive. This review delves into the contemporary advancements in understanding the pathophysiology, diagnosis, and the therapeutic potential of herbal medicine in managing RA. Notably, early diagnosis during the initial stages emerges as the pivotal determinant for successful recovery post-treatment. Utilizing tools such as Magnetic Resonance Imaging (MRI), anti-citrullinated peptide antibody markers, and radiography proves crucial in pinpointing the diagnosis of RA with precision. Unveiling the intricate pathophysiological mechanisms of RA has paved the way for innovative therapeutic interventions, incorporating plant extracts and isolated phytoconstituents. In the realm of pharmacological therapy for RA, specific disease-modifying antirheumatic drugs have showcased commendable efficacy. However, this conventional approach is not without its drawbacks, as it is often associated with various side effects. The integration of methodological strategies, encompassing both pharmacological and plant-based herbal therapies, presents a promising avenue for achieving substantive recovery. This integrated approach not only addresses the symptoms but also strives to tackle the underlying causes of RA, fostering a more comprehensive and sustainable path towards healing.
Collapse
Affiliation(s)
- Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sukhraj Singh
- Department of Food Civil Supply and Consumer Affairs, Amritsar, 143001, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, England, UK.
| |
Collapse
|
17
|
Xu M, Zhang C, Yan J, Lu Z, Shi L, Zhang Y, Lin J, Cao Y, Pei R. A responsive nanoplatform with molecular and structural imaging capacity for assisting accurate diagnosis of early rheumatoid arthritis. Int J Biol Macromol 2024; 271:132514. [PMID: 38768917 DOI: 10.1016/j.ijbiomac.2024.132514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/27/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Accurate early diagnosis of rheumatoid arthritis (RA) and prompt implementation of appropriate treatment approaches are crucial. In the clinic, magnetic resonance imaging (MRI) has been recommended for implementation to aid in the precise and early diagnosis of RA. However, they are still limited by issues regarding specificity and their ability to capture comprehensive information about the pathological features. Herein, a responsive multifunctional nanoplatform with targeting capabilities (hMnO2-IR@BSA-PEG-FA) is constructed through integrating a RA microenvironment-responsive MRI contrast agent with activatable near-infrared (NIR) fluorescence imaging, aiming to simultaneously acquire comprehensive pathological features of RA from both structural and molecular imaging perspectives. Moreover, taking advantage of its targeting function to synovial microphages, hMnO2-IR@BSA-PEG-FA demonstrated a remarkable capability to accumulate effectively at the synovial tissue. Additionally, hMnO2 responded to the mild acidity and reactive oxygen species (ROS) in the RA microenvironment, leading to the controlled release of Mn2+ ions and IR780, which separately caused special MRI contrast enhancement of synovial tissues and sensitively demonstrated the presence of ROS and weakly acid microenvironment by NIR imaging. Consequently, hMnO2-IR@BSA-PEG-FA is expected to serve as a promising nanoplatform, offering valuable assistance in the precise diagnosis of early-stage RA by specially providing comprehensive information about the pathological features.
Collapse
Affiliation(s)
- Mingsheng Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chenhui Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University, Suzhou 215001, China
| | - Jincong Yan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Shi
- Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, China
| | - Yuehu Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University, Suzhou 215001, China.
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; Jiangxi Institute of Nanotechnology, Nanchang 330200, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
18
|
Toma L, Deleanu M, Sanda GM, Barbălată T, Niculescu LŞ, Sima AV, Stancu CS. Bioactive Compounds Formulated in Phytosomes Administered as Complementary Therapy for Metabolic Disorders. Int J Mol Sci 2024; 25:4162. [PMID: 38673748 PMCID: PMC11049841 DOI: 10.3390/ijms25084162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic disorders (MDs), including dyslipidemia, non-alcoholic fatty liver disease, diabetes mellitus, obesity and cardiovascular diseases are a significant threat to human health, despite the many therapies developed for their treatment. Different classes of bioactive compounds, such as polyphenols, flavonoids, alkaloids, and triterpenes have shown therapeutic potential in ameliorating various disorders. Most of these compounds present low bioavailability when administered orally, being rapidly metabolized in the digestive tract and liver which makes their metabolites less effective. Moreover, some of the bioactive compounds cannot fully exert their beneficial properties due to the low solubility and complex chemical structure which impede the passive diffusion through the intestinal cell membranes. To overcome these limitations, an innovative delivery system of phytosomes was developed. This review aims to highlight the scientific evidence proving the enhanced therapeutic benefits of the bioactive compounds formulated in phytosomes compared to the free compounds. The existing knowledge concerning the phytosomes' preparation, their characterization and bioavailability as well as the commercially available phytosomes with therapeutic potential to alleviate MDs are concisely depicted. This review brings arguments to encourage the use of phytosome formulation to diminish risk factors inducing MDs, or to treat the already installed diseases as complementary therapy to allopathic medication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Camelia Sorina Stancu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B.P. Haşdeu Street, 050568 Bucharest, Romania; (L.T.); (M.D.); (G.M.S.); (T.B.); (L.Ş.N.); (A.V.S.)
| |
Collapse
|
19
|
Dai R, Zhao M, Zheng X, Li D, Kang W, Hao H, Chen X, Jin Y, Li J, Liu Q, Zheng Z, Zhang R. Homology-Activated Ultrasensitive Nanomedicines for Precise NIR-II FL/MRI Imaging-Guided "Knock-On" Dynamic Therapy in Rheumatoid Arthritis. Adv Healthc Mater 2024; 13:e2303892. [PMID: 38219028 DOI: 10.1002/adhm.202303892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Indexed: 01/15/2024]
Abstract
Stimuli-responsive nanomedicines represent a pivotal technology for in situ on-demand drug release and offer multiple advantages over conventional drug delivery systems to combat rheumatoid arthritis(RA). However, the lack of sensitivity to a single-stimuli source or the inability to synchronize multi-stimuli responses can easily lead to challenges in achieving precise-theranostics of RA. Herein, a homology-activated ultrasensitive nanomedicines MnO2-CQ4T-GOx(MCG NMs) is designed for NIR-II fluorescence(NIR-II FL)/magnetic resonance imaging(MRI)-guided effective "knock-on" dynamic anti-RA therapy. Building upon the characteristics of the RA-microenvironment, the MCG innovatively construct a MnO2-Mn2+ system, which can normalized activation sites. The ultrasensitive-responsive degradation is achieved using the multi-stimuli processes in the RA-microenvironment, triggering release of functional small molecules. The produced Mn2+ can exert Fenton-like activity to generate •OH from H2O2, thus providing the effective chemodynamic therapy(CDT). Moreover, the up-regulation of H2O2 by GOx-catalysis not only sensitizes the MnO2-Mn2+ system but also achieves self-enhancing CDT efficacy. The NIR-II FL quenching of CQ4T-BSA in the aggregated state occurs in MCG NMs, which can be rapidly and precisely "turn-on" via the MnO2-Mn2+ system. Meanwhile, the integration of activated Mn2+-based MRI imaging has successfully developed an activatable dual-modal imaging. Feedback imaging-guided precise photodynamic therapy of CQ4T-BSA can achieve efficient "knock-on" dynamic therapy for RA.
Collapse
Affiliation(s)
- Rong Dai
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Mingxin Zhao
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaochun Zheng
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Dongsheng Li
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Weiwei Kang
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Huifang Hao
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xuejiao Chen
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Yarong Jin
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Juan Li
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Qin Liu
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziliang Zheng
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiping Zhang
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| |
Collapse
|
20
|
Gandhi S, Shende P. Anti-CD64 Antibody-Conjugated PLGA Nanoparticles Containing Methotrexate and Gold for Theranostics Application in Rheumatoid Arthritis. AAPS PharmSciTech 2024; 25:22. [PMID: 38267687 DOI: 10.1208/s12249-024-02733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Rheumatoid arthritis, an autoimmune disorder, exerts a considerable effect on quality of life. The inflammatory mechanism involved in rheumatoid arthritis is not clearly known, and therefore the need to develop effective medicines as well as new methods for early detection is a challenge. In this study, we developed PLGA nanoparticles containing gold and methotrexate in core and anti-CD64 antibody conjugated to nanoparticle surface via coupling process. The nanoparticles were examined for their surface morphology using SEM and TEM. The mean particle size, zeta potential, and PDI values of nanoparticles were 413.6 ± 2.89 nm, -10.12 ± 2.12 mV, and 0.23 ± 0.04, respectively, indicating good stability and particle homogeneity. In vitro drug release revealed a controlled release pattern with 93.44 ± 1.60% up to 72 h of release in the presence of pH 5.8, indicating the influence of pH and NIR on drug release. In vivo results on adjuvant-induced arthritis on Wistar rats indicated that animals receiving antibody-conjugated nanoparticles showed improvement in clinical indices and arthritic score as compared to non-conjugated nanoparticles and free drugs. This innovative drug delivery system will be an excellent strategy to maximize therapeutic effectiveness by limiting dosage-related side effects.
Collapse
Affiliation(s)
- Sahil Gandhi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
21
|
Garhwal A, Kendya P, Soni S, Kori S, Soni V, Kashaw SK. Drug Delivery System Approaches for Rheumatoid Arthritis Treatment: A Review. Mini Rev Med Chem 2024; 24:704-720. [PMID: 37711105 DOI: 10.2174/1389557523666230913105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 09/16/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that has traditionally been treated using a variety of pharmacological compounds. However, the effectiveness of these treatments is often limited due to challenges associated with their administration. Oral and parenteral routes of drug delivery are often restricted due to issues such as low bioavailability, rapid metabolism, poor absorption, first-pass effect, and severe side effects. In recent years, nanocarrier-based delivery methods have emerged as a promising alternative for overcoming these challenges. Nanocarriers, including nanoparticles, dendrimers, micelles, nanoemulsions, and stimuli-sensitive carriers, possess unique properties that enable efficient drug delivery and targeted therapy. Using nanocarriers makes it possible to circumvent traditional administration routes' limitations. One of the key advantages of nanocarrier- based delivery is the ability to overcome resistance or intolerance to traditional antirheumatic therapies. Moreover, nanocarriers offer improved drug stability, controlled release kinetics, and enhanced solubility, optimizing the therapeutic effect. They can also protect the encapsulated drug, prolonging its circulation time and facilitating sustained release at the target site. This targeted delivery approach ensures a higher concentration of the therapeutic agent at the site of inflammation, leading to improved therapeutic outcomes. This article explores potential developments in nanotherapeutic regimens for RA while providing a comprehensive summary of current approaches based on novel drug delivery systems. In conclusion, nanocarrier-based drug delivery systems have emerged as a promising solution for improving the treatment of rheumatoid arthritis. Further advancements in nanotechnology hold promise for enhancing the efficacy and safety of RA therapies, offering new hope for patients suffering from this debilitating disease.
Collapse
Affiliation(s)
- Anushka Garhwal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Priyadarshi Kendya
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sakshi Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
22
|
Zhang X, Zhang H. Pro-resolving and anti-inflammatory effects of resolvins and protectins in rheumatoid arthritis. Inflammopharmacology 2023; 31:2995-3004. [PMID: 37831392 DOI: 10.1007/s10787-023-01343-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Rheumatoid arthritis (RA) is typified by persistent joint inflammation, which leads to the deterioration of bone and cartilage and a reduction in overall quality of life. The global prevalence of pain as a primary symptom in RA is influenced by the interplay between inflammation and its resolution. The identification of a family of lipid mediators known as specialized pro-resolving mediators (SPM)s has contributed to the progress of our comprehension of inflammatory conditions. SPMs have been observed to trigger the process of inflammation resolution, thereby reinstating the homeostasis of the inflammatory response. Autacoids are synthesized through the stereo-selective transformation of essential fatty acids, resulting in molecules dynamically modulated during inflammation and possessing strong immunoregulatory properties. This review delves into the available evidence that supports the involvement of certain SPM as protective lipids, biomarkers with potential, and therapeutic targets in the context of RA.
Collapse
Affiliation(s)
- Xiurong Zhang
- Department of Rheumatology, The Fourth Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hongting Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
23
|
Garg U, Jain N, Kaul S, Nagaich U. Role of Albumin as a Targeted Drug Carrier in the Management of Rheumatoid Arthritis: A Comprehensive Review. Mol Pharm 2023; 20:5345-5358. [PMID: 37870420 DOI: 10.1021/acs.molpharmaceut.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An endogenous transporter protein called albumin interacts with the Fc receptor to provide it with multiple substrate-binding domains, cell membrane receptor activation, and an extended circulating half-life. Albumin has the remarkable ability to bind with receptors viz. secreted protein acidic and rich in cysteine (SPARC) and scavenger protein-A (SR-A) that are overexpressed during rheumatoid arthritis (RA), enabling active targeting of the disease site instead of requiring specialized substrates to be added to the nanocarrier. RA, a chronic autoimmune illness, is characterized by the presence of a severe inflammatory response. RA patients have low serum albumin concentration, which signifies the high uptake of albumin at the inflammatory sites, giving a rationale to use albumin as a drug carrier for RA therapy. Albumin has the capacity for both passive and active targeting. It is an abundantly available protein in the bloodstream showing excellent cellular compatibility, degradability in biological tissues, nonantigenicity, and safety. There are three strategies of albumin mediated drug delivery as encapsulating therapeutics in albumin nanoparticles, chemically conjugating drugs with functional proteins, and albumin itself which is used as a targeting ligand to deliver drugs specifically to cells or tissues that express albumin-binding receptors. In the current review, an attempt has been made to highlight the significant evidence of albumin as a drug delivery carrier for the safe and effective management of RA. Evidence has been provided in the form of recent research advances, clinical trials, and patents. Additionally, this review will outline the prospective for the potential utilization of albumin as a drug vehicle for RA and suggest possible future avenues to provide the perspective for subsequent studies.
Collapse
Affiliation(s)
- Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| |
Collapse
|
24
|
Chandra J, Hasan N, Nasir N, Wahab S, Thanikachalam PV, Sahebkar A, Ahmad FJ, Kesharwani P. Nanotechnology-empowered strategies in treatment of skin cancer. ENVIRONMENTAL RESEARCH 2023; 235:116649. [PMID: 37451568 DOI: 10.1016/j.envres.2023.116649] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
In current scenario skin cancer is a serious condition that has a significant impact on world health. Skin cancer is divided into two categories: melanoma skin cancer (MSC) and non-melanoma skin cancer (NMSC). Because of its significant psychosocial effects and need for significant investment in new technology and therapies, skin cancer is an illness of global health relevance. From the patient's perspective chemotherapy considered to be the most acceptable form of treatment. However, significant negatives of chemotherapy such as severe toxicities and drug resistance pose serious challenges to the treatment. The field of nanomedicine holds significant promise for enhancing the specificity of targeting neoplastic cells through the facilitation of targeted drug delivery to tumour cells. The integration of multiple therapeutic modalities to selectively address cancer-promoting or cell-maintaining pathways constitutes a fundamental aspect of cancer treatment. The use of mono-therapy remains prevalent in the treatment of various types of cancer, it is widely acknowledged in the academic community that this conventional approach is generally considered to be less efficacious compared to the combination treatment strategy. The employment of combination therapy in cancer treatment has become increasingly widespread due to its ability to produce synergistic anticancer effects, mitigate toxicity associated with drugs, and inhibit multi-drug resistance by means of diverse mechanisms. Nanotechnology based combination therapy represents a promising avenue for the development of efficacious therapies for skin cancer within the context of this endeavour. The objective of this article is to provide a description of distinct challenges for efficient delivery of drugs via skin. This article also provides a summary of the various nanotechnology based combinatorial therapy available for skin cancer with their recent advances. This review also focuses on current status of clinical trials of such therapies.
Collapse
Affiliation(s)
- Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazim Nasir
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushait, Kingdom of Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Punniyakoti Veeraveedu Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
25
|
Rani R, Raina N, Sharma A, Kumar P, Tulli HS, Gupta M. Advancement in nanotechnology for treatment of rheumatoid arthritis: scope and potential applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2287-2310. [PMID: 37166463 DOI: 10.1007/s00210-023-02514-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Rheumatoid arthritis is a hyperactive immune disorder that results in severe inflammation in synovial joints, cartilage, and bone deterioration, resulting in immobilization of joints. Traditional approaches for the treatment of rheumatoid arthritis are associated with some limiting factors such as suboptimal patient compliance, inability to control the progression of disorder, and safety concerns. Therefore, innovative drug delivery carriers for efficient therapeutic delivery at inflamed synovial sites with better safety assessment are urgently needed to address these issues. From this perspective, nanotechnology is an outstanding alternative to traditional drug delivery approaches, and it has shown great promise in developing novel carriers to treat rheumatoid arthritis. Considering the current research and future application of nanocarriers, it is believed that nanocarriers can be a crucial element in rheumatoid arthritis treatment. This paper covers all currently available pathophysiological aspects of rheumatoid arthritis and treatment options. Future research for the reduction of synovial inflammation should focus on developing multifunction nanoparticles capable of delivering therapeutic agents with improved safety, efficacy, and cost-effectiveness to be commercialized.
Collapse
Affiliation(s)
- Radha Rani
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Neha Raina
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Ajay Sharma
- Institute of Nuclear Medicine & Allied Sciences (INMAS-DRDO), Ministry of Defence, Brig. SK Mazumdar Marg, Lucknow Road, Timarpur, Delhi-110054, India
| | - Pramod Kumar
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
26
|
Peng X, Li X, Xie B, Lai Y, Sosnik A, Boucetta H, Chen Z, He W. Gout therapeutics and drug delivery. J Control Release 2023; 362:728-754. [PMID: 37690697 DOI: 10.1016/j.jconrel.2023.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Gout is a common inflammatory arthritis caused by persistently elevated uric acid levels. With the improvement of people's living standards, the consumption of processed food and the widespread use of drugs that induce elevated uric acid, gout rates are increasing, seriously affecting the human quality of life, and becoming a burden to health systems worldwide. Since the pathological mechanism of gout has been elucidated, there are relatively effective drug treatments in clinical practice. However, due to (bio)pharmaceutical shortcomings of these drugs, such as poor chemical stability and limited ability to target the pathophysiological pathways, traditional drug treatment strategies show low efficacy and safety. In this scenario, drug delivery systems (DDS) design that overcome these drawbacks is urgently called for. In this review, we initially describe the pathological features, the therapeutic targets, and the drugs currently in clinical use and under investigation to treat gout. We also comprehensively summarize recent research efforts utilizing lipid, polymeric and inorganic carriers to develop advanced DDS for improved gout management and therapy.
Collapse
Affiliation(s)
- Xiuju Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Xiaotong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
27
|
Liu Y, Nie X, Wu Y, Lin L, Liao Q, Li J, Lee SMY, Li H, Zhang J. Carrier-Free Gambogic Acid Dimer Self-Assembly Nanomedicines for Rheumatoid Arthritis Treatment. Int J Nanomedicine 2023; 18:5457-5472. [PMID: 37771407 PMCID: PMC10522496 DOI: 10.2147/ijn.s422096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction The insufficient targeting delivery of therapeutic agents greatly impeded the treatment outcomes of rheumatoid arthritis (RA). Despite the recognized therapeutic advantages of gambogic acid (GBA) in inflammatory diseases, its high delivery efficiency to inflammatory site still limits its clinical application. Self-assembly of drug dimers into carrier-free nanoparticles (NPs) has become a straightforward and attractive approach to develop nanomedicines for RA treatment. Herein, homodimers of GBA were designed to form the carrier-free NPs by self-assembly for RA treatment. Methods The synthetic gambogic acid dimers (GBA2) were self-assembled into NPs using a one-step solvent evaporation method. The size distribution, morphology, drug-loading efficiency (DLE) and storage stability were evaluated. A molecular dynamic simulation was conducted to gain further insight into the self-assembly mechanisms of GBA2/NPs. Besides, we investigated the cytotoxicity, apoptosis and cellular uptake profiles of GBA2/NPs in macrophages and osteoclasts. Finally, the specific biodistribution on the ankles of adjuvant-induced arthritis (AIA) mice, and the anti-RA efficacy of the AIA rat model were assessed. Results GBA2/NPs exhibited the uniform spherical structure, possessing excellent colloidal stability, high self-assembly stability, high drug loading and low hemolytic activity. Comparing with GBA, GBA2/NPs showed higher cytotoxicity, cellular uptake and apoptosis rate against osteoclasts. In addition, GBA2/NPs exhibited much higher accumulation in ankle joints in vivo. As expected, the systematic administration of GBA2/NPs resulted in the greater alleviation of arthritic symptoms, cartilage protection, and inflammation, notably the reduced systemic toxicity compared to free GBA. Conclusion GBA2/NPs formed GBA dimers exhibited the superior accumulation in the inflamed joint and anti-RA activity, potentially attributing to the similar extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration ("ELVIS") effects in inflamed joint and the enhanced cellular uptake in macrophages and osteoclasts. Our findings provide substantial evidence that self-assembly of GBA2/NPs would be a promising therapeutic alternative for RA treatment.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xin Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, Macau Special Administrative Region, People’s Republic of China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, Macau Special Administrative Region, People’s Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, People’s Republic of China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
28
|
Li Z, Han S, Cui G, Xue B, Li J, Man Y, Zhang H, Teng L. Oral liposomes encapsulating ginsenoside compound K for rheumatoid arthritis therapy. Int J Pharm 2023; 643:123247. [PMID: 37467813 DOI: 10.1016/j.ijpharm.2023.123247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Ginsenoside compound K (GCK) can efficiently treat rheumatoid arthritis (RA) due to its immune and anti-inflammatory functions. However, GCK exists some shortcomings such as poor aqueous solubility, low permeability to the intestinal cell membrane, and serious P-gp efflux, thus limiting its application. In order to solve these problems, a folic acid-targeted drug delivery system based on liposomes (FA-LP-GCK) was developed. The prepared FA-LP-GCK had a uniform size distribution and spherical structure, the particle size was 249.13 ± 1.40 nm. Meanwhile, they had high encapsulation efficiency (93.33 ± 0.05 %). FA-LP-GCK also presented good stability in artificial gastric juice, so they can be absorbed into the intestine and enter the blood circulation. The activated RAW 264.7 cells were chosen to evaluate the cytotoxicity and cellular uptake capacity of FA-LP-GCK. FA-LP-GCK showed stronger growth inhibition and cellular uptake ability against activated macrophages. Finally, the efficacy of FA-LP-GCK in vivo was evaluated in the adjuvant arthritis rat model. The results showed that FA-LP-GCK can significantly reduce joint swelling. Furthermore, it can significantly inhibit the expression of pro-inflammatory cytokines and improve synovial hyperplasia of joints and pathological changes in the spleen. Therefore, FA-LP-GCK may be a potential therapeutic approach for RA.
Collapse
Affiliation(s)
- Ziwei Li
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Songren Han
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Guilin Cui
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Beilin Xue
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Li
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuhong Man
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
29
|
Zheng C, Zhang D, Kong Y, Niu M, Zhao H, Song Q, Feng Q, Li X, Wang L. Dynamic regulation of drug biodistribution by turning tumors into decoys for biomimetic nanoplatform to enhance the chemotherapeutic efficacy of breast cancer with bone metastasis. EXPLORATION (BEIJING, CHINA) 2023; 3:20220124. [PMID: 37933240 PMCID: PMC10624374 DOI: 10.1002/exp.20220124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/10/2023] [Indexed: 11/08/2023]
Abstract
Breast cancer with bone metastasis accounts for serious cancer-associated pain which significantly reduces the quality of life of affected patients and promotes cancer progression. However, effective treatment using nanomedicine remains a formidable challenge owing to poor drug delivery efficiency to multiple cancer lesions and inappropriate management of cancer-associated pain. In this study, using engineered macrophage membrane (EMM) and drugs loaded nanoparticle, we constructed a biomimetic nanoplatform (EMM@DJHAD) for the concurrent therapy of bone metastatic breast cancer and associated pain. Tumor tropism inherited from EMM provided the targeting ability for both primary and metastatic lesions. Subsequently, the synergistic combination of decitabine and JTC801 boosted the lytic and inflammatory responses accompanied by a tumoricidal effect, which transformed the tumor into an ideal decoy for EMM, resulting in prolonged troop migration toward tumors. EMM@DJHAD exerted significant effects on tumor suppression and a pronounced analgesic effect by inhibiting µ-opioid receptors in bone metastasis mouse models. Moreover, the nanoplatform significantly reduced the severe toxicity induced by chemotherapy agents. Overall, this biomimetic nanoplatform with good biocompatibility may be used for the effective treatment of breast cancer with bone metastasis.
Collapse
Affiliation(s)
- Cuixia Zheng
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
- Translational Medical Center of Huaihe HospitalHenan UniversityKaifengP. R. China
| | - Dandan Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
| | - Yueyue Kong
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
| | - Mengya Niu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
| | - Hongjuan Zhao
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
| | - Qingling Song
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
| | - Qianhua Feng
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
- Henan Key Laboratory Targeting Therapy and Diagnosis for Critical DiseasesZhengzhouP. R. China
| | - Xingru Li
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
| | - Lei Wang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
- Henan Key Laboratory Targeting Therapy and Diagnosis for Critical DiseasesZhengzhouP. R. China
- GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouP. R. China
- Henan International Joint Laboratory of Ovarian Malignant TumorZhengzhouP. R. China
| |
Collapse
|
30
|
Singh J, Jindal N, Kumar V, Singh K. Role of green chemistry in synthesis and modification of graphene oxide and its application: A review study. CHEMICAL PHYSICS IMPACT 2023; 6:100185. [DOI: 10.1016/j.chphi.2023.100185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
31
|
Deshmukh R. Rheumatoid arthritis: Pathophysiology, current therapeutic strategies and recent advances in targeted drug delivery system. MATERIALS TODAY COMMUNICATIONS 2023; 35:105877. [DOI: 10.1016/j.mtcomm.2023.105877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Zhang X, Liu Y, Xiao C, Guan Y, Gao Z, Huang W. Research Advances in Nucleic Acid Delivery System for Rheumatoid Arthritis Therapy. Pharmaceutics 2023; 15:1237. [PMID: 37111722 PMCID: PMC10145518 DOI: 10.3390/pharmaceutics15041237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the lives of nearly 1% of the total population worldwide. With the understanding of RA, more and more therapeutic drugs have been developed. However, lots of them possess severe side effects, and gene therapy may be a potential method for RA treatment. A nanoparticle delivery system is vital for gene therapy, as it can keep the nucleic acids stable and enhance the efficiency of transfection in vivo. With the development of materials science, pharmaceutics and pathology, more novel nanomaterials and intelligent strategies are applied to better and safer gene therapy for RA. In this review, we first summarized the existing nanomaterials and active targeting ligands used for RA gene therapy. Then, we introduced various gene delivery systems for RA treatment, which may enlighten the relevant research in the future.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Congcong Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Youyan Guan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China;
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
33
|
Radu AF, Bungau SG. Nanomedical approaches in the realm of rheumatoid arthritis. Ageing Res Rev 2023; 87:101927. [PMID: 37031724 DOI: 10.1016/j.arr.2023.101927] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Rheumatoid arthritis (RA) is a heterogeneous autoimmune inflammatory disorder defined by the damage to the bone and cartilage in the synovium, which causes joint impairment and an increase in the mortality rate. It is associated with an incompletely elucidated pathophysiological mechanism. Even though disease-modifying antirheumatic drugs have contributed to recent improvements in the standard of care for RA, only a small fraction of patients is able to attain and maintain clinical remission without the necessity for ongoing immunosuppressive drugs. The evolution of tolerance over time as well as patients' inability to respond to currently available therapy can alter the overall management of RA. A significant increase in the research of RA nano therapies due to the possible improvements they may provide over traditional systemic treatments has been observed. New approaches to getting beyond the drawbacks of existing treatments are presented by advancements in the research of nanotherapeutic techniques, particularly drug delivery nano systems. Via passive or active targeting of systemic delivery, therapeutic drugs can be precisely transported to and concentrated in the affected sites. As a result, nanoscale drug delivery systems improve the solubility and bioavailability of certain drugs and reduce dose escalation. In the present paper, we provide a thorough overview of the possible biomedical applications of various nanostructures in the diagnostic and therapeutic management of RA, derived from the shortcomings of conventional therapies. Moreover, the paper suggests the need for improvement on the basis of research directions and properly designed clinical studies.
Collapse
Affiliation(s)
- Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
34
|
Cai C, Tian F, Ma J, Yu Z, Yang M, Yi C. BSA-templated synthesis of Ir/Gd bimetallic oxide nanotheranostics for MR/CT imaging-guided photothermal and photodynamic synergistic therapy. NANOSCALE 2023; 15:4457-4468. [PMID: 36752324 DOI: 10.1039/d2nr06306a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Precision medicine urges the development of theranostics which can efficiently integrate precise diagnosis and effective therapy. In this study, a facile synthesis of Ir/Gd bimetallic oxide nanotheranostics (termed BSA@Gd2O3/IrO2 NPs) with good biocompatibility was demonstrated using a biomineralization method where bovine serum albumin (BSA) served as a versatile template. BSA@Gd2O3/IrO2 NPs exhibited high longitudinal relaxivity (5.2 mM-1 s-1) and X-ray absorption capability (14.5 Hu mM-1), illustrating them to be a good contrast agent for magnetic resonance (MR) and computed tomography (CT) dual-modal imaging. Moreover, BSA@Gd2O3/IrO2 NPs can act as not only a photothermal conversion agent with ultrahigh efficiency (66.7%) as well as a good photosensitizer, but also an effective catalase to decompose endogenous H2O2 to produce O2, thus relieving hypoxia and enhancing the phototherapeutic effect. Both in vitro and in vivo experiments demonstrated the high effectiveness of BSA@Gd2O3/IrO2 NPs in MR/CT dual-modal imaging and photothermal and photodynamic synergistic tumor treatments. This work sheds new light on the development of versatile nanotheranostic systems using mild and robust biomineralization methods.
Collapse
Affiliation(s)
- Chao Cai
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, 518107, China.
| | - Feng Tian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Junping Ma
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, 518107, China.
| | - Zipei Yu
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, 518107, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Changqing Yi
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, 518107, China.
| |
Collapse
|
35
|
Xin Li J, Jiao Zhang M, Feng Shi J, Peng Wang S, Mei Zhong X, Han Wu Y, Qu Y, Le Gao H, Ming Zhang J. pH-sensitive nano-polyelectrolyte complexes with arthritic macrophage-targeting delivery of triptolide. Int J Pharm 2023; 632:122572. [PMID: 36592894 DOI: 10.1016/j.ijpharm.2022.122572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Since pro-inflammatory macrophages take on a critical significance in the pathophysiology of rheumatoid arthritis (RA), the therapeutics to affect macrophages may receive distinct anti-RA effects. However, the therapeutic outcomes are still significantly impeded, which is primarily due to the insufficient drug delivery at the arthritic site. In this study, the macrophage-targeting and pH stimuli-responsive nano-polyelectrolyte complexes were designed for the efficient targeted delivery of triptolide (TP/PNPs) on the arthritic site. The anionic and cationic amphiphilic copolymers, i.e., hyaluronic acid-g-vitamin E succinate (HA-VE) and the quaternized poly (β-amino ester) (QPBAE-C18), were prepared and then characterized. The result indicated that TP/PNPs with the uniform particle size of ∼ 175 nm exhibited the high drug loading capacity and storage stability based on the polymeric charge interaction, in which DLC and DEE of TP/PNPs were obtained as 11.27 ± 0.44 % and 95.23 ± 2.34 %, respectively. Mediated by the "ELVIS" effect of NPs, CD44 receptor-mediated macrophage targeting, and pH-sensitive endo/lysosomal escape under the "proton sponge" effect, TP/PNPs exhibited the enhanced cellular internalization and cytotoxicity while mitigating the inflammation of LPS-activated RAW 264.7 cells. Even after 96-hour after administration, PNPs were preferentially accumulated in the inflammatory joints in a long term. It is noteworthy that after treatment for 14 days with 100 μg/kg of TP, TP/PNPs significantly facilitated arthritic symptom remission, protected cartilage, and mitigated inflammation of antigen-induced arthritis (AIA) rats, whereas the systematic side-effects of TP were reduced. In this study, an effective drug delivery strategy was proposed for the treatment of RA.
Collapse
Affiliation(s)
- Jia Xin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau
| | - Meng Jiao Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jin Feng Shi
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Sheng Peng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau
| | - Xue Mei Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Han Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Le Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jin Ming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
36
|
Pal RR, Rajpal V, Singh N, Singh S, Mishra N, Singh P, Maurya P, Alka, Saraf SA. Downregulation of pro-inflammatory markers IL-6 and TNF-α in rheumatoid arthritis using nano-lipidic carriers of a quinone-based phenolic: an in vitro and in vivo study. Drug Deliv Transl Res 2023; 13:627-641. [PMID: 35963927 DOI: 10.1007/s13346-022-01221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 01/09/2023]
Abstract
Rheumatoid arthritis (RA) is a joint ailment with multi-factorial immune-mediated degenerative pathogenesis, including genetic and environmental defects. Resistance to disease-modifying anti-rheumatic drugs (DMARDs) happens due to excessive drug efflux over time, rendering the concentration insufficient to elicit a response. Thymoquinone (TQ) is a quinone-based phenolic compound with antioxidant and anti-inflammatory activities that downregulate numerous pro-inflammatory cytokines. However, its pharmaceutical importance and therapeutic utility are underexplored due to intrinsic physicochemical characteristics such as inadequate biological stability, short half-life, low hydrophilicity, and less systemic availability. Tamanu oil-stabilised nanostructured lipid carriers (TQ-NLCs) were prepared and optimised using Box-Behnken design (BBD) with the size of 153.9 ± 0.52 nm and surface charge of -30.71 mV. The % entrapment efficiency and drug content were found to be 84.6 ± 0.50% and 14.75 ± 0.52%, respectively. Furthermore, the TQ-loaded NLCs (TQ-NLCs) assayed for skin permeation for transdermal delivery which significantly (p < 0.05) increased skin enhancement ratio 14.6 times compared to the aqueous solution of TQ. Tamanu oil displayed the synergistic anti-inflammatory potential with TQ in comparison to pure TQ, as evidenced against carrageenan (CRG)-induced paw oedema model and Freund's adjuvant-induced arthritic model. The arthritic and X-ray scores significantly (p < 0.05) reduced in TQ-NLCs and standard formulation-treated groups. Moreover, serum pro-inflammatory marker TNF-α and IL-6 levels were also significantly (p < 0.05) reduced in TQ-NLCs gel-treated group compared to the arthritic control group.
Collapse
Affiliation(s)
- Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Vasundhara Rajpal
- Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Sukhveer Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India.
| |
Collapse
|
37
|
Zhu S, Liu Q, Chang Y, Luo C, Zhang X, Sun S. Integrated Network Pharmacology and Cellular Assay to Explore the Mechanisms of Selenized Tripterine Phytosomes (Se@Tri-PTs) Alleviating Podocyte Injury in Diabetic Nephropathy. Curr Pharm Des 2023; 29:3073-3086. [PMID: 37961864 DOI: 10.2174/0113816128275079231102071508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023]
Abstract
AIM This work aimed to elucidate the mechanisms of Se@Tri-PTs in alleviating podocyte injury via network pharmacology and in vitro cellular assay. BACKGROUND Selenized tripterine phytosomes (Se@Tri-PTs) have been confirmed to undertake synergistic and sensitized effects on inflammation, which may be curatively promising for diabetic nephropathy (DN). However, the mechanisms of Se@Tri-PTs in alleviating podocyte injury, a major contributor to DN, still remain unclear. OBJECTIVE The objective of the study was to find out the underlying mechanisms of Se@Tri-PTs in alleviating podocyte injury in diabetic nephropathy. METHODS The key components and targets of Tripterygium wilfordii (TW) significant for DN as well as the signaling pathways involved have been identified. A high glucose-induced podocyte injury model was established and verified by western blot. The protective concentration of Se@Tri-PTs was screened by CCK-8 assay. Podocytes cultured with high glucose were treated with Se@Tri-PTs under protective levels. The expression of key protective proteins, nephrin and desmin, in podocytes, was assayed by western blot. Further, autophagy- related proteins and factors, like NLRP3, Beclin-1, LC3II/LC3, P62, and SIRT1, were analyzed, which was followed by apoptosis detection. RESULTS Network pharmacology revealed that several monomeric components of TW, especially Tri, act on DN through multiple targets and pathways, including the NLRP3-mediated inflammatory pathway. Se@Tri-PTs improved the viability of podocytes and alleviated their injury induced by high glucose at 5 μg/L or above. High-glucose induction promoted the expression of NLRP3 in podocytes, while a low concentration of Se@Tri-PTs suppressed the expression. A long-term exposure of high glucose significantly inhibited the autophagic activity of podocytes, as manifested by decreased Beclin-1 level, lower ratio of LC3 II/LC3 I, and up- regulation of P62. This abnormality was efficiently reversed by Se@Tri-PTs. Importantly, the expression of SIRT1 was up-regulated and podocyte apoptosis was reduced. CONCLUSION Se@Tri-PTs can alleviate podocyte injury associated with DN by modulating NLRP3 expression through the pathway of SIRT1-mediated autophagy.
Collapse
Affiliation(s)
- Shiping Zhu
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| | - Qiubo Liu
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| | - Yuling Chang
- Department of Chinese Traditional Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| | - Chunhua Luo
- Newborn Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | - Xingwang Zhang
- Department of Pharmaceutics, School of Pharmacy, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Shengyun Sun
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| |
Collapse
|
38
|
Yan R, Liu J, Dong Z, Peng Q. Nanomaterials-mediated photodynamic therapy and its applications in treating oral diseases. BIOMATERIALS ADVANCES 2022; 144:213218. [PMID: 36436431 DOI: 10.1016/j.bioadv.2022.213218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Oral diseases, such as dental caries, periodontitis and oral cancer, have a very high morbidity over the world. Basically, many oral diseases are commonly related to bacterial infections or cell malignant proliferation, and usually located on the superficial positions. These features allow the convenient and efficient application of photodynamic therapy (PDT) for oral diseases, since PDT is ideally suitable for the diseases on superficial sites and has been widely used for antimicrobial and anticancer therapy. Photosensitizers (PSs) are an essential element in PDT, which induce the generation of a large number of reactive oxygen species (ROS) upon absorption of specific lights. Almost all the PSs are small molecules and commonly suffered from various problems in the PDT environment, such as low solubility and poor stability. Recently, reports on the nanomedicine-based PDT have been well documented. Various functionalized nanomaterials can serve either as the PSs carriers or the direct PSs, thus enhancing the PDT efficacy. Herein, we aim to provide a comprehensive understanding of the features of different oral diseases and discuss the potential applications of nanomedicine-based PDT in the treatment of some common oral diseases. Also, the concerns and possible solutions for nanomaterials-mediated PDT are discussed.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
39
|
Pan J, Wang H, Chen Y. Trends and frontiers in natural products for arthritis, 2000-2021: A bibliometric analysis. Medicine (Baltimore) 2022; 101:e30996. [PMID: 36397359 PMCID: PMC9666140 DOI: 10.1097/md.0000000000030996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Arthritis has become one of the trouble diseases that upsets people. A growing number of studies have shown that natural products have great potential for the treatment of arthritis. However, few bibliometrics have been systematically studied in this area. This paper analyzes the literature data of natural products on the arthritis research, and the research hot spots and future research directions of the treatment of arthritis by natural products were explored. METHOD Through CiteSpace, VOSviewer software and Bibliometricx under the R language environment, the article and review literatures on the treatment of arthritis with natural drugs in the Web of Science core collection database were analyzed by bibliometric analysis. RESULTS On December 28, 2021, a total of 2102 records were retrieved, 81.69% publications were issued in 2012 to 2021, mainly in China-dominated Asian countries, with cooperation among countries. The analysis of the number of articles published by institutions shows that the number of articles published by China Academy of Chinese Medical Sciences is up to 82. Lu, Aiping and Smolen, JS are the authors with the highest citation frequency and co-citation frequency. Keywords analysis showed that the research of natural drugs mainly focused on gene expression, anti-inflammatory and other mechanisms and signaling pathways. With the progress of science and technology and the integration of multi-disciplines, the research on natural drugs for arthritis will be more in-depth and specific. CONCLUSION In this study, literature metrology analysis was conducted on natural products in the treatment of arthritis, in order to grasp the background, trends and frontiers of the research, and predict possible research hotspots in the future. It is expected to provide some reference value and direction for future scholars in this field.
Collapse
Affiliation(s)
- Junying Pan
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haoyu Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yinghua Chen
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Yinghua Chen, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China (e-mail: )
| |
Collapse
|
40
|
Ding Z, Li W, Dou Y, Zhou Y, Ren Y, Jing H, Liang X, Wang X, Li N. Triangular-shaped homologous heterostructure as photocatalytic H 2S scavenger and macrophage modulator for rheumatoid arthritis therapy. J Mater Chem B 2022; 10:8549-8564. [PMID: 36239131 DOI: 10.1039/d2tb01650h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic arthropathy causing cartilage destruction, bone erosion, and even disability. Although some advances in RA treatment have been made based on inflammatory cytokine inhibition, long-term treatment and drug effect have been restrained by severe side effects. Herein, we developed a resveratrol (RSV)-loaded Ag/Ag2S triangular-shaped homologous heterostructure with polyethylene glycol/folic acid (PEG/FA) modification (Ag/Ag2S-PEG-FA/RSV NTs) to simultaneously suppress inflammatory cytokine over-expression through photocatalytic H2S scavenging and macrophage polarization stimulation. On one hand, the over-expressed H2S, which acted as a pro-inflammatory mediator to activate the MAPK/ICAM-1 pathway and exacerbate inflammation, was eliminated through photocatalysis. The homologous Ag and Ag2S of the heterostructure enhanced electron separation and transfer by acting as a charge acceptor and electron generator, respectively, which restrained electron/hole recombination and promoted photocatalysis efficiency. Additionally, the intrinsic superoxide dismutase (SOD) and catalase (CAT) activity of Ag decomposed the reactive oxygen species (ROS) over-expressed in the RA microenvironment, which supplied O2 for the photocatalytic H2S scavenging progress. On the other hand, RSV, a natural product with anti-inflammatory activity, could be delivered to the inflammatory joint by the targeting effect of PEG-FA, thus inhibiting the IκB/NF-κB pro-inflammatory pathway to induce macrophage interconversion balance from M1 to M2. As expected, the Ag/Ag2S-PEG-FA/RSV NTs exhibited H2S scavenging capacity and modulated macrophage polarization to reduce the inflammatory cytokine level and halt RA progression in vitro and in vivo. Overall, this study revealed a therapeutic strategy with high efficacy, which opens broad prospects for RA treatment.
Collapse
Affiliation(s)
- Ziqiao Ding
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Wen Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Yunsheng Dou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Yue Zhou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Yingzi Ren
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Huaqing Jing
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Xiaoyang Liang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, 1 Dali Road, Heping District, 300050, Tianjin, P. R. China.
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| |
Collapse
|
41
|
Khan J, Rasmi Y, Kırboğa KK, Ali A, Rudrapal M, Patekar RR. Development of gold nanoparticle-based biosensors for COVID-19 diagnosis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:111. [PMID: 36092513 PMCID: PMC9444098 DOI: 10.1186/s43088-022-00293-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative organism of coronavirus disease 2019 (COVID-19) which poses a significant threat to public health worldwide. Though there are certain recommended drugs that can cure COVID-19, their therapeutic efficacy is limited. Therefore, the early and rapid detection without compromising the test accuracy is necessary in order to provide an appropriate treatment for the disease suppression.
Main body
Nanoparticles (NPs) can closely mimic the virus and interact strongly with its proteins due to their morphological similarities. NPs have been widely applied in a variety of medical applications, including biosensing, drug delivery, antimicrobial treatment, and imaging. Recently, NPs-based biosensors have attracted great interest for their biological activities and specific sensing properties, which allows the detection of analytes such as nucleic acids (DNA or RNA), aptamers, and proteins in clinical samples. Further, the advances of nanotechnologies have enabled the development of miniaturized detection systems for point-of-care biosensors, a new strategy for detecting human viral diseases. Among the various NPs, the specific physicochemical properties of gold NPs (AuNPs) are being widely used in the field of clinical diagnostics. As a result, several AuNP-based colorimetric detection methods have been developed.
Short conclusion
The purpose of this review is to provide an overview of the development of AuNPs-based biosensors by virtue of its powerful characteristics as a signal amplifier or enhancer that target pathogenic RNA viruses that provide a reliable and effective strategy for detecting of the existing or newly emerging SARS-CoV-2.
Collapse
|
42
|
Wen M, Li J, Zhong W, Xu J, Qu S, Wei H, Shang L. High-Throughput Colorimetric Analysis of Nanoparticle-Protein Interactions Based on the Enzyme-Mimic Properties of Nanoparticles. Anal Chem 2022; 94:8783-8791. [PMID: 35676761 DOI: 10.1021/acs.analchem.2c01618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While an in-depth understanding of the biological behavior of engineered nanoparticles (NPs) is of great importance for their various applications, it remains challenging to quantitatively characterize NP-protein interactions in a simple and high-throughput manner. In the present work, we propose a new, colorimetric approach capable of quantitatively analyzing the adsorption of proteins onto the surface of NPs by their distinct peroxidase-mimic properties. Taking cationic AuNPs as an example, we demonstrate that this colorimetric method is capable of evaluating NP-protein interactions in a simple and high-throughput manner in multiwell plates. Important binding parameters (e.g., the binding affinity) of three different serum proteins (bovine serum albumin, transferrin, and lysozyme) as well as human serum to AuNPs with three different sizes (average diameters of 5, 10, and 15 nm) have been obtained. Based on a quantitative analysis of NP-protein interactions, we observe that the binding affinity and the inhibition efficiency of the nanozyme activity of AuNPs are strongly affected by the characteristics of proteins as well as the sizes of NPs. These results illustrate the great potential of the present colorimetric method as a simple, low-cost, and high-throughput platform for quantitatively investigating NP-protein interactions.
Collapse
Affiliation(s)
- Mengyao Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Juanmin Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Jie Xu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Shaohua Qu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| |
Collapse
|
43
|
Rezaei Kahmini F, Shahgaldi S, Azimi M, Mansourabadi AH. Emerging therapeutic potential of regulatory T (Treg) cells for rheumatoid arthritis: New insights and challenges. Int Immunopharmacol 2022; 108:108858. [PMID: 35597122 DOI: 10.1016/j.intimp.2022.108858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune-related disorder characterized by chronic inflammation. Although the etiopathogenesis of RA still remains to be clarified, it is supposed that the breakdown of immune self-tolerance may contribute to the development of RA. Thus, restoring of immune tolerance at the site of inflammation is the ultimate goal of RA treatment. Regulatory T cells (Treg cells) are the main suppressive cells that maintain tolerance and inhibit immunity against auto-antigen. Of note, recent studies demonstrated the efficacy of adoptive transfer of Treg cells in the modulation of the unwanted immune response, which makes them an ideal candidate to maintain immune homeostasis and restore antigen-specific tolerance in the case of RA and other autoimmune diseases. This review intends to submit recent finding of Treg cells-based therapies in RA with a focus on strategies applied to improve the therapeutic value of Treg cells to restore immune tolerance.
Collapse
Affiliation(s)
- Fatemeh Rezaei Kahmini
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shahab Shahgaldi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mansourabadi
- Department of Immunology, School of medicine, Tehran University of Medical Sciences, Tehran, Iran; Immunogenetics Research Network (IgReN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
44
|
Biological regulation on synovial fibroblast and the treatment of rheumatoid arthritis by nobiletin-loaded tetrahedral framework nucleic acids cargo tank. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Yang Z, Xu T, Zhang X, Li H, Jia X, Zhao S, Yang Z, Liu X. Nitrogen-doped carbon quantum dots as fluorescent nanosensor for selective determination and cellular imaging of ClO . SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120941. [PMID: 35114635 DOI: 10.1016/j.saa.2022.120941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 05/28/2023]
Abstract
The carbon nanomaterial based fluorescent probes have been widely applied in biological imaging. In the current research, we propose an interesting strategy for selective sensing of hypochlorite (ClO-) by a water-soluble and highly fluorescent nanosensor based on the N-doped carbon quantum dots (CDs) which was fabricated by a facile and environmental friendly hydrothermal approach from polyvinyl pyrrolidone, L-arginine and tryptophan. The structural characteristics of the probe were measured by multitudinous methods which proved the nanometer spherical structure of the probe and the successfully N-doping. Fluorescent investigation demonstrated that the probe is not only highly stable under interferences of pH, ionic strength, and irradiation, but also significantly selective toward ClO- amongst a variety of attractive bioactive species through the fluorescent quenching process which was correlative with the concentration of ClO- and linearly in the range of 0.1-50 μmol·L-1 with the sensitivity of 0.03 μmol·L-1. The probe can also be further illustrated in a prospective application for determination of ClO- in environmental water through both solution response and filer paper sensing. Moreover, the positive biocompatibility and ignorable cytotoxicity made the probe a promising effective agent for detection and visualizing ClO- in living cells which can facilitate the understanding the oxidative stress from the overexpressing ClO-.
Collapse
Affiliation(s)
- Zheng Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China; Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China.
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Xu Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Xiaodan Jia
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| | - Shunsheng Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| | - Zaiwen Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| |
Collapse
|
46
|
Yang X, Zhang F, Du Y, Cui W, Dou Y, Lin Y, Zhao Z, Ma X. Effect of tetrahedral DNA nanostructures on LPS‐induced neuroinflammation in mice. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Yang J, Liu H, Pan W, Song M, Lu Y, Wang-Ngai Chow F, Hang-Mei Leung P, Deng Y, Hori M, He N, Li S. Recent Advances of Human Leukocyte Antigen (HLA) Typing Technology Based on High-Throughput Sequencing. J Biomed Nanotechnol 2022; 18:617-639. [PMID: 35715925 DOI: 10.1166/jbn.2022.3280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The major histocompatibility complex (MHC) in humans is a genetic region consisting of cell surface proteins located on the short arm of chromosome 6. This is also known as the human leukocyte antigen (HLA) region. The HLA region consists of genes that exhibit complex genetic polymorphisms, and are extensively involved in immune responses. Each individual has a unique set of HLAs. Donor-recipient HLA allele matching is an important factor for organ transplantation. Therefore, an established rapid and accurate HLA typing technology is instrumental to preventing graft-verses-host disease (GVHD) in organ recipients. As of recent, high-throughput sequencing has allowed for an increase read length and higher accuracy and throughput, thus achieving complete and high-resolution full-length typing. With more advanced nanotechnology used in high-throughput sequencing, HLA typing is more widely used in third-generation single-molecule sequencing. This review article summarizes some of the most widely used sequencing typing platforms and evaluates the latest developments in HLA typing kits and their clinical applications.
Collapse
Affiliation(s)
- Jin Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Wenjing Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Mengru Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yutong Lu
- School of Electrical and Information Engineering, Hunan University, Changsha 410012, Hunan, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Masahi Hori
- 2-16-5 Edagawa, Koto-Ku, Tokyo, 135-0051, Japan
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| |
Collapse
|
48
|
Zhang C, Huang W, Huang C, Zhou C, Tang Y, Wei W, Li Y, Tang Y, Luo Y, Zhou Q, Chen W. VHPKQHR Peptide Modified Ultrasmall Paramagnetic Iron Oxide Nanoparticles Targeting Rheumatoid Arthritis for T 1-Weighted Magnetic Resonance Imaging. Front Bioeng Biotechnol 2022; 10:821256. [PMID: 35295653 PMCID: PMC8918785 DOI: 10.3389/fbioe.2022.821256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
Magnetic resonance imaging (MRI) could be the ideal diagnostic modality for early rheumatoid arthritis (RA). Vascular cell adhesion molecule-1 (VCAM-1) is highly expressed in synovial locations in patients with RA, which could be a potential target protein for RA diagnosis. The peptide VHPKQHR (VHP) has a high affinity to VCAM-1. To make the contrast agent to target RA at an early stage, we used VHP and ultrasmall paramagnetic iron oxide (USPIO) to synthesize UVHP (U stands for USPIO) through a chemical reaction with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide. The size of UVHP was 6.7 nm; the potential was -27.7 mV, and the r 2/r 1 value was 1.73. Cytotoxicity assay exhibited that the cell survival rate was higher than 80% at even high concentrations of UVHP (Fe concentration 200 µg/mL), which showed the UVHP has low toxicity. Compared with no TNF-α stimulation, VCAM-1 expression was increased nearly 3-fold when mouse aortic endothelial cells (MAECs) were stimulated with 50 ng/mL TNF-α; cellular Fe uptake was increased very significantly with increasing UVHP concentration under TNF-α treatment; cellular Fe content was 17 times higher under UVHP with Fe concentration 200 µg/mL treating MAECs. These results indicate that UVHP can target overexpression of VCAM-1 at the cellular level. RA mice models were constructed with adjuvant-induced arthritis. In vivo MRI and biodistribution results show that the signal intensity of knee joints was increased significantly and Fe accumulation in RA model mice compared with normal wild-type mice after injecting UVHP 24 h. These results suggest that we have synthesized a simple, low-cost, and less toxic contrast agent UVHP, which targeted VCAM-1 for early-stage RA diagnosis and generates high contrast in T1-weighted MRI.
Collapse
Affiliation(s)
- Chunyu Zhang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Chengqian Zhou
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wei Wei
- Institution of GuangDong Cord Blood Bank, Guangzhou, China
| | - Yongsheng Li
- Institution of GuangDong Cord Blood Bank, Guangzhou, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yu Luo
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
49
|
Fang H, Sha Y, Yang L, Jiang J, Yin L, Li J, Li B, Klumperman B, Zhong Z, Meng F. Macrophage-Targeted Hydroxychloroquine Nanotherapeutics for Rheumatoid Arthritis Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8824-8837. [PMID: 35156814 DOI: 10.1021/acsami.1c23429] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with unclear pathogenesis. Hydroxychloroquine (HCQ), despite its moderate anti-RA efficacy, is among the few clinical drugs used for RA therapy. Macrophages reportedly play a vital role in RA. Here, we designed and explored macrophage-targeted HCQ nanotherapeutics based on mannose-functionalized polymersomes (MP-HCQ) for RA therapy. Notably, MP-HCQ exhibited favorable properties of less than 50 nm size, glutathione-accelerated HCQ release, and M1 phenotype macrophage (M1M) targetability, leading to repolarization of macrophages to anti-inflammatory M2 phenotype (M2M), reduced secretion of pro-inflammatory cytokines (IL-6), and upregulation of anti-inflammatory cytokines (IL-10). The therapeutic studies in the zymosan-induced RA (ZIA) mouse model showed marked accumulation of MP-HCQ in the inflammation sites, ameliorated symptoms of RA joints, significantly reduced IL-6, TNF-α, and IL-1β, and increased IL-10 and TGF-β compared with free HCQ. The analyses of RA joints disclosed greatly amplified M2M and declined mature DCs, CD4+ T cells, and CD8+ T cells. In accordance, MP-HCQ significantly reduced the damage of RA joints, cartilages, and bones compared to free HCQ and non-targeted controls. Macrophage-targeted HCQ nanotherapeutics therefore appears as a highly potent treatment for RA.
Collapse
Affiliation(s)
- Hanghang Fang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Yongjie Sha
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
| | - Liang Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
| | - Jingjing Jiang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Jiaying Li
- Orthopedic Institute, Soochow University, Suzhou 215007, PR China
| | - Bin Li
- Orthopedic Institute, Soochow University, Suzhou 215007, PR China
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
50
|
Song Y, Huang Y, Zhou F, Ding J, Zhou W. Macrophage-targeted nanomedicine for chronic diseases immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|