1
|
Rahal A, Bouchama I, Ghebouli MA, Alanazi FK, Ghebouli B, Fatmi M, Chihi T, Althagafi TM, Khettab K. Experimental investigation of structural and optical properties of Mn-doped ZnO thin films deposited by pneumatic spray technique. Sci Rep 2025; 15:7086. [PMID: 40016309 PMCID: PMC11868554 DOI: 10.1038/s41598-025-90425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Mn-doped ZnO thin films with varying Mn concentrations were synthesized on glass substrates using the pneumatic spray technique. Energy-dispersive X-ray (EDX) analysis confirmed the substitution of Zn by Mn in the ZnO matrix. X-ray photoelectron spectroscopy (XPS) revealed characteristic spin-orbit energy states of Zn:2p and Mn:3d, indicating strong Mn-ZnO interactions. Microstructural analysis showed non-uniform extended lines and spherical grains, with decreasing grain size as Mn concentration increased. X-ray diffraction (XRD) confirmed a polycrystalline hexagonal structure, with experimentally determined lattice parameters a = 3.1453 Å, c = 5.1353 Å, in agreement with CASTEP calculations. Optical measurements indicated ~ 80% absorbance in the visible range, with a shift from blue to red as Mn content increased, suggesting bandgap modulation. These findings highlight the potential of Mn-doped ZnO films for tunable optoelectronic applications.
Collapse
Affiliation(s)
- Abdelghani Rahal
- Department of electronics, Faculty of Technology, University of M'sila, M'sila, 28000, Algeria
- Research Unit on Emerging Materials (RUEM), University Ferhat Abbas, Setif1, Setif, 19000, Algeria
| | - Idris Bouchama
- Department of electronics, Faculty of Technology, University of M'sila, M'sila, 28000, Algeria
- Research Unit on Emerging Materials (RUEM), University Ferhat Abbas, Setif1, Setif, 19000, Algeria
| | - M A Ghebouli
- Research Unit on Emerging Materials (RUEM), University Ferhat Abbas, Setif1, Setif, 19000, Algeria
- Department of Chemistry, Faculty of Sciences, University of Mohamed Boudiaf, M'sila, 28000, Algeria
| | - Faisal Katib Alanazi
- Department of Physics, college of Sciences, Northern Border University, P.O. Box 1321, Arar, 91431, Saudi Arabia
| | - B Ghebouli
- Laboratory for the Study of Surfaces and Interfaces of Solid Materials (LESIMS), University Ferhat Abbas of Setif, Setif, 19000, Algeria
| | - M Fatmi
- Research Unit on Emerging Materials (RUEM), University Ferhat Abbas, Setif1, Setif, 19000, Algeria.
| | - T Chihi
- Research Unit on Emerging Materials (RUEM), University Ferhat Abbas, Setif1, Setif, 19000, Algeria
| | - Talal M Althagafi
- Department of Physics, College of Science, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Khatir Khettab
- Department of electrical engineering, Faculty of Technology, University of M'sila, M'sila, 28000, Algeria
| |
Collapse
|
2
|
Djafarou R, Brahmia O, Haya S, Sahmetlioglu E, Kılıç Dokan F, Hidouri T. Starch-Assisted Eco-Friendly Synthesis of ZnO Nanoparticles: Enhanced Photocatalytic, Supercapacitive, and UV-Driven Antioxidant Properties with Low Cytotoxic Effects. Int J Mol Sci 2025; 26:859. [PMID: 39859573 PMCID: PMC11766212 DOI: 10.3390/ijms26020859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/04/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications. In photocatalysis, the ZnO NPs exhibited exceptional efficiency, achieving complete degradation of methylene blue within 15 min at pH 11, significantly surpassing the performance of commercial ZnO. Under neutral pH conditions, the nanoparticles effectively degraded various organic dyes, including methylene blue, rhodamine B, and methyl orange, following pseudo-first-order kinetics. The methylene blue degradation process was aligned with the Langmuir-Hinshelwood model, emphasizing their advanced catalytic properties. For supercapacitor applications, the ZnO NPs attained a high specific capacitance of 550 F/g at 1 A/g, underscoring their potential as energy storage solutions. Additionally, the nanoparticles demonstrated strong UV-induced antiradical activity, with an EC50 of 32.2 μg/mL in DPPH assays. Notably, the cytotoxicity evaluation revealed an LC50 of 1648 μg/mL, indicating excellent biocompatibility. This study highlights a sustainable approach for the synthesis of multifunctional ZnO NPs that offers effective solutions for environmental remediation, energy storage, and biomedical applications.
Collapse
Affiliation(s)
- Roumaissa Djafarou
- Laboratoire des Techniques Innovantes de Préservation de l’Environnement, Université de Constantine 1, Constantine 25000, Algeria; (R.D.); (O.B.)
| | - Ouarda Brahmia
- Laboratoire des Techniques Innovantes de Préservation de l’Environnement, Université de Constantine 1, Constantine 25000, Algeria; (R.D.); (O.B.)
| | - Soumia Haya
- Département de Physique, Université de Constantine 1, Constantine 25000, Algeria;
| | - Ertugrul Sahmetlioglu
- Department of Basic Sciences of Engineering, Kayseri University, Kayseri 38039, Turkey;
| | - Fatma Kılıç Dokan
- Department of Chemistry and Chemical Processing Technologies, Mustafa Çıkrıkcıoglu Vocational School, Kayseri University, Kayseri 38039, Turkey;
| | - Tarek Hidouri
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy
| |
Collapse
|
3
|
Ansari AA, Lv R, Gai S, Parchur AK, Solanki PR, Archana, Ansari Z, Dhayal M, Yang P, Nazeeruddin M, Tavakoli MM. ZnO nanostructures – Future frontiers in photocatalysis, solar cells, sensing, supercapacitor, fingerprint technologies, toxicity, and clinical diagnostics. Coord Chem Rev 2024; 515:215942. [DOI: 10.1016/j.ccr.2024.215942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Pan L, Wang D, Wang J, Chu Y, Li X, Wang W, Mitsuzaki N, Jia S, Chen Z. Morphological control and performance engineering of Co-based materials for supercapacitors. Phys Chem Chem Phys 2024; 26:9096-9111. [PMID: 38456310 DOI: 10.1039/d3cp06038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
As one of the most promising energy storage devices, supercapacitors exhibit a higher power density than batteries. However, its low energy density usually requires high-performance electrode materials. Although the RuO2 material shows desirable properties, its high cost and toxicity significantly limit its application in supercapacitors. Recent developments demonstrated that Co-based materials have emerged as a promising alternative to RuO2 for supercapacitors due to their low cost, favorable redox reversibility and environmental friendliness. In this paper, the morphological control and performance engineering of Co-based materials are systematically reviewed. Firstly, the principle of supercapacitors is briefly introduced, and the characteristics and advantages of pseudocapacitors are emphasized. The special forms of cobalt-based materials are introduced, including 1D, 2D and 3D nanomaterials. After that, the ways to enhance the properties of cobalt-based materials are discussed, including adding conductive materials, constructing heterostructures and doping heteroatoms. Particularly, the influence of morphological control and modification methods on the electrochemical performances of materials is highlighted. Finally, the application prospect and development direction of Co-based materials are proposed.
Collapse
Affiliation(s)
- Lin Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jibiao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yuan Chu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiaosong Li
- Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, Jiangsu, 213032, China
| | | | - Shuyong Jia
- Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Sayed NSM, Ahmed ASA, Abdallah MH, Gouda GA. ZnO@ activated carbon derived from wood sawdust as adsorbent for removal of methyl red and methyl orange from aqueous solutions. Sci Rep 2024; 14:5384. [PMID: 38443380 PMCID: PMC10915167 DOI: 10.1038/s41598-024-55158-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Activated carbon (AC) and ZnO@AC composite derived from wood sawdust were prepared to be utilized as adsorbents for methyl red (MR) and methyl orange (MO) anionic dyes from the aqueous solutions. The maximum adsorption capacity of the AC and ZnO@AC composite toward both dyes was achieved in the strong acidic medium (pH = 3), and under stirring for 60 min. The kinetic studies revealed that the adsorption of MR and MO dyes onto the AC and ZnO@AC composite fitted well with the pseudo-second-order model. Furthermore, the intraparticle diffusion and Elovich kinetic models confirmed the adsorption is controlled by external surfaces, and the adsorption is chemisorption process. The isotherm results indicated that the MR and MO dye adsorption occurred via monolayer adsorption, and the estimated maximum adsorption capacities of both dyes onto the ZnO@AC composite were higher than those achieved by AC. Thermodynamic analysis suggested that the adsorption is endothermic and spontaneous. The mechanism for MR, and MO dyes adsorption onto the AC and ZnO@AC composite is proposed to be controlled by electrostatic bonding, π-π interactions, and ion exchange, while H-bonding and n-π interactions were minor contributors. This study reveals the potential use of carbon-based adsorbents derived from wood sawdust for the removal of anionic dyes from wastewater.
Collapse
Affiliation(s)
- Nessma S M Sayed
- Chemistry Department, Faculty of Science, Al-Azhar University, Asyût, 71524, Egypt
| | - Abdelaal S A Ahmed
- Chemistry Department, Faculty of Science, Al-Azhar University, Asyût, 71524, Egypt.
| | - Mohamed H Abdallah
- Chemistry Department, Faculty of Science, Al-Azhar University, Asyût, 71524, Egypt
| | - Gamal A Gouda
- Chemistry Department, Faculty of Science, Al-Azhar University, Asyût, 71524, Egypt
| |
Collapse
|
6
|
Li J, Yu H, Lv Y, Cai Z, Shen Y, Ruhlmann L, Gan L, Liu M. Electrode materials for electrochromic supercapacitors. NANOTECHNOLOGY 2024; 35:152001. [PMID: 38150723 DOI: 10.1088/1361-6528/ad18e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Smart energy storage systems, such as electrochromic supercapacitor (ECSC) integrated technology, have drawn a lot of attention recently, and numerous developments have been made owing to their reliable performance. Developing novel electrode materials for ECSCs that embed two different technologies in a material is an exciting and emerging field of research. To date, the research into ECSC electrode materials has been ongoing with excellent efforts, which need to be systematically reviewed so that they can be used to develop more efficient ECSCs. This mini-review provides a general composition, main evaluation parameters and future perspectives for electrode materials of ECSCs as well as a brief overview of the published reports on ECSCs and performance statistics on the existing literature in this field.
Collapse
Affiliation(s)
- Jianhang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Hangzhou Plastics Industry Co., Ltd, Hangzhou, People's Republic of China
| | - Haixin Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhiwei Cai
- Zhejiang Institute for Food and Drug Control, Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yimin Shen
- Shaoxing Jinye Environmental Protection Technology Co., Ltd, No. 173, Zhenghai Road, Binhai Industrial Zone, Keqiao District, Shaoxing, 312073, People's Republic of China
| | - Laurent Ruhlmann
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4 rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France
| | - Lihua Gan
- Hangzhou Plastics Industry Co., Ltd, Hangzhou, People's Republic of China
| | - Mingxian Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Shaheen I, Hussain I, Zahra T, Javed MS, Shah SSA, Khan K, Hanif MB, Assiri MA, Said Z, Arifeen WU, Akkinepally B, Zhang K. Recent advancements in metal oxides for energy storage materials: Design, classification, and electrodes configuration of supercapacitor. JOURNAL OF ENERGY STORAGE 2023; 72:108719. [DOI: 10.1016/j.est.2023.108719] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Tuc Altaf C, Colak TO, Rostas AM, Popa A, Toloman D, Suciu M, Demirci Sankir N, Sankir M. Impact on the Photocatalytic Dye Degradation of Morphology and Annealing-Induced Defects in Zinc Oxide Nanostructures. ACS OMEGA 2023; 8:14952-14964. [PMID: 37151495 PMCID: PMC10157689 DOI: 10.1021/acsomega.2c07412] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
In this study, three different morphologies, nanoflower (NF), nano sponge (NS), and nano urchin (NU), of zinc oxide (ZnO) nanostructures were synthesized successfully via a mild hydrothermal method. After synthesis, the samples were annealed in the atmosphere at 300, 600, and 800 °C. Although annealing provides different degradation kinetics for different morphologies, ZnO NS performed significantly better than other morphologies for all annealing temperatures we used in the study. When the photoluminescence, electron paramagnetic resonance spectroscopy, BET surface, and X-ray diffraction analysis results are examined, it is revealed that the defect structure, pore diameter, and crystallinity cumulatively affect the photocatalytic activity of ZnO nanocatalysts. As a result, to obtain high photocatalytic activity in rhodamine B (RhB) degradation, it is necessary to develop a ZnO catalyst with fewer core defects, more oxygen vacancies, near band emission, large crystallite size, and large pore diameter. The ZnO NS-800 °C nanocatalyst studied here had a 35.6 × 10-3 min-1 rate constant and excellent stability after a 5-cycle photocatalytic degradation of RhB.
Collapse
Affiliation(s)
- Cigdem Tuc Altaf
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Tuluhan Olcayto Colak
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Arpad Mihai Rostas
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
- E-mail:
| | - Adriana Popa
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Dana Toloman
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria Suciu
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Nurdan Demirci Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- E-mail:
| | - Mehmet Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- E-mail:
| |
Collapse
|
9
|
Zhang N, Wang JC, Guo YF, Wang PF, Zhu YR, Yi TF. Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Salehi S, Ehsani M, Aghazadeh M, Badiei A, Ganjali M. Electrodeposition of binderless Ni,Zn-MOF on porous nickel substrate for high-efficiency supercapacitors. J SOLID STATE CHEM 2022; 316:123549. [DOI: 10.1016/j.jssc.2022.123549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Li W, Wang K, Li Z, Sun C, Zhao S, Zhang D, Chen K, Guo A. Preparation of high-performance supercapacitors from waste polyurethane-based hierarchical porous carbon. NEW J CHEM 2022. [DOI: 10.1039/d2nj04895g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The specific surface area and pore structure of carbon materials significantly impact their electrochemical performance.
Collapse
Affiliation(s)
- Weining Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Kunyin Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Zhuo Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, SunYat-Sen University, Guangzhou 510275, China
| | - Chengyu Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Shuyang Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Dequan Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Kun Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Aijun Guo
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| |
Collapse
|