1
|
Huang Y, Wang Q, Xin Q, Lei Z, Hu E, Li L, Liang F, Wang H. Enhancement mechanism of chitosan/tannic acid curing and functional group modification on uranium adsorption in five types of wastewater by Cu-MOF. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138185. [PMID: 40209408 DOI: 10.1016/j.jhazmat.2025.138185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
To advance the application of Cu-metal-organic framework (Cu-MOF) in uranium wastewater treatment for the nuclear industry, it is essential to address the limitations of its powder form and rigid structure while enhancing its adsorption capacity. In this study, a Cu-MOF@CSTA composite adsorbent was synthesized by solidifying Cu-MOF with chitosan/tannic acid and modifying its functional groups to improve uranium adsorption performance. The U(VI) theoretical maximum adsorption capacity of Cu-MOF@CSTA at 288 K (pH = 5) was 2507.73 mg/g, and the adsorption process was characterized as a spontaneous exothermic reaction. The uranium removal rate in mine wastewater (pore water and seepage water) reached 100 %. Uranium removal efficiencies in wastewater containing 100 mg/L fluoride ions, ammonia ions, and urea were remarkably high at 99.34 %, 99.63 %, and 98.94 %, respectively, demonstrating the composite adsorbent's robust anti-jamming capability. Mechanistic analysis revealed that the synergistic effects of hydroxyl, amino, and sulfur functional groups on the Cu-MOF@CSTA surface facilitated uranium adsorption. Competitive adsorption experiments confirmed that Cu-MOF@CSTA exhibits excellent selectivity for uranium. The chitosan, solidified by tannic acid as a flexible carrier, stabilized the Cu-MOF, highlighting its significant potential for uranium adsorption in wastewater treatment applications.
Collapse
Affiliation(s)
- Yulin Huang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qingliang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Xin
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhiwu Lei
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Eming Hu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Le Li
- School of Public Health, University of South China, Hengyang 421001, China
| | - Feng Liang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Hongqiang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Qu J, Meng F, Bi F, Jiang Z, Wang M, Hu Q, Zhang Y, Yu H, Zhang Y. Nitrogen-doped porous hydrochar for enhanced chromium(VI) and bisphenol A scavenging: Synergistic effect of chemical activation and hydrothermal doping. ENVIRONMENTAL RESEARCH 2025; 267:120667. [PMID: 39706314 DOI: 10.1016/j.envres.2024.120667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Nitrogen-doped porous hydrochar (NPHC) was successfully synthesized by hydrothermal carbonization and activation with KHCO3, which was employed for scavenging hexavalent chromium (Cr(VI)) and bisphenol A (BPA) in contaminated water. N doping increased the unique active sites such as amino and molecular N in NPHC for adsorbing contaminants, and enhanced the activation effect. Compared to original (HC) and N-doped hydrochar (NHC), the SBET of material improved from 3.99 m2/g and 4.71 m2/g to 1176.77 m2/g. Meanwhile, NPHC exhibited more superior adsorption capacity for Cr(VI) (323.25 mg/g) and BPA (545.34 mg/g) than that of porous hydrochar (213.17 and 343.67 mg/g). Moreover, NPHC possessed pH-dependence and presented more excellent tolerance for interfering ions and regeneration performance. Notably, the Cr(VI) capture by NPHC was dominated via pore filling, electrostatic interaction, reduction, and complexation, while π-π stacking, H-bond interaction, and hydrophobic action were relevant to the binding mechanism of BPA. Overall, the proposed functionalization strategy for biochar was conducive to enhance the remediation of water bodies.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fansong Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mengning Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yupeng Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou, 450002, China
| | - Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Qu J, Li H, Li Z, Peng W, Wang B, Wang H, Zhang G, Hu Q, Wang L, Zhang Y. Effective removal of Cr(VI) from water by ball milling sulfur-modified micron zero-valent iron:Influencing factors and removal mechanism. ENVIRONMENTAL RESEARCH 2024; 262:119925. [PMID: 39276840 DOI: 10.1016/j.envres.2024.119925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
To address the issues of ZVI's susceptibility to oxidation and aggregation, ball milling and Na2S·9H2O modification were employed on ZVI to enhance its efficiency in removing Cr(VI) from effluent. The characterization results expressed that S-mZVIbm had mesoporous and macroporous structures, enabling successful capture of Cr(VI). Moreover, S-mZVIbm had the highest adsorption capacity for Cr(VI) (350.04 mg/g) at pH = 2.00 and reached kinetic equilibrium within 420 min. Furthermore, the adsorption of Cr(VI) by S-mZVIbm conformed to the Avrami-fractional-order model, demonstrated that the adsorption process indicated a complex multi-adsorption process. Meanwhile, the adsorption also fit to Langmuir and Sips models, suggesting monolayer-level adsorption with heterogeneous sites located on S-mZVIbm. The S-mZVIbm could enhance Cr(VI) adsorption through various synergistic mechanisms, such as electrostatic interaction, chemical precipitation, surface complexation, and reduction. Overall, this research presented an innovative perspective for the modification of ZVI, and S-mZVIbm could be widely applied in the practical remediation of wastewater containing Cr(VI).
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Huiyao Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ziwei Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Peng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Huiru Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Li X, Xu K, Bi Y, He D, Wang X, Li K, Liu Q, Zhang Y. HKUST-1 in-situ loaded ultrastable covalently crosslinked agarose aerogel with solvothermal for highly efficient removal of methylene blue. Int J Biol Macromol 2024; 282:136837. [PMID: 39461634 DOI: 10.1016/j.ijbiomac.2024.136837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
A new HKUST-1@covalently crosslinked agarose aerogel (HKUST-1@CCAGA) was synthesized for the highly effective elimination of Methylene Blue (MB). Firstly, the covalently crosslinked agarose aerogel (CCAGA) was obtained by hydrothermal crosslinking reaction with epichlorohydrin (ECH) as crosslinker, which remained stabilized under hydrothermal and solvothermal conditions. Then, HKUST-1 was made to bind to CCAGA by in situ solvothermal assays, and the HKUST-1 loading rate reached 47.4 % based on thermogravimetric data and calculated using the cross over method. Meanwhile, the SEM exhibited the complete 3D honeycomb structure of CCAGA, and HKUST-1 particles uniformly distributed on its layers. Additionally, the specific surface area of HKUST-1@CCAGA can reached 648.59 m2·g-1. The HKUST-1@CCAGA composite was utilized for MB removal, achieving a high adsorption capacity of 424.30 mg·g-1 at pH 8. The adsorption of MB was also maintained at 80 % after 5 cycles of the experiment. The composite aerogel exhibits good recyclability and has excellent adsorption capacity.
Collapse
Affiliation(s)
- Xin Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Kun Xu
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yiyang Bi
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Dongjie He
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xin Wang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ke Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qun Liu
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Yu Zhang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| |
Collapse
|
5
|
Liang L, Chen J, Xiao J, Qiu H. Preparation of GO/COFs composites by interlayer-confined strategy for the adsorption of nitro aromatic pollutants. J Chromatogr A 2024; 1730:465066. [PMID: 38897110 DOI: 10.1016/j.chroma.2024.465066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
With the continuous development of industrialization, the excessive emission of nitro aromatic with strong toxicity, high carcinogenicity and non-degradability has attracted great attention. How to efficiently remove nitro aromatic pollutants is an important research topic. In this work, graphene oxide/covalent organic frameworks (GO/COFs) composites were successfully synthesized via interlayer confinement strategy selecting GO, 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMTP) and 1,3,5-tri(4-aminophenyl)benzene (TPB) as raw materials. Due to high specific surface area, hierarchical porous structure and good thermal stability, GO/COFs were utilized to adsorb and remove nitro aromatic hydrocarbons in the water environment. The adsorption behavior of GO/COFs for o-nitrophenol, 1,3-dinitrobenzene and 2,4,6-trinitrophenol were further investigated. The GO/COFs composites showed the strongest adsorption capacity for 2,4,6-trinitrophenol, and the maximum adsorption capacity for 2,4,6-trinitrophenol, o-nitrophenol, and 1,3-dinitrobenzene were 438, 317, and 173 mg g-1, respectively. The experimental results indicated that the GO/COFs composites provided great adsorption capability for nitro aromatic pollutants and can be reused, rendering it an extremely potential adsorbent for organic pollutants.
Collapse
Affiliation(s)
- Li Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jing Xiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
| |
Collapse
|
6
|
Li Y, Wang S, Ouyang XF, Dang Z, Yin H. Acetate anions intercalated Fe/Mg-layered double hydroxides modified biochar for efficient adsorption of anionic and cationic heavy metal ions from polluted water. CHEMOSPHERE 2024; 362:142652. [PMID: 38936489 DOI: 10.1016/j.chemosphere.2024.142652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The simultaneous removal of anionic and cationic heavy metals presents a challenge for adsorbents. In this study, acetate (Ac-) was utilized as the intercalating anion for layered double hydroxide (LDH) to prepare a novel biochar composite adsorbent (Ac-LB) designed for the adsorption of Pb(II), Cu(II), and As(V). By utilizing Ac- as the intercalating anion, the interlayer space of the LDH was enlarged from 0.803 nm to 0.869 nm, exposing more adsorption sites for the LDH and enhancing the affinity for heavy metals. The results of the adsorption experiments showed that the adsorption effect of Ac-LB on heavy metals was significantly improved compared to the original FeMg-LDH modified biochar composites (LB), and the maximum adsorption capacity of Pb(II), Cu(II), and As(V) were 402.70, 68.50, and 21.68 mg/g, respectively. Wastewater simulation tests further confirmed the promising application of Ac-LB for heavy metal adsorption. The analysis of the adsorption mechanism revealed that surface complexation, electrostatic adsorption, and chemical deposition were the main mechanisms of action between heavy metals (Pb(II) and Cu(II)) and Ac-LB. Additionally, Cu(II) ions underwent a homogeneous substitution reaction with Ac-LB. The adsorption process of As(V) by Ac-LB mainly relied on complexation and ion-exchange reactions. Lastly, the modification of the LDH structure by Ac- as an intercalating anion, thereby increasing the affinity for heavy metals, was further illustrated using density-functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yingchao Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shujia Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiao Fang Ouyang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Wu M, Tian H, Gao X, Cui X, Li Z, Li K, Zhao X. Diamino-functionalized metal-organic framework for selective capture of gold ions. CHEMOSPHERE 2024; 362:142686. [PMID: 38909517 DOI: 10.1016/j.chemosphere.2024.142686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Adsorptive recovery of valuable gold (Au) ions from wastes is vital but still challenged, especially regarding adsorption capacity and selectivity. A novel M - 3,5-DABA metal-organic framework (MOF) adsorbent was prepared via anchoring 3,5-diaminobenzoic acid (3,5-DABA) molecule in the MOF-808 matrix. Benefiting from the positive charge property, dense amino groups (3.2 mmol g-1) and high porosity, the adsorption capacity of M - 3,5-DABA reaches 1391.5 mg g-1 (pH = 2.5) and adsorption equilibrium is attained in 5 min. This amino-based material shows excellent selectivity towards various metal ions, evading the poor selectivity problem of classical thiol groups (e.g. for Ag+, Cu2+, Pb2+ and Hg2+ ions). In addition, the regeneration was easily achieved via using a hydrochloric acid-thiourea eluent. Experimental analysis and density functional theory (DFT) calculation show the amino group works as a reductant for Au(III) ions and meanwhile acts as an active site for adsorbing Au(III) ions together with the μ-OH group. Thus, M - 3,5-DABA can act as a potential adsorbent for Au(III) ions, and our work offers a viable strategy to construct novel MOF-based adsorbents.
Collapse
Affiliation(s)
- Mengdi Wu
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Heli Tian
- Department of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xinli Gao
- Instrumental Analysis Center, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China
| | - Xinge Cui
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Zhengjie Li
- Department of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Kunjie Li
- Department of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xudong Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024, China.
| |
Collapse
|
8
|
Yang T, Liu Y, Chen J, Liu J, Jiang S, Zhang X, Ji C. Synthesis of ultrathin hybrid membranes via the co-polymerization of acrylic acid, styrene and molybdenum disulfide and their high adsorption selectivity for lead(II) in the mixture of metal ions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124019. [PMID: 38663506 DOI: 10.1016/j.envpol.2024.124019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Lead(II) is a potential carcinogen of heavy-metal ions (HIs). With the wide application of Pb-bearing products including lead alloy products, and new-energy lead-ion batteries, lead pollution has become a tricky problem. To solve such a difficulty, novel ultrathin MoS2-vinyl hybrid membranes (MVHMs) with a "spring" effect were synthesized via co-polymerization of acrylic acid, styrene and molybdenum disulfide (MoS2) and their adsorptions for HIs were explored. The "spring" effect derived from the interaction between the tendency of the short polyacrylic acid (PAA) chain connected with MoS2 to spread outward and the coulomb force between layers from MoS2 (s-MoS2), which enlarge the spacing of MoS2 layers without changing the number of layers after membrane formation, which changes the swelling membrane to a dense membrane and reduces the original thickness from 0.5 cm to 0.011 mm in the thickness direction. The adsorption experiment revealed that these MVHMs had super adsorption performance and high selectivity for Pb2+ by comparison with other five metal ions: Cu2+, Cd2+, Ni2+, Cr3+ and Zn2+. Especially, the adsorption quantity of MVHMs for Pb2+ could approach 2468 mg/g and the maximum adsorption ratio of qe[Pb2+]/qe[Cu2+] can reach 10.909. These values were much larger than the data obtained with the adsorbents reported in the last decade. A variety of models are applied to evaluate the effect of ionic groups. It was confirmed that -COOH plays a key role in adsorption of HIs and s-MoS2 also has a certain contribution. Conversely, ion exchange plays only a minor role during the period of adsorption process. Effective diffusion coefficient (Deff) of Pb(II) had the largest values among these metal ions. Hence, these hybrid membranes are promising adsorbents for the removal of Pb2+ from water containing various ions.
Collapse
Affiliation(s)
- Tianrui Yang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China
| | - Yu Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China
| | - Jingyi Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China
| | - Junsheng Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China.
| | - Shan Jiang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China
| | - Xiaoxue Zhang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China
| | - Chunyu Ji
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China
| |
Collapse
|
9
|
Shen Z, Zhang WM, Shan Z, Li SF, Zhang G, Su J. Bimetal-Organic Frameworks Incorporating Both Hard and Soft Base Active Sites for Heavy Metal Ion Capture. Inorg Chem 2024; 63:8615-8624. [PMID: 38668738 DOI: 10.1021/acs.inorgchem.3c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The design and synthesis of stable porous materials capable of removing both hard and soft metal ions pose a significant challenge. In this study, a novel metal-organic framework (MOF) adsorbent named CdK-m-COTTTB was developed. This MOF material was constructed using sulfur-rich m-cyclooctatetrathiophene-tetrabenzoate (m-H4COTTTB) as the organic ligand and oxygen-rich bimetallic clusters as the inorganic nodes. The incorporation of both soft and hard base units within the MOF structure enables effective removal of various heavy metal ions, including both soft and hard acid species. In single-component experiments, the adsorption capacity of CdK-m-COTTTB for Pb2+, Tb3+, and Zr4+ ions reached levels of 636.94, 432.90, and 357.14 mg·g-1, respectively, which is comparable to specific MOF absorbents. The rapid adsorption process was found to be chemisorption. Furthermore, CdK-m-COTTTB exhibited the capability to remove at least 12 different metal ions in both separate and multicomponent solutions. The material demonstrated excellent acid-base stability and renewability, which are advantageous for practical applications. CdK-m-COTTTB represents the first reported pristine MOF material for the removal of both hard and soft acid metal ions. This work serves as inspiration for the design and synthesis of porous crystalline materials that can efficiently remove diverse heavy metal pollutants.
Collapse
Affiliation(s)
- Zhan Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Wei-Miao Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Shu-Fan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
10
|
Ghumman ASM, Shamsuddin R, Qomariyah L, Lim JW, Sami A, Ayoub M. Heavy metal sequestration from wastewater by metal-organic frameworks: a state-of-the-art review of recent progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33317-7. [PMID: 38622423 DOI: 10.1007/s11356-024-33317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as highly promising adsorbents for removing heavy metals from wastewater due to their tunable structures, high surface areas, and exceptional adsorption capacities. This review meticulously examines and summarizes recent advancements in producing and utilizing MOF-based adsorbents for sequestering heavy metal ions from water. It begins by outlining and contrasting commonly employed methods for synthesizing MOFs, such as solvothermal, microwave, electrochemical, ultrasonic, and mechanochemical. Rather than delving into the specifics of adsorption process parameters, the focus shifts to analyzing the adsorption capabilities and underlying mechanisms against critical metal(loid) ions like chromium, arsenic, lead, cadmium, and mercury under various environmental conditions. Additionally, this article discusses strategies to optimize MOF performance, scale-up production, and address environmental implications. The comprehensive review aims to enhance the understanding of MOF-based adsorption for heavy metal remediation and stimulate further research in this critical field. In brief, this review article presents a comprehensive overview of the contemporary information on MOFs as an effective adsorbent and the challenges being faced by these adsorbents for heavy metal mitigation (including stability, cost, environmental issues, and optimization), targeting to develop a vital reference for future MOF research.
Collapse
Affiliation(s)
- Ali Shaan Manzoor Ghumman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Rashid Shamsuddin
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, 42311, Madinah, Kingdom of Saudi Arabia.
| | - Lailatul Qomariyah
- Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, 60111, Surabaya, Surabaya, Indonesia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 , Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, 602105, Chennai, India
| | - Abdul Sami
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Muhammad Ayoub
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
11
|
He Q, Zhao H, Teng Z, Guo Y, Ji X, Hu W, Li M. Tuning microscopic structure of La-MOFs via ligand engineering effect towards enhancing phosphate adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120149. [PMID: 38278114 DOI: 10.1016/j.jenvman.2024.120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
The selection of different organic ligands when synthesizing metal organic framework (MOFs) can change their effects on the adsorption performance. Here, four La-MOFs adsorbents (La-SA, La-FA, La-TA and La-OA) with different organic ligands and structures were synthesized by solvothermal method for phosphate adsorption, and the relationship between their adsorption properties and structures was established. Among four La-MOFs, their phosphate adsorption capacities and adsorption rates followed La-SA > La-FA > La-TA > La-OA. The results indicated that average pore diameter played a key role in phosphate adsorption and there was a positive correlation between average pore diameter and adsorption capacity (R2 = 0.86). Coexisting ion experiments showed that phosphate adsorptions on three La-MOFs (La-SA, La-FA and La-TA) were inhibited in the presence of CO32- and HCO3-. The inhibition of CO32- was the most pronounced and the results of redundancy analysis pointed out that it was mainly due to the change of pH value. In contrast, La-OA showed enhanced phosphate adsorption in the presence of CO32- and HCO3-, and the combination of pH experiments showed that phosphate adsorption by La-OA was increased under alkaline conditions. Further combined with FT-IR, XRD, high resolution energy spectra of XPS (La 3d, P 2p and O 1s) and XANES, the adsorption mechanisms were derived electrostatic attraction, chemical precipitation and inner sphere complexation, and the last two were identified as the main mechanisms. Moreover, it can be identified from XPS 2p that the phosphate adsorption on La-FA and La-OA were mainly in the LaPO4 state, while La-SA and La-TA mainly existed in the form of LaPO4·xH2O crystals and inner sphere complexes. From the perspective of material morphology, this work provides a thought for the rational design of MOFs with adjustable properties for phosphate adsorption.
Collapse
Affiliation(s)
- Qinqin He
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongjun Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zedong Teng
- Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
12
|
Zhang X, Razanajatovo MR, Du X, Wang S, Feng L, Wan S, Chen N, Zhang Q. Well-designed protein amyloid nanofibrils composites as versatile and sustainable materials for aquatic environment remediation: A review. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:264-277. [PMID: 38435357 PMCID: PMC10902511 DOI: 10.1016/j.eehl.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 03/05/2024]
Abstract
Amyloid nanofibrils (ANFs) are supramolecular polymers originally classified as pathological markers in various human degenerative diseases. However, in recent years, ANFs have garnered greater interest and are regarded as nature-based sustainable biomaterials in environmental science, material engineering, and nanotechnology. On a laboratory scale, ANFs can be produced from food proteins via protein unfolding, misfolding, and hydrolysis. Furthermore, ANFs have specific structural characteristics such as a high aspect ratio, good rigidity, chemical stability, and a controllable sequence. These properties make them a promising functional material in water decontamination research. As a result, the fabrication and application of ANFs and their composites in water purification have recently gained considerable attention. Despite the large amount of literature in this field, there is a lack of systematic review to assess the gap in using ANFs and their composites to remove contaminants from water. This review discusses significant advancements in design techniques as well as the physicochemical properties of ANFs-based composites. We also emphasize the current progress in using ANFs-based composites to remove inorganic, organic, and biological contaminants. The interaction mechanisms between ANFs-based composites and contaminants are also highlighted. Finally, we illustrate the challenges and opportunities associated with the future preparation and application of ANFs-based composites. We anticipate that this review will shed new light on the future design and use of ANFs-based composites.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mamitiana Roger Razanajatovo
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xuedong Du
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shuo Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Li Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shunli Wan
- College of Life & Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Ningyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingrui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
13
|
Gao X, Ding R, Huang H, Liu B, Zhao X. Constructing a carboxyl-rich angstrom-level trap in a metal-organic framework for the selective capture of lithium. Chem Commun (Camb) 2023; 59:13183-13186. [PMID: 37850377 DOI: 10.1039/d3cc03913g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
A metal-organic-framework-based ion trap was designed via tailoring linker functionality as well as free -COOH density. The mixed-linker UiO-66-H2/H4 exhibits higher adsorption for Li+ ions than H4-free UiO-66-H2 because the H4 linker provides an additional -COOH group in the local region.
Collapse
Affiliation(s)
- Xinxin Gao
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Rui Ding
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.
| | - Baosheng Liu
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Xudong Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| |
Collapse
|
14
|
Ma S, Wei S, Li S, Wei W, Huang Y. Facile activation of natural calcium-rich sepiolite with oxalic acid for selective Pb(II) removal: Highly-efficient performance, mechanisms and site energy distribution. CHEMOSPHERE 2023; 342:140201. [PMID: 37722536 DOI: 10.1016/j.chemosphere.2023.140201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The design and development of adsorbents with high efficiency, selectivity, and economy for Pb(II) are essential to environmental governance and ecological safety. Herein, an oxalic acid (OA) activated natural sepiolite (nSEP) composite for highly efficient Pb(II) removal was prepared by a facile impregnation strategy. The OA activated nSEP nanocomposite (OA-nSEP) was characterized by various instrumental techniques and its adsorption performance towards Pb(II) was further evaluated through a series of static and dynamic experiments under various environmental conditions. Results revealed that OA reacted with the calcium impurities in nSEP to form calcium oxalate, causing mesoporous structure and larger specific surface area of OA-nSEP. The obtained OA-nSEP possessed super high Pb(II) adsorption capacities (858.4-1252 mg/g), which were much higher than that of most modified clays or conventional materials. The average adsorption site energy and the standard deviation of the site energy distribution were analyzed to investigate the strength of Pb(II) binding onto OA-nSEP and the adsorption site heterogeneity. Mechanism studies confirmed that oxalate groups exerted a primary role in the adsorption process. X-ray diffraction and X-ray photoelectron spectrometry (XPS) unveiled that the coordination of oxalate with Pb(II) and precipitation of lead oxalate was responsible for the high efficiency and selectivity. Distinguishing feature of high adsorption capacity, specific selective adsorption, abundant availability, and splendid reusability make the OA-nSEP a promising candidate for eliminating Pb(II) in practical scenarios.
Collapse
Affiliation(s)
- Shoucheng Ma
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Song Wei
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Siyuan Li
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Wei Wei
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
15
|
Yarahmadi A, Khani MH, Nasiri Zarandi M, Amini Y, Yadollahi A. Ce(III) and La(III) ions adsorption using Amberlite XAD-7 resin impregnated with DEHPA extractant: response surface methodology, isotherm and kinetic study. Sci Rep 2023; 13:9959. [PMID: 37340031 DOI: 10.1038/s41598-023-37136-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023] Open
Abstract
In this paper, the removal efficiency of Cerium (Ce(ΙΙΙ)) and lanthanum (La(ΙΙΙ)) ions from aqueous solution using Amberlite XAD-7 resin impregnated with DEHPA(XAD7-DEHPA) was studied in the batch system. The adsorbent ( XAD7-DEHPA) was characterized by SEM-EDX, FTIR and BET analysis Techniques. The response surface methodology based on the central composite design was applied to model and optimize the removal process and evaluate operating parameters like adsorbent dose (0.05-0.065), initial pH (2-6) and temperature (15-55). Variance analysis showed that the adsorbent dose, pH and temperature were the most effective parameters in the adsorption of Ce(ΙIΙ)and La(IΙI) respectively. The results showed that the optimum adsorption condition was achieved at pH = 6, the optimum amount of absorbent and the equilibrium time equal to 0.6 gr and 180 min, respectively. According to the results, the adsorption percentage of Ce(ΙIΙ) and La(ΙΙΙ) ions onto the aforementioned resin were 99.99% and 78.76% respectively. Langmuir, Freundlich, Temkin and sips isotherm models were applied to describe the equilibrium data. From the results, Langmuir isotherm (R2 (Ce) = 0.999, R2 (La) = 0.998) was found to better correlate the experimental rate data. The maximum adsorption capacity of the adsorbent ( XAD7-DEHPA) for both Ce(IΙI) and La(III) was found to be 8.28 and 5.52 mg g-1 respectively. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and Intra particle diffusion models. Based on the results, the pseudo-first-order model and Intra particle diffusion model described the experimental data as well. In general, the results showed that ( XAD7-DEHPA) resin is an effective adsorbent for the removal of Ce(IΙI) and La(III) ions from aqueous solutions due to its high ability to selectively remove these metals as well as its reusability.
Collapse
Affiliation(s)
- Azadeh Yarahmadi
- Department of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| | - Mohammad Hassan Khani
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O.BOX 11365-8486, Tehran, Iran.
| | - Masoud Nasiri Zarandi
- Department of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| | - Younes Amini
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O.BOX 11365-8486, Tehran, Iran.
| | - Ali Yadollahi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O.BOX 11365-8486, Tehran, Iran
| |
Collapse
|
16
|
Liu C, Quan K, Chen J, Shi X, Qiu H. Chiral metal-organic frameworks and their composites as stationary phases for liquid chromatography chiral separation: A minireview. J Chromatogr A 2023; 1700:464032. [PMID: 37148566 DOI: 10.1016/j.chroma.2023.464032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Chiral metal organic frameworks (CMOFs) are a kind of crystal porous framework material that has attracted increasing attention due to the customizable combination of metal nodes and organic ligands. In particular, the highly ordered crystal structure and rich adjustable chiral structure make it a promising material for developing new chiral separation material systems. In this review, the progress of CMOFs and their different types of composites used as chiral stationary phases (CSPs) in liquid chromatography for enantioseparation are discussed. The characteristics of CMOFs and their composites are summarized, aiming to provide new ideas for the development of CMOFs with better performance and further promote the application of CMOFs materials in enantioselective high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Chunqiang Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Shi
- Institute of Materia Medica, Gansu Provincial Cancer Hospital, Lanzhou 730050, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Gao X, Liu B, Zhao X. Thiol-decorated defective metal-organic framework for effective removal of mercury(II) ion. CHEMOSPHERE 2023; 317:137891. [PMID: 36657579 DOI: 10.1016/j.chemosphere.2023.137891] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/22/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Removal of mercury (Hg) ion from water is important while still faces challenges in capacity and adsorption speed. Herein, using thiol-containing mercaptoacetic acid (MA) as the template, we constructed a novel metal-organic framework (MOF) adsorbent, Zr-MSA-MA (MSA, mercaptosuccinic acid). Unlike other monodentate acids such as acetic acid and formic acid, MA benefits to maintain high-content binding sites, in the meantime of defect formation. On the basis, Zr-MSA-MA exhibits a high adsorption capacity of 714.8 mg g-1 for Hg2+ and fast adsorption kinetics, superior to other MOF-based adsorbents. Co-existing metal ions and pH have only slight interference for the adsorption behavior. Besides, the adsorption is proved to an endothermic reaction and the adsorbent can be regenerated based on a simple elution. Further analysis indicates the strong chemical bonding of Hg2+ and -SH is the main adsorption mechanism. Thus, our work demonstrates the Zr-MSA-MA can serve as a potential adsorbent for Hg2+, and provides a novel strategy to construct defective adsorbent via using active group-containing template.
Collapse
Affiliation(s)
- Xinxin Gao
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Baosheng Liu
- Engineering Research Center for Magnesium Alloy of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024, China; College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China.
| | - Xudong Zhao
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China; Engineering Research Center for Magnesium Alloy of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024, China.
| |
Collapse
|
18
|
Chen Y, Fan J, Ma R, Xue Y, Ma Q, Yuan S, Teng W. Enhanced removal of heavy metals by α-FeOOH incorporated carboxylated cellulose nanocrystal: synergistic effect and removal mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19427-19438. [PMID: 36241830 DOI: 10.1007/s11356-022-23544-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Simultaneous and highly efficient removal of heavy metal cations and oxyanions is significant for both water and soil remediation, but it remains a major challenge due to the complexity. In this work, a novel hybrid of α-FeOOH incorporated carboxylated cellulose nanocrystal (Fe/CNC) is synthesized via a hydrothermal process, which shows improved α-FeOOH dispersion and heavy metal removal capacity. In single adsorbate system, maximum adsorption capacities toward Pb(II), Cd(II), and As(V) by Fe/CNC reach 126.06, 53.07, and 15.80 mg g-1, respectively, and the Fe leaching is much lower than that of α-FeOOH. In binary and ternary adsorption systems, simultaneous removal of Pb(II), Cd(II), and As(V) is proved, and the competition and synergy coexist among heavy metals. FTIR and XPS spectra have revealed the synergistic removal mechanism: Pb(II) and Cd(II) are mainly removed by surface complexation with oxygen-containing functional groups on C-CNC and α-FeOOH, and precipitation on the surface of α-FeOOH, while ligand exchange with Fe-OH is responsible for As(V) removal. The soil incubation experiments show that exchangeable and carbonate-bound Pb, Cd, and As are transformed into more stable forms in contaminated soil containing Fe/CNC composites. This work provides a novel composite material for remediation of heavy metal-contaminated environments.
Collapse
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Raner Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Qian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shiyin Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Wei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
19
|
Cheng R, Li W, Wang J, Li J, Zheng J, Zheng X. Design strategy of self-assembled BC@MIL-100(Fe) composite membrane for the efficient removal of diclofenac sodium from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19356-19366. [PMID: 36239887 DOI: 10.1007/s11356-022-23059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) as typical emerging pollutant have attracted extensive attention due to the risks to human health and environment. As a kind of harmful PPCPs, diclofenac sodium (DCF) has been frequently detected in water environment, which needs to be removed effectively. Herein, we successfully fabricated network structure composite membranes consisting of one-dimensional (1D) well-defined core-shell bacterial cellulose (BC)@MIL-100 (Fe) nanofibers by a simple but effective step-by-step strategy. The BC@MIL-100(Fe) composite membrane has three-dimensional network utilizing bacterial cellulose nanofiber as template, which was observed as the MIL-100(Fe) grew on the nanofiber uniformly and obvious core-shell structure. Impressively, the BC@MIL-100(Fe) not only possessed favorable architecture but also behaved good properties to adsorb DCF from water. As we expected, the as-obtained BC@MIL-100(Fe) composite membrane exhibited convenient recycling, high chemical stability, and short equilibrium time (30 min) with high adsorption capacity (296 mg g-1). Strikingly, in low DCF concentration solution, BC@MIL-100(Fe) composite showed high adsorption efficiency in periodic test, which can still reach 70% after five successive adsorptions without desorption. The results demonstrated that the adsorption mechanism may involve π-π interaction, H-bond interaction, and electrostatic interaction. This work proposes the new finding to understand the removing of DCF from water environment.
Collapse
Affiliation(s)
- Rong Cheng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Weilong Li
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Jinlin Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Jie Li
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Jianzhong Zheng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xiang Zheng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
20
|
Synthesis, characterization and uranium (VI) adsorption mechanism of novel adsorption material poly(tetraethylenepentamine–trimesoyl chloride). J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Thallium separation from wastewater using α-FeOOH@Biochar: Efficacy and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Wang S, Wang H, Wang S, Fu L, Zhang L. Novel magnetic covalent organic framework for the selective and effective removal of hazardous metal Pb(II) from solution: Synthesis and adsorption characteristics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Chen X, Hossain MF, Duan C, Lu J, Tsang YF, Islam MS, Zhou Y. Isotherm models for adsorption of heavy metals from water - A review. CHEMOSPHERE 2022; 307:135545. [PMID: 35787879 DOI: 10.1016/j.chemosphere.2022.135545] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Adsorption is a widely used technology for removing and separating heavy metal from water, attributed to its eco-friendly, cost-effective, and high efficiency. Adsorption isotherm modeling has been used for many years to predict the adsorption equilibrium mechanism, adsorption capacity, and the inherent characteristics of the adsorption process, all of which are substantial in evaluating the performance of adsorbents. This review summarizes the development history, fundamental characteristics, and mathematical derivations of various isotherm models, along with their applicable conditions and application scenarios in heavy metal adsorption. The latest progress in applying isotherm models with a one-parameter, two-parameter, and three-parameter in heavy metal adsorption using carbon-based materials, which has gained much attention in recent years as low-cost adsorbents, is critically reviewed and discussed. Several experimental factors affecting the adsorption equilibrium, such as solution pH, temperature, ionic strength, adsorbent dose, and initial heavy metal concentration, are briefly discussed. The criteria for selecting the optimum isotherm for heavy metal adsorption are proposed by comparing various adsorption models and analyzing mathematical error functions. Finally, the relative performance of different isotherm models for heavy metal adsorption is compared, and the future research gaps are identified.
Collapse
Affiliation(s)
- Xinyu Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Md Faysal Hossain
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong, China
| | - Chengyu Duan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong, China
| | - Md Shoffikul Islam
- Department of Soil Science, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
24
|
Wu H, Chang H, Zhong N, Tang Y, Gong Y, Wu W, Liu J, Yin T, Li G, Ho SH. Thermodynamic and kinetic studies on harmful algal blooms harvesting by novel etherified cationic straw flocculant. BIORESOURCE TECHNOLOGY 2022; 361:127737. [PMID: 35931283 DOI: 10.1016/j.biortech.2022.127737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) are growing threats that cause tens of billion dollars economic loss annually. Aiming at efficient disposal of HABs, a cheap and eco-friendly cationic straw was developed by etherification of wheat straw, which replaced hydroxyl groups on cellulose by quaternary ammonium groups. It endowed the cationic straw with high positive charge and achieved 93.92% of harvesting efficiency by enhancing HABs cells aggregation via charge neutralization. Different from inorganic salts-based flocculants, HABs harvesting by the cationic straw is a spontaneous and exothermic process with negative ΔG° and ΔH° under all adsorption conditions. Thermodynamics and kinetics analysis elucidated that HABs adsorption process by cationic straw were mainly driven by physical forces. Together, cationic straw preparation and HABs harvesting processes were comprehensively optimized with orthogonal experiments. The work may inspire cost-effective HABs disposal and fill knowledge gaps of process nature for HABs harvesting.
Collapse
Affiliation(s)
- Haihua Wu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Nianbing Zhong
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Yuting Tang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuqi Gong
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Wenbo Wu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jian Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Taikun Yin
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Gang Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| |
Collapse
|
25
|
Pervez MN, Chen C, Li Z, Naddeo V, Zhao Y. Tuning the structure of cerium-based metal-organic frameworks for efficient removal of arsenic species: The role of organic ligands. CHEMOSPHERE 2022; 303:134934. [PMID: 35561775 DOI: 10.1016/j.chemosphere.2022.134934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The ability of organic ligands to change the structure of metal-organic frameworks (MOFs) in nature and influence their adsorption efficiency for arsenic species is enormous. The current work was designed to investigate the adsorption performance of cerium-based MOFs with tunable structures through the use of organic ligands (Ce-MOF-66 and Ce-MOF-808) towards arsenic species from water. The structural features of Ce-MOF-66 and Ce-MOF-808 with varying crystallinity, morphology, particle size, and surface area are considerably altered by organic ligands tuning, resulting in clearly distinct arsenate (As (V)) and arsenite (As (III)) adsorption capabilities. The experimental results showed that the Langmuir adsorption capacities of As (V) by Ce-MOF-66 and Ce-MOF-808 reached 355.67 and 217.80 mg/g, respectively, while for As (III) were 5.52 and 402.10 mg/g for Ce-MOF-66 and Ce-MOF-808, respectively. Except for the impact of PO43- on As (V), co-existing ions had no significant influence on adsorption, illustrating the high selectivity. Furthermore, to understand the structure and adsorption mechanism, two adsorbents were characterized by powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, specific surface area, Fourier transform infrared and X-ray photoelectron spectroscopy, in which identified that unsaturated sites and ligand exchange were the main adsorption mechanisms of As (V) and As (III). Overall, this research presents a novel approach for developing high-performance Ce-derived MOFs adsorbents to capture arsenic species.
Collapse
Affiliation(s)
- Md Nahid Pervez
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China; Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Changxun Chen
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China
| | - Zongchen Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China.
| |
Collapse
|
26
|
Guo LY, He X, Hong ZN, Xu RK. Effect of the interaction of fulvic acid with Pb(II) on the distribution of Pb(II) between solid and liquid phases of four minerals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68680-68691. [PMID: 35543790 DOI: 10.1007/s11356-022-20315-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb) is one of the top metal pollutants worldwide, and its distribution between liquid and solid phases of soils is strongly controlled by its adsorption on minerals, organic matter, and their composites. This paper presented the effect of fulvic acid (FA) coexistence on the distribution of Pb(II) at the solid-liquid interface of four minerals, which provided reference for how to use humic substances to remove toxic Pb(II) in soils. The free Pb2+ of suspensions, measured by Pb ion selective electrode, was used to characterize the complexation of FA with Pb2+ at various pH. The adsorption isotherms of Pb(II) by montmorillonite, kaolinite, goethite, and gibbsite with and without FA were studied with batch experiments. Results indicated that the free Pb2+ decreased and complexed Pb(II) increased with the increase of FA concentration in Pb(II)-FA solutions, whether the initial concentration of Pb(II) was 0.1 or 1 mM. Pb2+ hydrolysis was low and the free Pb2+ concentration in pure lead solution without FA was generally unchanged with increasing solution pH at pH < 6.0. But free Pb2+ decreased with the increase of pH in the presence of FA, suggesting that the complexation ability of FA with Pb2+ increased with the increase of solution pH. The adsorption of Pb(II) by the minerals without FA followed the order: montmorillonite > kaolinite ≈ goethite > gibbsite at pH5.0. The Pb(II) adsorption by montmorillonite and kaolinite significantly enhanced with 1 g/L FA, while significantly inhibited with 3 g/L FA at low initial Pb(II) concentration. However, the effect of FA on Pb(II) adsorption by montmorillonite was greater than that of kaolinite, which was mainly related to the crystal layer structure, adsorption area, and cation exchange capacity of the minerals. The Pb(II) adsorption by goethite and gibbsite was significantly enhanced by the addition of both 1 g/L and 3 g/L FA, and the enhancement was more evident in goethite system. The effect of FA on the distribution of Pb(II) between solid and liquid phases of the minerals was determined by the factors such as the initial concentration ratio of FA to Pb(II), the adsorption capacity of minerals for FA, and the number of soluble complexes of FA with Pb2+. Therefore, the distribution of FA between solid and liquid of four minerals affected the distribution of Pb(II) between solid and liquid phases of the minerals greatly. The results can provide an important reference for understanding the distribution of Pb(II) and the dynamics and mobility of active components in polluted soils.
Collapse
Affiliation(s)
- Lin-Yu Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Neng Hong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Synergistic dicarboxylate sites of natural citric acid modified MOF-808 for the deep removal of Pb2+ in water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Huang Z, Xiong C, Ying L, Wang W, Wang S, Ding J, Lu J. A post-functional Ti-based MOFs composite for selective removal of Pb (II) from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128700. [PMID: 35305417 DOI: 10.1016/j.jhazmat.2022.128700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Lead ions in water have notorious effects on humans and environment. It is important to design an adsorbent with high adsorption capacity and reproducibility for efficiently removing Pb (II)ions from polluted water. Here, a novel Ti-based MOFs material (BDB-MIL-125(Ti)@Fe3O4) was prepared by modifying NH2-MIL-125(Ti) with sulfhydryl and amino groups. Due to the large number of active sites, the maximum Pb (II) adsorption capacity of BDB-MIL-125(Ti)@Fe3O4 was 710.79 mg/g at 25 °C and pH = 6 within 120 min corresponding to a maximum removal rate of 95.68%. The adsorbent also has extremely high selectivity and good cycling adsorption performance. The adsorption isotherms and kinetics agree with the Langmuir and the pseudo-second-order models, indicating that the process was chemisorption. Thermodynamic studies prove that spontaneous processes enhance Pb (II) adsorption at higher temperatures. DFT and FMOs calculations were used to discuss the adsorption mechanism. The sulfhydryl groups on the surface of organic ligands have a stronger affinity for Pb (II).
Collapse
Affiliation(s)
- Zhen Huang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lingri Ying
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Welong Wang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China.
| | - Shixing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China.
| | - Jing Ding
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China.
| | - Jianfeng Lu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China
| |
Collapse
|
29
|
|