1
|
Liu Q, Wang C, Wang J, Cui X, Zhang X, Zhao R, Han J, Wang L. Co 0.5CuP loaded Cd 0.9Co 0.1S hollow nanospheres with p-n heterojunction for photocatalytic hydrogen production. J Colloid Interface Sci 2025; 692:137491. [PMID: 40187138 DOI: 10.1016/j.jcis.2025.137491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/19/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
The development of efficient and stable composite photocatalysts is crucial for advancing the field of photocatalytic hydrogen production. In this paper, the Co0.5CuP/Cd0.9Co0.1S composite photocatalyst was synthesized by the template etching method and the in-situ growth method. The Co0.5CuP was tightly anchored on the surface of hollow structure Cd0.9Co0.1S nanospheres. The hydrogen production efficiency of the Co0.5CuP/Cd0.9Co0.1S composite photocatalyst was enhanced by adjusting the doping proportion of cobalt and the loading quantity of Co0.5CuP. Meanwhile, a p-n heterojunction was formed between Co0.5CuP and Cd0.9Co0.1S, which enhanced the separation of photoinduced charge carriers and further boosted the efficiency of photocatalytic hydrogen production. The results showed that the photocatalytic hydrogen evolution efficiency of Co0.5CuP/Cd0.9Co0.1S could reach 9.64 mmol·g-1·h-1. In addition, the photocatalytic reaction mechanism of the Co0.5CuP/Cd0.9Co0.1S composite photocatalyst was inferred based on the photoelectrochemical test and density functional theory calculation. This approach pioneers a novel pathway for the preparation of heterojunction photocatalysts by the combination of transition metal phosphide and hollow multi-metal sulfides.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory Base of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Changdi Wang
- State Key Laboratory Base of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jianxiang Wang
- State Key Laboratory Base of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangjie Cui
- State Key Laboratory Base of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xingrong Zhang
- State Key Laboratory Base of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ruiyang Zhao
- State Key Laboratory Base of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Jishu Han
- State Key Laboratory Base of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
2
|
Wang W, Wang X, Li G, Wu X, Yu Q, Wang Y, Zhao X, Gao J, Wang J. Exquisitely designed (0 0 1) active face of Bi 2O 2CO 3 based on Bi 3O 4Br/g-C 3N 5 layers with multi-channel charge transfer for efficient purification of organic water pollutants under visible light. J Colloid Interface Sci 2025; 690:137297. [PMID: 40088812 DOI: 10.1016/j.jcis.2025.137297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
The design of heterojunction and active crystal face is an effective way to promote the separation and migration of photogenerated charge in the process of photocatalytic reaction. In this work, the band gap intercalation Bi3O4Br/Bi2O2CO3/g-C3N5 (BBC) ternary photocatalyst was successfully designed by one step hydrothermal method. It is found that under alkaline conditions, the addition of g-C3N5 to Bi3O4Br leads to the preferential growth of the (0 0 1) crystal face of the third phase Bi2O2CO3, and the (0 0 1) crystal face is the active crystal face of the photocatalytic reaction. In addition, the constructed double Z-scheme heterojunction has two different electron transport pathways and bidirectional interface electric fields, which reduces the electron-hole pair recombination rate, maintains a strong redox ability, and enables the photogenerated carrier to effectively separate and transfer, thus improving the catalytic activity of the material. Under visible light irradiation, 15 %BBC presented excellent catalytic activity, the degradation rates of ARB (k = 0.0238 min-1), HCl-TC (k = 0.0183 min-1) and RHB (k = 0.0200 min-1) exceeded 90 % within 120 min. This work is not only of great significance for the purification of water pollution, but also provides a new way for further exploration of novel composite photocatalytic systems.
Collapse
Affiliation(s)
- Wenlin Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Xianling Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Gang Li
- Baoding Green Yijia Environmental Protection Technology Ltd., Baoding 071051, PR China
| | - Xiuting Wu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Qian Yu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Yan Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Xinjie Zhao
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Jia Gao
- China Lucky Group Corporation, PR China
| | - Jing Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
3
|
Feng C, Raziq F, Huang H, Wu ZP, Aqahtani HS, Alqahtani R, Rahman MZ, Chang B, Gascon J, Zhang H. Shining Light on Hydrogen: Solar-Powered Catalysis with Transition Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2410387. [PMID: 40237221 DOI: 10.1002/adma.202410387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Artificial photosynthesis offers a promising pathway to address environmental challenges and the global energy crisis by converting solar energy into storable chemical fuels such as hydrogen. Among various photocatalysts, transition metal-based materials have garnered significant attention due to their tunable crystal phase, morphology, surface active sites, and other key properties. This review provides a comprehensive overview of recent advances in transition metal-based photocatalysts for hydrogen production, with a particular focus on modification strategies and their underlying mechanisms. By systematically classifying these materials, this work highlights effective approaches for enhancing their catalytic performance, including structural engineering, electronic modulation, and interfacial optimization. Furthermore, this work discusses the fundamental principles governing these modifications, offering deeper insights into their roles in charge separation, surface reactions, and stability. Finally, this work outlines future research directions and key challenges in the rational design of highly efficient transition metal-based photocatalysts for sustainable hydrogen production.
Collapse
Affiliation(s)
- Chengyang Feng
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Fazal Raziq
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Huawei Huang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zhi-Peng Wu
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hassan S Aqahtani
- EXPEC Advanced Research Centre, Saudi Aramco, Dhahran, 31311, Kingdom of Saudi Arabia
| | - Rawan Alqahtani
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mohammad Z Rahman
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bin Chang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Sun W, Zuo Y, Niu Y, Che G, Liu C, Dong H. Control interfacial charge transfer behavior by creating surface defects on structure unit of heterojunction to drive carrier separation for enhancing photocatalytic CO 2 reduction. J Colloid Interface Sci 2025; 677:820-830. [PMID: 39121666 DOI: 10.1016/j.jcis.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Controlling interfacial charge transfer behavior of heterojunction is an arduous issue to efficiently drive separation of photogenerated carriers for improving the photocatalytic activity. Herein, the interface charge transfer behavior is effectively controlled by fabricating an unparalleled VO-NiWO4/PCN heterojunction that is prepared by encapsulating NiWO4 nanoparticles rich in surface oxygen vacancies (VO-NiWO4) in the mesoporous polymeric carbon nitride (PCN) nanosheets. Experimental and theoretical investigations show that, differing with the traditional p-n junction, the direction of built-in electric field between p-type NiWO4 and n-type PCN is reversed interestingly. The strongly codirectional built-in electric field is also produced between the surface defect region and inside of VO-NiWO4 besides in the space charge region, the dual drive effect of which forcefully propels interface charge transfer through triggering Z-Scheme mechanism, thus significantly improving the separation efficiency of photogenerated carriers. Moreover, the unique mesoporous encapsulation structure of VO-NiWO4/PCN heterostructure can not only afford the confinement effect to improve the reaction kinetics and specificity in the CO2 reduction to CO, but also significantly reduce mass transfer resistance of molecular diffusion towards the reaction sites. Therefore, the VO-NiWO4/PCN heterostructure demonstrates the preeminent activity, stability and reusability for photocatalytic CO2 reduction to CO reaction. The average evolution rate of CO over the optimal 10 %-VO-NiWO4/PCN composite reaches around 2.5 and 1.8 times higher than that of individual PCN and VO-NiWO4, respectively. This work contributes a fresh design approach of interface structure in the heterojunction to control charge transfer behaviors and thus improve the photocatalytic performance.
Collapse
Affiliation(s)
- Wei Sun
- College of Engineering, Jilin Normal University, Siping 136000, PR China
| | - Yan Zuo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yaling Niu
- Baicheng Normal University, Baicheng 137000, PR China
| | - Guangbo Che
- Baicheng Normal University, Baicheng 137000, PR China.
| | - Chunbo Liu
- College of Engineering, Jilin Normal University, Siping 136000, PR China.
| | - Hongjun Dong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
5
|
Yang S, Chi S, Qi Y, Li K, Zhang X, Gao X, Yang L, Yang J. Diluting Ionic Liquids with Small Functional Molecules of Polypropylene Carbonate to Boost the Photovoltaic Performance of Perovskite Solar Cells. Molecules 2024; 29:6045. [PMID: 39770134 PMCID: PMC11678742 DOI: 10.3390/molecules29246045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
It is necessary to overcome the relatively low conductivity of ionic liquids (ILs) caused by steric hindrance effects to improve their ability to passivate defects and inhibit ion migration to boost the photovoltaic performance of perovskite solar cells (PSCs). Herein, we designed and prepared a kind of low-concentration 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) diluted with propylene carbonate (PC) via an ultrasonic technique (PC/IL). The decrease in the decomposition temperature related to the IL part and the increase in the sublimation temperature related to the PC part facilitated the use of PC/IL to effectively delay the crystallization process and passivate the defects in multiple ways to obtain high-quality perovskite films. Moreover, the increased conductivity of PC/IL and the more matched band alignment accelerated electron transport and collection. Finally, the MAPbI3- and CsMAFA-based PSCs achieved PCE values of 20.87% and 23.29%, respectively, and their stabilities were greatly improved. This work provides a promising approach to optimizing ILs to achieve multiple functions and boost the performance of PSCs.
Collapse
Affiliation(s)
- Shuo Yang
- School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (Y.Q.); (K.L.); (X.Z.); (X.G.)
- Laboratory of Materials Design and Quantum Simulation College of Science, Changchun University, Changchun 130022, China
| | - Shaohua Chi
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (S.C.); (J.Y.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China;
| | - Youshuai Qi
- School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (Y.Q.); (K.L.); (X.Z.); (X.G.)
- Laboratory of Materials Design and Quantum Simulation College of Science, Changchun University, Changchun 130022, China
| | - Kaiyue Li
- School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (Y.Q.); (K.L.); (X.Z.); (X.G.)
- Laboratory of Materials Design and Quantum Simulation College of Science, Changchun University, Changchun 130022, China
| | - Xiang Zhang
- School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (Y.Q.); (K.L.); (X.Z.); (X.G.)
- Laboratory of Materials Design and Quantum Simulation College of Science, Changchun University, Changchun 130022, China
| | - Xinru Gao
- School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (Y.Q.); (K.L.); (X.Z.); (X.G.)
- Laboratory of Materials Design and Quantum Simulation College of Science, Changchun University, Changchun 130022, China
| | - Lili Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China;
| | - Jinghai Yang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (S.C.); (J.Y.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China;
| |
Collapse
|
6
|
Jamma A, Vennapoosa CS, Annadata HV, Ghosh B, Govu R, Aggarwal H, Ahmadipour M, Abraham BM, Wang X, Pal U. Atomically Tailored Zn-ZIF-8 via RuNi Nanoalloy Replacement for Improved Photocatalytic H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64681-64690. [PMID: 39535905 DOI: 10.1021/acsami.4c11732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this study, we developed a solid-state atomic replacement method for metal catalysts, enabling the exchange of metal atoms between single atoms and nanoalloys to create new combinations of nanoalloys and single atoms. We observed that partial metal interchange occurred between the RuNi nanoalloy and Zn from the zeolitic imidazolate framework-8 (ZIF-8) on a carbon-nitrogen framework (CNF) at a high temperature of 900 °C, leading to the creation of RuZn nanoparticles and single nickel atoms (Ni-CN). Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) analyses revealed that Ni is atomically dispersed within (RuZn)/Ni-CN. This finding confirms the migration of Zn and Ni during the pyrolysis of the RuNi@ZIF-8 precursor, providing definitive evidence of atomic replacement. Due to the synergistic influence of RuZn nanocrystals and Ni-CN, the resulting (RuZn)/Ni-CN multisite catalyst exhibited superior hydrogen evolution reaction (HER) ability compared to the conventional nanoalloy-based catalysts. Density functional theory calculations revealed that the integration of the (RuZn)n cluster on Ni surrounded with different N-coordinated carbon structures enhanced HER activity with the optimized (RuZn)n/NiN2C2 catalyst exhibiting a low ΔGH and improved electron charge redistribution, thereby promoting favorable hydrogen adsorption. Our findings provide valuable insights into the design and optimization of photocatalysts through atomic-level engineering, opening new avenues for efficient and sustainable energy conversion technologies.
Collapse
Affiliation(s)
- Aparna Jamma
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chandra Shobha Vennapoosa
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Harshini V Annadata
- Beamline Development & Application Section, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India
| | - Biplab Ghosh
- Beamline Development & Application Section, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India
| | - Radha Govu
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India
| | - Himanshu Aggarwal
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India
| | - Mohsen Ahmadipour
- Institute of Power Engineering, Universiti Tenaga Nasional, Serdang 43400, Malaysia
| | - B Moses Abraham
- Departament de Ciencia de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Xuefeng Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
7
|
Pan H, Li J, Wang Y, Xia Q, Qiu L, Zhou B. Solar-Driven Biomass Reforming for Hydrogen Generation: Principles, Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402651. [PMID: 38816938 PMCID: PMC11304308 DOI: 10.1002/advs.202402651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.
Collapse
Affiliation(s)
- Hu Pan
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Yangang Wang
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Qineng Xia
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
8
|
Duong TTH, Ding S, Sebek M, Lund H, Bartling S, Peppel T, Le TS, Steinfeldt N. Effect of Bi 2MoO 6 Morphology on Adsorption and Visible-Light-Driven Degradation of 2,4-Dichlorophenoxyacetic Acid. Molecules 2024; 29:3255. [PMID: 39064834 PMCID: PMC11278676 DOI: 10.3390/molecules29143255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The development of highly efficient and stable visible-light-driven photocatalysts for the removal of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from water is still a challenge. In this work, Bi2MoO6 (BMO) materials with different morphology were successfully prepared via a simple hydrothermal method by altering the solvent. The morphology of the BMO material is mainly influenced by the solvent used in the synthesis (H2O, ethanol, and ethylene glycol or their mixtures) and to a lesser extent by subsequent thermal annealing. BMO with aggregated spheres and nanoplate-like structures hydrothermally synthesized in ethylene glycol (EG) and subsequently calcined at 400 °C (BMO-400 (EG)) showed the highest adsorption capacity and photocatalytic activity compared to other synthesized morphologies. Complete degradation of 2,4-D on BMO upon irradiation with a blue light-emitting diode (LED, λmax = 467 nm) was reached within 150 min, resulting in 2,4-dichlorophenol (2,4-DCP) as the main degradation product. Holes (h+) and superoxide radicals (⋅O2-) are assumed to be the reactive species observed for the rapid conversion of 2,4-D to 2,4-DCP. The addition of H2O2 to the reaction mixture not only accelerates the degradation of 2,4-DCP but also significantly reduces the total organic carbon (TOC) content, indicating that hydroxyl radicals are crucial for the rapid mineralization of 2,4-D. Under optimal conditions, the TOC value was reduced by 84.5% within 180 min using BMO-400 (EG) and H2O2. The improved degradation performance of BMO-400 (EG) can be attributed to its particular morphology leading to lower charge transfer resistance, higher electron-hole separation, and larger specific surface area.
Collapse
Affiliation(s)
- Thi Thanh Hoa Duong
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Shuoping Ding
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Michael Sebek
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Henrik Lund
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Stephan Bartling
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Tim Peppel
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| | - Thanh Son Le
- Faculty of Chemistry, VNU University of Science, Hanoi 100000, Vietnam;
| | - Norbert Steinfeldt
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Street 29a, 18059 Rostock, Germany; (T.T.H.D.); (S.D.); (M.S.); (H.L.); (S.B.); (T.P.)
| |
Collapse
|
9
|
Ren Y, Ma X, Yuan G, Liao J, Ma N, Li D, Lv H. Two-dimensional tetragonal AlOX (X = Cl, Br, or I) monolayers with promising photocatalytic performance: first-principles investigations. Phys Chem Chem Phys 2024; 26:16765-16773. [PMID: 38819261 DOI: 10.1039/d4cp00233d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
It is of great significance to search for new two-dimensional materials with excellent photocatalytic water splitting properties. Here, the AlOX (X = Cl, Br, or I) monolayers were constructed to explore their electronic and optical properties as a potential photocatalyst and mechanism of high photocatalytic activity by first principles calculations, for the first time. The results show that the AlOX (X = Cl, Br, or I) monolayers are all dynamically and thermodynamically stable. It is found that the AlOI monolayer exhibits visible optical absorption with a 538 nm absorption band edge, due to its direct band gap of 2.22 eV. Moreover, an appropriate band edge potential ensures its excellent reduction-oxidation (redox) ability. The asymmetry of crystals along different directions results in a noncoplanar HOMO and LUMO as well as an anisotropy effective mass and favors the separation of photogenerated carriers. These findings present the potential of the AlOX (X = Cl, Br, or I) monolayers as photocatalysts.
Collapse
Affiliation(s)
- Yijing Ren
- School of Science, Hubei University of Technology, Wuhan 430068, China.
| | - Xinguo Ma
- School of Science, Hubei University of Technology, Wuhan 430068, China.
- State Key Laboratory of Advanced Technology for Float Glass, Bengbu Glass Industrial Design and Research Institute, Bengbu, 233030, China
| | - Gang Yuan
- School of Science, Hubei University of Technology, Wuhan 430068, China.
| | - Jiajun Liao
- School of Science, Hubei University of Technology, Wuhan 430068, China.
| | - Nan Ma
- Key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences, Shanghai 201899, China.
| | - Di Li
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hui Lv
- School of Science, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
10
|
Wang Y, Zou J, Zhao C, Jiang H, Song Y, Zhang L, Li X, Wang F, Fan L, Liu X, Wei M, Yang L. Building a Charge Transfer Bridge between g-C 3N 4 and Perovskite with Molecular Engineering to Achieve Efficient Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13815-13827. [PMID: 38442230 DOI: 10.1021/acsami.3c19475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Effective defect passivation and efficient charge transfer within polycrystalline perovskite grains and corresponding boundaries are necessary to achieve highly efficient perovskite solar cells (PSCs). Herein, focusing on the boundary location of g-C3N4 during the crystallization modulation on perovskite, molecular engineering of 4-carboxyl-3-fluorophenylboronic acid (BF) on g-C3N4 was designed to obtain a novel additive named BFCN. With the help of the strong bonding ability of BF with both g-C3N4 and perovskite and favorable intramolecular charge transfer within BFCN, not only has the crystal quality of perovskite films been improved due to the effective defects passivation, but the charge transfer has also been greatly accelerated due to the formation of additional charge transfer channels on the grain boundaries. As a result, the champion BFCN-based PSCs achieve the highest photoelectric conversion efficiency (PCE) of 23.71% with good stability.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Jinhang Zou
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Congyu Zhao
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Haipeng Jiang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhuan Song
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Le Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Xin Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Fengyou Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Lin Fan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Xiaoyan Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Maobin Wei
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Lili Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| |
Collapse
|
11
|
Sun Y, Hao Y, Lin X, Liu Z, Sun H, Jia S, Chen Y, Yan Y, Li X. Efficient electron transport by 1D CuZnInS modified 2D Ti 3C 2 MXene for enhanced photocatalytic hydrogen production. J Colloid Interface Sci 2024; 653:396-404. [PMID: 37722168 DOI: 10.1016/j.jcis.2023.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
The efficiency of the photocatalytic reactionis mainly determined by the effective separation of photogenerated electron (e-) and hole (h+). As a high electrical conductivity, two-dimensional (2D) Ti3C2 MXene is widely used as an electronic transmission intermediary with a large surface area and active terminal. In this work, 1D CuZnInS are loaded on the surface of 2D Ti3C2 MXene nanosheets to compound 1D/2D CuZnInS/Ti3C2 nanocomposites with effective inhibition of charge-carrier recombination. The H2 production rate of optimized 1D/2D CuZnInS/Ti3C2 composite reached 15.24 mmol h-1 g-1, which is 4.5 times than that of pure CuZnInS (3.38 mmol h-1 g-1), and the apparent quantum efficiencies (AQEs) of composite photocatalysts can reach 0.39% and 0.24% under light irradiation at 365 nm and 420 nm wavelength, respectively. In addition, 1D/2D CuZnInS/Ti3C2 has high stability after 10 cycles. The enhanced photocatalytic performance is attributed to the large specific surface area of 2D Ti3C2 nanosheets, which facilitates the separation and transfer of photogenerated e- and h+ pairs.
Collapse
Affiliation(s)
- Yuming Sun
- Key Laboratory of Functional Materials Physics & Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yue Hao
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Lin
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhonghuan Liu
- College of Science, Beihua University, Jilin 132013, China
| | - Hongyang Sun
- Key Laboratory of Functional Materials Physics & Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Shuhan Jia
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yahui Chen
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongsheng Yan
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xuefei Li
- Key Laboratory of Functional Materials Physics & Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| |
Collapse
|
12
|
Wu J, He T, Ma X, Li C, Han J, Wang L, Dong H, Zhang R, Wang Y. A novel immobilized horseradish peroxidase platform driven by visible light for the complete mineralization of sulfadiazine in water. Int J Biol Macromol 2023; 253:127239. [PMID: 37838127 DOI: 10.1016/j.ijbiomac.2023.127239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
A novel immobilized enzyme driven by visible light was prepared and used for complete mineralization of antibiotics in water bodies. The immobilized enzyme was composed of carbon nitride modified by biochar (C/CN) and horseradish peroxidase (HRP), establishing the photo-enzyme coupling system with synergistic effect. Among them, the introduction of biochar not only improves the stability and loading capacity of the enzyme, but also improves the light absorption capacity and carrier separation efficiency of the photocatalyst. After the optimization of immobilization process, the solid load of HRP could reach 251.03 mg/g, and 85.03 % enzyme activity was retained after 18 days of storage at 4 °C. In the sulfadiazine (SDZ) degradation experiment, the degradation rate of HRP/C3/CN reached 71.21 % within 60 min, which was much higher than that of HRP (2.33 %), CN (49.78 %) and C3/CN (58.85 %). In addition, under the degradation of HRP/C/CN, the total organic carbon (TOC) removal rate of SDZ reached 53.14 %, which was 6.47 and 1.74 times that of CN and C3/CN, respectively. This study shows that the introduction of biochar is of great significance to the photo-enzyme cascade coupling system and provides a new strategy for the application of HRP&g-C3N4 system in wastewater treatment.
Collapse
Affiliation(s)
- Jiacong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Ting He
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xinnan Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hongjun Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Rongxian Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
13
|
Dong RE, Althobaiti S, AL-bonsrulah HA, Elamin AEA. Improvement of performance of energy storage system with involving nanomaterial and complex geometry. JOURNAL OF ENERGY STORAGE 2023; 71:108117. [DOI: 10.1016/j.est.2023.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Xu J, Zhong W, Zhang X, Wang X, Hong X, Yu H. Triggering the Channel-Sulfur Sites in 1T'-ReS 2 Cocatalyst toward Splendid Photocatalytic Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303960. [PMID: 37415532 DOI: 10.1002/smll.202303960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Indexed: 07/08/2023]
Abstract
Electron density manipulation of active sites in cocatalysts is of great essential to realize the optimal hydrogen adsorption/desorption behavior for constructing high-efficient H2 -evolution photocatalyst. Herein, a strategy about weakening metal-metal bond strength to directionally optimize the electron density of channel-sulfur(S) sites in 1T' Re1- x Mox S2 cocatalyst is clarified to improve their hydrogen adsorption strength (S─H bond) for rapid H2 -production reaction. In this case, the ultrathin Re1- x Mox S2 nanosheet is in situ anchored on the TiO2 surface to form Re1- x Mox S2 /TiO2 photocatalyst by a facial molten salt method. Remarkably, numerous visual H2 bubbles are constantly generated on the optimal Re0.92 Mo0.08 S2 /TiO2 sample with a 10.56 mmol g-1 h-1 rate (apparent quantum efficiency is about 50.6%), which is 2.6 times higher than that of traditional ReS2 /TiO2 sample. Density functional theory and in situ/ex situ X-ray photoelectron spectroscopy results collectively demonstrate that the weakened Re─Re bond strength via Mo introduction can induce the formation of unique electron-deficient channel-S sites with suitable electron density, which yield thermoneutral S─H bonds to realize superior interfacial H2 -generation performance. This work provides fundamental guidance on purposely optimizing the electronic state of active sites by manipulating the intrinsic bonding structure, which opens an avenue for designing efficacious photocatalytic materials.
Collapse
Affiliation(s)
- Jiachao Xu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Zhong
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xidong Zhang
- China Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Xuefei Wang
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xuekun Hong
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- China Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
15
|
Wang B, Yang F, Feng L. Recent Advances in Co-Based Electrocatalysts for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302866. [PMID: 37434101 DOI: 10.1002/smll.202302866] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Water splitting is a promising technique in the sustainable "green hydrogen" generation to meet energy demands of modern society. Its industrial application is heavily dependent on the development of novel catalysts with high performance and low cost for hydrogen evolution reaction (HER). As a typical non-precious metal, cobalt-based catalysts have gained tremendous attention in recent years and shown a great prospect of commercialization. However, the complexity of the composition and structure of newly-developed Co-based catalysts make it urgent to comprehensively retrospect and summarize their advance and design strategies. Hence, in this review, the reaction mechanism of HER is first introduced and the possible role of the Co component during electrocatalysis is discussed. Then, various design strategies that could effectively enhance the intrinsic activity are summarized, including surface vacancy engineering, heteroatom doping, phase engineering, facet regulation, heterostructure construction, and the support effect. The recent progress of the advanced Co-based HER electrocatalysts is discussed, emphasizing that the application of the above design strategies can significantly improve performance by regulating the electronic structure and optimizing the binding energy to the crucial intermediates. At last, the prospects and challenges of Co-based catalysts are shown according to the viewpoint from fundamental explorations to industrial applications.
Collapse
Affiliation(s)
- Bin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| |
Collapse
|
16
|
Dong H, Wang Y, Tong L, Zhang P, Zhu D, Li C, Zhu M. Adjusting Surface Oxidized Layer of CoTe on PCN via In Situ N-Doping Strategy to Promote Charge Separation of Z-Scheme Heterojunction for Propelling Photocatalytic CO 2 Reduction. Inorg Chem 2023; 62:16954-16964. [PMID: 37787454 DOI: 10.1021/acs.inorgchem.3c02689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
It has been a challenging issue to profoundly actuate the transfer and separation of photoinduced charge carriers by controlling the interface structure inside the heterojunction, owing to the molecular/subnanometric level interface region. Herein, a unique one-dimensional/two-dimensional (1D/2D) CoTe/PCN Z-scheme heterojunction is fabricated through the self-assembly of CoTe nanorods on the surface of polymeric carbon nitride (PCN) nanosheets. Significantly, in situ N-doping in the molecular/subnanometric surface oxidized layer of CoTe nanorods is achieved, effectively adjusting its chemical structure and element chemical states. Moreover, this N-doped surface oxidized layer can serve as a recombination region of photogenerated electrons from PCN and photogenerated holes from CoTe to increase the overall carrier separation efficiency in the Z-scheme heterojunction actuated by the built-in electric field. As a result, the photocatalytic CO2 reduction (CO2R) performance is enhanced dramatically, in which the yield of CO generated over the optimal 1D/2D CoTe/PCN heterojunction reaches up to triple than that over PCN. This unique contribution provides an emblematic paradigm for adjusting the interfacial structure of heterojunction and has a profound insight into the interfacial adjusting mechanism to improve the charge separation efficiency in the photocatalytic reaction.
Collapse
Affiliation(s)
- Hongjun Dong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yujia Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lei Tong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Pingfan Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Daqiang Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P. R. China
| |
Collapse
|
17
|
Zhou Y, Chai Y, Sun H, Li X, Liu X, Liang Y, Gong X, Wu Z, Liu C, Qin P. Design strategies and mechanisms of g-C 3N 4-based photoanodes for photoelectrocatalytic degradation of organic pollutants in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118545. [PMID: 37418928 DOI: 10.1016/j.jenvman.2023.118545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Emerging photoelectrocatalytic (PEC) systems integrate the advantages of photocatalysis and electrocatalysis and are considered as a promising technology for solving the global organic pollution problem in water environments. Among the photoelectrocatalytic materials applied for organic pollutant degradation, graphitic carbon nitride (CN) has the combined advantages of environmental compatibility, stability, low cost, and visible light response. However, pristine CN has disadvantages such as low specific surface area, low electrical conductivity, and high charge complexation rate, and how to improve the degradation efficiency of PEC reaction and the mineralization rate of organic matter is the main problem faced in this field. Therefore, this paper reviews the progress of various functionalized CN used for PEC reaction in recent years, and the degradation efficiency of these CN-based materials is critically evaluated. First, the basic principles of PEC degradation of organic pollutants are outlined. Then, engineering strategies to enhance the PEC activity of CN (including morphology control, elemental doping, and heterojunction construction) are focused on, and the structure-activity relationships between these engineering strategies and PEC activity are discussed. In addition, the important role of influencing factors on the PEC system is summarized in terms of mechanism, to provide guidance for the subsequent research. Finally, suggestions and perspectives are provided for the preparation of efficient and stable CN-based photoelectrocatalysts for practical wastewater treatment applications.
Collapse
Affiliation(s)
- Yunfei Zhou
- College of Resources and Environment, Xiangtan University, Xiangtan, 411105, PR China; College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Youzheng Chai
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Haibo Sun
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Xueying Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Xingwang Liu
- College of Resources and Environment, Xiangtan University, Xiangtan, 411105, PR China.
| | - Yunshan Liang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Xiaomin Gong
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China.
| | - Chao Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Pufeng Qin
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China.
| |
Collapse
|
18
|
Katsina AU, Mihai S, Matei D, Cursaru DL, Şomoghi R, Nistor CL. Construction of Pt@BiFeO 3 Xerogel-Supported O-g-C 3N 4 Heterojunction System for Enhanced Visible-Light Activity towards Photocatalytic Degradation of Rhodamine B. Gels 2023; 9:471. [PMID: 37367142 DOI: 10.3390/gels9060471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Synthetic organic pigments from the direct discharge of textile effluents are considered as colossal global concern and attract the attention of scholars. The efficient construction of heterojunction systems involving precious metal co-catalysis is an effective strategy for obtaining highly efficient photocatalytic materials. Herein, we report the construction of a Pt-doped BiFeO3/O-g-C3N4 (Pt@BFO/O-CN) S-scheme heterojunction system for photocatalytic degradation of aqueous rhodamine B (RhB) under visible-light irradiation. The photocatalytic performances of Pt@BFO/O-CN and BFO/O-CN composites and pristine BiFeO3 and O-g-C3N4 were compared, and the photocatalytic process of the Pt@BFO/O-CN system was optimized. The results exhibit that the S-scheme Pt@BFO/O-CN heterojunction has superior photocatalytic performance compared to its fellow catalysts, which is due to the asymmetric nature of the as-constructed heterojunction. The as-constructed Pt@BFO/O-CN heterojunction reveals high performance in photocatalytic degradation of RhB with a degradation efficiency of 100% achieved after 50 min of visible-light irradiation. The photodegradation fitted well with pseudo-first-order kinetics proceeding with a rate constant of 4.63 × 10-2 min-1. The radical trapping test reveals that h+ and •O2- take the leading role in the reaction, while the stability test reveals a 98% efficiency after the fourth cycle. As established from various interpretations, the considerably enhanced photocatalytic performance of the heterojunction system can be attributed to the promoted charge carrier separation and transfer of photoexcited carriers, as well as the strong photo-redox ability established. Hence, the S-scheme Pt@BFO/O-CN heterojunction is a good candidate in the treatment of industrial wastewater for the mineralization of organic micropollutants, which pose a grievous threat to the environment.
Collapse
Affiliation(s)
- Abubakar Usman Katsina
- Faculty of Petroleum Technology and Petrochemistry, Petroleum-Gas University of Ploiești, 100680 Ploiești, Romania
- Department of Pure and Industrial Chemistry, Bayero University, Kano PMB 3011, Nigeria
| | - Sonia Mihai
- Faculty of Petroleum Technology and Petrochemistry, Petroleum-Gas University of Ploiești, 100680 Ploiești, Romania
| | - Dănuţa Matei
- Faculty of Petroleum Technology and Petrochemistry, Petroleum-Gas University of Ploiești, 100680 Ploiești, Romania
| | - Diana-Luciana Cursaru
- Faculty of Petroleum Technology and Petrochemistry, Petroleum-Gas University of Ploiești, 100680 Ploiești, Romania
| | - Raluca Şomoghi
- Faculty of Petroleum Technology and Petrochemistry, Petroleum-Gas University of Ploiești, 100680 Ploiești, Romania
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 060021 Bucharest, Romania
| | - Cristina Lavinia Nistor
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 060021 Bucharest, Romania
| |
Collapse
|
19
|
Dilawar S, Albalawi K, Khan AU, Tahir K, Zaki MEA, Musad Saleh EA, Almarhoon ZM, Althagafi TM, El-Zahhar AA, El-Bialy E. Rapid photodegradation of toxic organic compounds and photo inhibition of bacteria in the presence of novel hydrothermally synthesized Ag/Mn-ZnO nanomaterial. ENVIRONMENTAL RESEARCH 2023; 231:116093. [PMID: 37178753 DOI: 10.1016/j.envres.2023.116093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Purified water is the most concerning issue these days, and utmost conventional practices are allied with various downsides. Therefore, an ecologically benign and easily amicable therapeutic approach is the requirement. In this wonder, nanometer phenomena bring an innovative change to the material world. It has the potential to produce nanosized materials for wide-ranging applications. The subsequent research highlights the synthesis of Ag/Mn-ZnO nanomaterial via a one-pot hydrothermal route with an efficient photocatalytic activity against organic dyes and bacteria. The outcomes revealed that the size of the particle (4-5 nm) and dispersion of spherically shaped silver nanoparticles intensely affected by employing Mn-ZnO as a support material. Use of silver NPs as a dopant activates the active sites of the support medium and provides a higher surface area to upsurge the degradation rate. The synthesized nanomaterial was evaluated against photocatalytic activity using Methyl orange and alizarin red as model dyes and confided that more than 70% of both the dyes degraded under 100 min duration. It is well recognize that the modified nanomaterial recreates an essential role in every light-based reaction, and virtually produced highly reactive oxygen species. The synthesized nanomaterial was also evaluated against E. coli bacterium both in light and dark. The zone of inhibition in the presence of Ag/Mn-ZnO was observed both in light (18 ± 0.2 mm) and dark (12 ± 0.4 mm). The hemolytic activity shows that Ag/Mn-ZnO has very low toxicity. Hence, the prepared Ag/Mn-ZnO nanomaterial might be an effective tool against the depletion of further harmful environmental pollutants and microbes.
Collapse
Affiliation(s)
- Sundas Dilawar
- Institute of Chemical Sciences, Gomal University, D. I. Khan, KP, Pakistan
| | - Karma Albalawi
- Department of Chemistry, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia
| | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, D. I. Khan, KP, Pakistan.
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 13318, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Chemistry Department, College of Arts & Science, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawaser, Alkharj, Saudi Arabia
| | - Zainab M Almarhoon
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Talal M Althagafi
- Department of Physics, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Adel A El-Zahhar
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 9004, Saudi Arabia
| | - E El-Bialy
- Physics Department, Samtah University College, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
20
|
Baruah R, Goswami M, Das AM, Nath D, Talukdar K. Multifunctional ZnO Bionanocomposites in the Treatment of Polluted Water and Controlling of Multi-drug Resistant Bacteria. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
21
|
Preparation and Photocatalytic Performance of C/N Co-Doped Rich-Defect TiO2 by Dielectric Barrier Discharge Plasma. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
22
|
Hu B, Xiao M, Liu C, Che G, Jia J, Yan L, Dong H. Fabricate dual interface build-in electric fields by introducing Au nanospecies into Z-scheme heterojunction to propel photocatalytic CO2 reduction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
23
|
Novel V-BiOIO3/g-C3N4/WC Schottky heterojunction with optimizing optical absorption and charge transfer for abatement of tetracycline antibiotics. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
24
|
Enhanced photocatalytic removal of antibiotics over graphitic carbon nitride induced by acetic acid post-treatment. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
25
|
Huang X, Liu X. Strategies for enhancing hole utilization on organic-POM hybrid materials and photocatalytic degradation of neonicotinoid insecticides. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Kong L, Guo X, Wei Z, Xu J, Zhang X, Shi S, Wang Q, Zhou B, Li L. Mechanical Pressure-Induced π-Electron Delocalization of Carbon Nitride for Boosting Photocatalytic Water Splitting. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
27
|
Xiao Y, Tao Y, Jiang Y, Wang J, Zhang W, Liu Y, Zhang J, Wu X, Liu Z. Construction of core–shell CeO2 nanorods/SnIn4S8 nanosheets heterojunction with rapid spatial electronic migration for effective wastewater purification and H2O2 production. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Sun H, Wang L, Liu Y, Cheng Z, Zhao Y, Guo H, Qu G, Wang T, Yin X. Photocatalytic reduction of Cr(VI) via surface modified g-C 3N 4 by acid-base regulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116431. [PMID: 36352721 DOI: 10.1016/j.jenvman.2022.116431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Cr(VI) is a class of highly toxic heavy metals. In this study, alkali-modified g-C3N4 (cOH-CN) and acid-modified g-C3N4 (cH-CN) materials were successfully synthesized, and their photocatalytic activities for Cr(VI) reduction under visible light irradiation were tested. Owing to defect structures by cH-CN and -OH group introduction by cOH-CN, the modified materials exhibited a larger surface area, more abundant pore structures, a wider visible light absorption range, higher energy gap values, and a stronger capacity for electron-hole pair separation. As a result, satisfactory Cr(VI) reduction performance was gained by these two photocatalysts. Almost all Cr(VI) was converted to Cr(III) after 60 min of treatment in the presence of these two catalysts, while it was only 30% for the pristine g-C3N4 materials. Relatively higher dosages of cH-CN and cOH-CN and acidic conditions both improved Cr(VI) reduction in the cH-CN and cOH-CN photocatalytic systems. Cr(VI) reduction was mainly initiated by free electrons in the photocatalytic system of the modified materials. Finally, Cr(VI) in the photocatalytic system was almost completely converted to Cr(III). Furthermore, the stability and recycling of the cH-CN and cOH-CN catalysts were evaluated.
Collapse
Affiliation(s)
- Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Le Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Yue Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Zhen Cheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Yifan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| |
Collapse
|
29
|
He Y, Sheng J, Ren Q, Sun Y, Hao W, Dong F. Operando Identification of Dynamic Photoexcited Oxygen Vacancies as True Catalytic Active Sites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ye He
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianping Sheng
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qin Ren
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weichang Hao
- School of Physics and BUAA-UOW Joint Research Centre, Beihang University, Beijing 100191, China
| | - Fan Dong
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
30
|
Dual interfacial build-in electric field effect induced by sandwich-type heterojunction for propelling photocatalytic fuel extraction from CO2 in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
TiO2-Based Heterostructure Containing g-C3N4 for an Effective Photocatalytic Treatment of a Textile Dye. Catalysts 2022. [DOI: 10.3390/catal12121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Water pollution has become a serious environmental issue. The textile industries using textile dyes are considered to be one of the most polluting of all industrial sectors. The application of solar-light semiconductor catalysts in wastewater treatment, among which TiO2 can be considered a prospective candidate, is limited by rapid recombination of photogenerated charge carriers. To address these limitations, TiO2 was tailored with graphitic carbon nitride (g-C3N4) to develop a heterostructure of g-C3N4@TiO2. Herein, a simple hydrothermal synthesis of TiO2@g-C3N4 is presented, using titanium isopropoxide (TTIP) and urea as precursors. The morphological and optical properties and the structure of g-C3N4, TiO2, and the prepared heterostructure TiO2@g-C3N4 (with different wt.% up to 32%), were analyzed by various laboratory methods. The photocatalytic activity was studied through the degradation of methylene blue (MB) aqueous solution under UV-A and simulated solar irradiation. The results showed that the amount of g-C3N4 and the irradiation source are the most important influences on the efficiency of MB removal by g-C3N4@TiO2. Photocatalytic degradation of MB was also examined in realistic conditions, such as natural sunlight and different aqueous environments. The synthesized g-C3N4@TiO2 nanocomposite showed superior photocatalytic properties in comparison with pure TiO2 and g-C3N4, and is thus a promising new photocatalyst for real-life implementation. The degradation mechanism was investigated using scavengers for electrons, photogenerated holes, and hydroxyl radicals to find the responsible species for MB degradation.
Collapse
|
32
|
Low J, Zhang C, Ma J, Murzin DY, Xiong Y. Heterogeneous photocatalysis: what is being overlooked? TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Yang M, Yang C, Liang M, Yang G, Ran R, Zhou W, Shao Z. Solid Oxide Cells with Phase-Inversion Tape-Casted Hydrogen Electrode and SrSc 0.175Nb 0.025Co 0.8O 3-δ Oxygen Electrode for High-Performance Reversible Power Generation and Hydrogen Production. Molecules 2022; 27:molecules27238396. [PMID: 36500488 PMCID: PMC9735547 DOI: 10.3390/molecules27238396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Solid oxide cells (SOCs) have been considered as a promising energy conversion and storage device. However, state-of-the-art cells' practical application with conventionally fabricated Ni-(Y2O3)0.08(ZrO2)0.92 (YSZ) cermet hydrogen electrode and La0.8Sr0.2MnO3 perovskite oxygen electrode is strongly limited by the unsatisfactory performance. Instead, new advances in cell materials and fabrication techniques that can lead to significant performance enhancements are urgently demanded. Here, we report a high-performance reversible SOC that consisted of a combination of SrSc0.175Nb0.025Co0.8O3-δ (SSNC) and phase-inversion tape-casted Ni-YSZ, which served as the oxygen and hydrogen electrode, respectively. The hydrogen electrode synthesized from phase-inversion tape-casting showed a high porosity of 60.8%, providing sufficient active sites for hydrogen oxidation in the solid oxide fuel cell (SOFC) mode and H2O electrolysis in the solid oxide electrolysis cell (SOEC) mode. Accordingly, it was observed that the maximum power density of 2.3 W cm-2 was attained at 750 °C in SOFC mode and a current density of -1.59 A cm-2 was obtained at 1.3 V in SOEC mode. Hence, these results reveal that the simultaneous optimization of oxygen and hydrogen electrodes is a pragmatic strategy that improves the performance of SOCs, which may significantly accelerate the commercialization of such an attractive technology.
Collapse
Affiliation(s)
- Meiting Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Changjiang Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mingzhuang Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guangming Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Correspondence:
| | - Ran Ran
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
34
|
Huang Q, Liu X, Zhang Z, Wang L, Xiao B, Ao Z. Dopant-vacancy activated tetragonal transition metal selenide for hydrogen evolution electrocatalysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Micro built-in electric field arrays created by embedding high-dispersed RuP3 quantum dots with ultra-small size on polymeric carbon nitride nanosheets for synergistically actuating photocatalytic hydrogen evolution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Wang T, Liu X, Liao R, Zhan H, Wang Y. Construction of a Magnetic γ‐Fe
2
O
3
/h‐BN Composite for Tetracycline Degradation by Visible‐Light‐Initiated Peroxydisulfate. ChemistrySelect 2022. [DOI: 10.1002/slct.202203454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Tao Wang
- Jingdezhen Ceramic University School of Materials Science and Engineering Jingdezhen 333403 People's Republic of China
| | - Xiqing Liu
- Jingdezhen Ceramic University School of Materials Science and Engineering Jingdezhen 333403 People's Republic of China
| | - Runhua Liao
- Jingdezhen Ceramic University School of Materials Science and Engineering Jingdezhen 333403 People's Republic of China
| | - Hongquan Zhan
- Jingdezhen Ceramic University School of Materials Science and Engineering Jingdezhen 333403 People's Republic of China
| | - Yongqing Wang
- Jingdezhen Ceramic University School of Materials Science and Engineering Jingdezhen 333403 People's Republic of China
| |
Collapse
|
37
|
Ni L, Xiao Y, Zhou X, Jiang Y, Liu Y, Zhang W, Zhang J, Liu Z. Significantly Enhanced Photocatalytic Performance of the g-C 3N 4/Sulfur-Vacancy-Containing Zn 3In 2S 6 Heterostructure for Photocatalytic H 2 and H 2O 2 Generation by Coupling Defects with Heterojunction Engineering. Inorg Chem 2022; 61:19552-19566. [DOI: 10.1021/acs.inorgchem.2c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Linxin Ni
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Yan Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Xiangyu Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Yinhua Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Wenli Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Zhanchao Liu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang212003, P. R. China
| |
Collapse
|
38
|
Cai M, Wang C, Liu Y, Yan R, Li S. Boosted photocatalytic antibiotic degradation performance of Cd0.5Zn0.5S/carbon dots/Bi2WO6 S-scheme heterojunction with carbon dots as the electron bridge. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Xiao Y, Chen J, Jiang Y, Zhang W, Zhang J, Wu X, Deng W, Liu Z. Fabrication of MoS2/CdIn2S4 Z-scheme heterojunctions with fast interface electronic transfer for highly efficient photocatalytic degradations of multiple organic pollutants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Cheng S, Su N, Zhang P, Fang Y, Wang J, Zhou X, Dong H, Li C. Coupling effect of (SCN)x nanoribbons on PCN nanosheets in the metal-free 2D/1D Van der Waals heterojunction for boosting photocatalytic hydrogen evolution from water splitting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Fast photocatalytic oxidation of ciprofloxacin over Co3O4@CeO2 heterojunctions under visible-light. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Ciğeroğlu Z, Sena Kazan-Kaya E, El Messaoudi N, Fernine Y, Heloisa Pinê Américo-Pinheiro J, Jada A. Remediation of tetracycline from aqueous solution through adsorption on g-C3N4-ZnO-BaTiO3 nanocomposite: optimization, modeling, and theoretical calculation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Facile synthesis of CaWO4 nanoparticles incorporated on porous carbons with improved photocatalytic degradation of tetracycline. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Electrodeposition of cobalt-iron bimetal phosphide on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting. J Colloid Interface Sci 2022; 622:250-260. [DOI: 10.1016/j.jcis.2022.04.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/13/2023]
|
45
|
S-scheme 2D/2D FeTiO3/g-C3N4 hybrid architectures as visible-light-driven photo-Fenton catalysts for tetracycline hydrochloride degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Kumar Singh A, Das C, Indra A. Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
47
|
Two-dimensional Pt2P3 monolayer: A promising bifunctional electrocatalyst with different active sites for hydrogen evolution and CO2 reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Che H, Wang J, Gao X, Chen J, Wang P, Liu B, Ao Y. Regulating directional transfer of electrons on polymeric g-C 3N 5 for highly efficient photocatalytic H 2O 2 production. J Colloid Interface Sci 2022; 627:739-748. [PMID: 35878464 DOI: 10.1016/j.jcis.2022.07.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
Graphite carbon nitride (g-C3N5) has been widely used in various photocatalytic reactions due to its higher thermodynamic stability and better electronic properties compared to g-C3N4. However, it is still challenging to endow g-C3N5 with high performance on photocatalytic hydrogen peroxide (H2O2) production. Herein, potassium and iodine are co-doped into g-C3N5 (g-C3N5-K, I) for photocatalytic production of H2O2 with high efficiency. As expected, the photocatalytic H2O2 production rate over the g-C3N5-K, I (2933.4 μM h-1) reaches to 84.22 times as that of g-C3N5. The excellent photocatalytic H2O2 production activity is mainly ascribed to the co-doping of K and I, which significantly improves the capacity of oxygen (O2) adsorption, selectivity of two-electrons oxygen reduction reaction (2e- ORR) and separation efficiency of charge carriers. The density functional theory (DFT) calculations reveal that O2 molecules are more conducive to being adsorbed on g-C3N5-K, I. Besides, the result of excited states further indicates that photo-generated electrons can be directionally driven to the adsorbed O2 molecules, which are effectively activated to form H2O2. The findings will contribute to new insights in designing and synthesizing g-C3N5 based photocatalysts for the H2O2 production.
Collapse
Affiliation(s)
- Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| | - Jian Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| | - Xin Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing 210098, China.
| |
Collapse
|
49
|
Liu B, Chen Z, Xiong R, Yang X, Zhang Y, Xie T, Wen C, Sa B. Enhancing hydrogen evolution reaction performance of transition metal doped two-dimensional electride Ca2N. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
50
|
Xin C, Wang W, Xu M, Yu X, Li M, Li S. Construction of Au and C60 quantum dots modified materials of Institute Lavoisier-125(Ti) architectures for antibiotic degradation: Performance, toxicity assessment, and mechanistic insight. J Colloid Interface Sci 2022; 623:417-431. [PMID: 35597012 DOI: 10.1016/j.jcis.2022.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/18/2023]
Abstract
High-performance and stabilized photocatalytic degradation of antibiotic contaminants still remains a challenge in environmental photocatalysis and has been studied worldwide. In this work, hybrid Au and C60 quantum dots decorated Materials of Institute Lavoisier-125(Ti) (MIL-125(Ti)) composites were successfully fabricated for visible-light photocatalytic tetracycline degradation with pristine MIL-125(Ti) as a comparison. The experimental results revealed that the introduction of C60 quantum dots and Au nanoparticles resulted in highly enhanced visible-light harvesting and charge separation for efficient tetracycline degradation. The optimal Au/C60-MIL-125(Ti)-1.0% sample exhibited the highest visible-light photocatalytic performance, and the corresponding rate constant was approximately 9.19 times of MIL-125(Ti), indicating the significant roles of Au and C60 quantum dots in boosting visible-light absorption and charge separation. Furthermore, the radical species, possible degradation pathways and toxicity assessment, and photocatalytic mechanism were also investigated. Current work indicates a synergistic strategy for enhancing visible-light harvesting and charge separation to fabricate high-performance composite photocatalysts.
Collapse
Affiliation(s)
- Changhui Xin
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Wenfang Wang
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Minghao Xu
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xin Yu
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalates Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| | - Shijie Li
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China.
| |
Collapse
|