1
|
Zhao X, Wang L, Fu YJ, Yu F, Li K, Wang YQ, Guo Y, Zhou S, Yang W. Inflammatory Microenvironment-Responsive Microsphere Vehicles Modulating Gut Microbiota and Intestinal Inflammation for Intestinal Stem Cell Niche Remodeling in Inflammatory Bowel Disease. ACS NANO 2025; 19:12063-12079. [PMID: 40125581 DOI: 10.1021/acsnano.4c17999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Intestinal stem cells (ISCs) engage in proliferation to maintain a stable stem cell population and differentiate into functional epithelial subpopulations. This intricate process is upheld by various signals derived from the host and gut microbiota, establishing an ISC niche. However, during inflammatory bowel disease (IBD), this signaling niche undergoes dramatic changes, leading to impaired ISC and hindered restoration of the damaged intestinal epithelial barrier. This study introduces intestinal inflammatory microenvironment-responsive microsphere vehicles designed to remodel the ISC niche, offering an approach to treat IBD. Using an advanced emulsion technique, these microsphere vehicles specifically target colonic inflammation sites, delivering a responsive release of MXene and l-arginine. This delivery system is formulated to modulate intestinal flora and immune responses effectively. l-arginine is converted into nitric oxide to regulate the gut microbiome, while MXene serves as a nanoimmunomodulator to stabilize immune homeostasis. Our findings demonstrate that the anti-inflammatory properties of the microspheres are key to promoting epithelial repair and remodeling of the ISC niche. This study highlights the role of antioxidant microspheres as anti-inflammatory agents that indirectly support ISC function and gut regeneration.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Liya Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ya-Jun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Fei Yu
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610032, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 , China
| | - Yu-Qiang Wang
- Department of Cardiovascular Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Liu Z, Ma X, Liu J, Zhang H, Fu D. Advances in the application of natural/synthetic hybrid hydrogels in tissue engineering and delivery systems: A comprehensive review. Int J Pharm 2025; 672:125323. [PMID: 39923883 DOI: 10.1016/j.ijpharm.2025.125323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
Hydrogels are widely used in biomedicine because of their excellent biocompatibility, physicochemical properties, three-dimensional cross-linked polymer networks capable of absorbing and retaining a large amount of water, and various excellent properties that can be endowed to hydrogels through modification and material integration. This review focuses on the polymer compositions and applications of natural/synthetic hybrid hydrogels. Firstly, the physical and chemical crosslinking mechanisms of hybrid hydrogels with different natural/synthetic polymer combinations were discussed in depth. In addition, polymers for the preparation of natural/synthetic hybrid hydrogels and their advantages and disadvantages are widely introduced, focusing on polysaccharides, proteins, natural aromatic polymers and common synthetic polymers. Finally, this review will focus on the applications of natural/synthetic hybrid hydrogels in tissue engineering and delivery systems. Such as bone tissue engineering, nerve tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Zheqi Liu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China; College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiyuan Ma
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China; College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China; College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China; College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Daping Fu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China; College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Zhang Z, Xia Y, Li X, Zhang Q, Wu Y, Cui C, Liu J, Liu W. Arginine-solubilized lipoic acid-induced β-sheets of silk fibroin-strengthened hydrogel for postoperative rehabilitation of breast cancer. Bioact Mater 2024; 40:667-682. [PMID: 39257958 PMCID: PMC11386050 DOI: 10.1016/j.bioactmat.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024] Open
Abstract
Breast cancer is the most common cancer among women worldwide, and adjuvant radiotherapy (RT) following tumor removal is one of the most commonly used treatments for breast cancer. However, the high risk of tumor recurrence and inevitable radiation skin injury after RT remain fatal problems, seriously challenging the patient's postoperative rehabilitation. Herein, a multifunctional poly (lipoic acid)-based hydrogel is constructed through one-step heating the mixture of α-lipoic acid (LA)/arginine (Arg)/silk fibroin (SF), without introducing any non-natural molecules. The multiple synergistic interactions among LA, Arg, and SF not only enhance the solubilization of LA in aqueous systems but also stabilize poly(lipoic acid) through strong salt bridge hydrogen bonds and ionic hydrogen bonds. Intriguingly, the LA-based surfactant induced β-sheet transformation of SF can further modulate the bulk strength of the hydrogel. Regulating the content of LA in hydrogels not only allows efficient control of hydrogel bioactivity but also enables the evolution of hydrogels from injectable forms to adhesive patches. Based on the different biological activities and forms of hydrogels, they can be implanted internally or applied externally on the mice's skin, achieving simultaneous prevention of tumor recurrence post-surgery and assistance in treating radiation-induced skin damage after radiotherapy.
Collapse
Affiliation(s)
- Zhuodan Zhang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300352, China
| | - Yi Xia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xinyi Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Qian Zhang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300352, China
| | - Yuanhao Wu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chunyan Cui
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300352, China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University), China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300352, China
| |
Collapse
|
4
|
Hu J, Chen Y, Lin M, Duan K, Xu M, Li T, Zhao Y, Lee BH, Deng H. Arginine-loaded globular BSAMA/fibrous GelMA biohybrid cryogels with multifunctional features and enhanced healing for soft gingival tissue regeneration. Int J Biol Macromol 2024; 278:134932. [PMID: 39179087 DOI: 10.1016/j.ijbiomac.2024.134932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Mucogingival surgery has been widely used in soft gingival tissue augmentation in which autografts are predominantly employed. However, the autografts face grand challenges, such as scarcity of palatal donor tissue and postoperative discomfort. Therefore, development of alternative soft tissue substitutes has been an imperative need. Here, we engineered an interconnected porous bovine serum albumin methacryloyl (BSAMA: B, as a drug carrier and antioxidant)/gelatin methacryloyl (GelMA: G, as a biocompatible collagen-like component)-based cryogel with L-Arginine (Arg) loaded as an angiogenic molecule, which could serve as a promising gingival tissue biohybrid scaffold. BG@Arg cryogels featured macroporous architecture, biodegradation, sponge-like properties, suturability, and sustained Arg release. Moreover, BG@Arg cryogels promoted vessel formation and collagen deposition which play an important role in tissue regeneration. Most interestingly, BG@Arg cryogels were found to enhance antioxidant effects. Finally, the therapeutic effect of BG@Arg on promoting tissue regeneration was confirmed in rat full-thickness skin and oral gingival defect models. In vivo results revealed that BG@Arg2 could promote better angiogenesis, more collagen production, and better modulation of inflammation, as compared to a commercial collagen membrane. These advantages might render BG@Arg cryogels a promising alternative to commercial collagen membrane products and possibly autografts for soft gingival tissue regeneration.
Collapse
Affiliation(s)
- Jiajun Hu
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuan Chen
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mian Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Kairui Duan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Mengdie Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Tingting Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Yueming Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bae Hoon Lee
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Hui Deng
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
5
|
Xie Y, Ma C, Zhu Q, Fu T, Bai L, Lan X, Liu L, Xiao J. Facial nerve regeneration via body-brain crosstalk: The role of stem cells and biomaterials. Neurobiol Dis 2024; 200:106650. [PMID: 39197536 DOI: 10.1016/j.nbd.2024.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024] Open
Abstract
The human body is a complex, integral whole, and disruptions in one organ can lead to dysfunctions in other parts of the organ network. The facial nerve, as the seventh cranial nerve, arises from the brainstem, controls facial expression muscles and plays a crucial role in brain-body communication. This vulnerable nerve can be damaged by trauma, inflammation, tumors, and congenital diseases, often impairing facial expression. Stem cells have gained significant attention for repairing peripheral nerve injuries due to their multidirectional differentiation potential. Additionally, various biomaterials have been used in tissue engineering for regeneration and repair. However, the therapeutic potential of stem cells and biomaterials in treating facial nerve injuries requires further exploration. In this review, we summarize the roles of stem cells and biomaterials in the regeneration and repair of damaged facial nerves, providing a theoretical basis for the recovery and reconstruction of body-brain crosstalk between the brain and facial expression muscles.
Collapse
Affiliation(s)
- Yuping Xie
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Chuan Ma
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Qiang Zhu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ting Fu
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long Bai
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lin Liu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
6
|
Heydari P, Kharaziha M, Varshosaz J, Kharazi AZ, Javanmard SH. Co-release of nitric oxide and L-arginine from poly (β-amino ester)-based adhesive reprogram macrophages for accelerated wound healing and angiogenesis in vitro and in vivo. BIOMATERIALS ADVANCES 2024; 158:213762. [PMID: 38227989 DOI: 10.1016/j.bioadv.2024.213762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/06/2023] [Accepted: 01/06/2024] [Indexed: 01/18/2024]
Abstract
Recently, insufficient angiogenesis and prolonged inflammation are crucial challenges of chronic skin wound healing. The sustained release of L-Arginine (L-Arg) and nitric oxide (NO) production can control immune responses, improve angiogenesis, enhance re-epithelialization, and accelerate wound healing. Here, we aim to improve wound healing via the controlled release of NO and L-Arg from poly (β-amino ester) (PβAE). In this regard, PβAE is functionalized with methacrylate poly-L-Arg (PAMA), and the role of PAMA content (50, 66, and 75 wt%) on the adhesive properties, L-Arg, and NO release, as well as collagen deposition, inflammatory responses, and angiogenesis, is investigated in vitro and in vivo. Results show that the PAMA/ PβAE could provide suitable adhesive strength (~25 kPa) for wound healing application. In addition, increasing the PAMA content from 50 to 75 wt% results in an increased release of L-Arg (approximately 1.4-1.7 times) and enhanced NO production (approximately 2 times), promoting skin cell proliferation and migration. The in vitro studies also show that compared to PβAE hydrogel, incorporation of 66 wt% PAMA (PAMA 66 sample) reveals superior collagen I synthesis (~ 3-4 times) of fibroblasts, controlled pro-inflammatory and improved anti-inflammatory cytokines secretion of macrophages, and accelerated angiogenesis (~1.5-2 times). In vivo studies in a rat model with a full-thickness skin defect also demonstrate the PAMA66 sample could accelerate wound healing (~98 %) and angiogenesis, compared to control (untreated wound) and Tegaderm™ commercial wound dressing. In summary, the engineered multifunctional PAMA functionalized PβAE hydrogel with desired NO and L-Arg release, and adhesive properties can potentially reprogram macrophages and accelerate skin healing for chronic wound healing.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Applied Physiology Research Center, Isfahan, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran.
| | - Anousheh Zargar Kharazi
- Applied Physiology Research Center, Isfahan, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Sun S, Jiang G, Dong J, Xie X, Liao J, Tian Y. Photothermal hydrogels for infection control and tissue regeneration. Front Bioeng Biotechnol 2024; 12:1389327. [PMID: 38605983 PMCID: PMC11007110 DOI: 10.3389/fbioe.2024.1389327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
In this review, we report investigating photothermal hydrogels, innovative biomedical materials designed for infection control and tissue regeneration. These hydrogels exhibit responsiveness to near-infrared (NIR) stimulation, altering their structure and properties, which is pivotal for medical applications. Photothermal hydrogels have emerged as a significant advancement in medical materials, harnessing photothermal agents (PTAs) to respond to NIR light. This responsiveness is crucial for controlling infections and promoting tissue healing. We discuss three construction methods for preparing photothermal hydrogels, emphasizing their design and synthesis, which incorporate PTAs to achieve the desired photothermal effects. The application of these hydrogels demonstrates enhanced infection control and tissue regeneration, supported by their unique photothermal properties. Although research progress in photothermal hydrogels is promising, challenges remain. We address these issues and explore future directions to enhance their therapeutic potential.
Collapse
Affiliation(s)
- Siyu Sun
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jianru Dong
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Xi Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Huang J, Lu D, Wu C, Pei D, Guo C, Guo H, Yu S, Gao B. Guanidinylated bioactive chitosan-based injectable hydrogels with pro-angiogenic and mechanical properties for accelerated wound closure. Int J Biol Macromol 2024; 258:128943. [PMID: 38143070 DOI: 10.1016/j.ijbiomac.2023.128943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Wound healing is a complex process involving the concerted action of many genes and signaling pathways, with angiogenesis being crucial for expediting wound closure. Dressings that possess pro-angiogenic properties are increasingly recognized as attractive candidates for wound care. Drawing inspiration from the active closure of wounds in embryos, we have developed a thermo-responsive hydrogel with mechanoactive properties, combining vascular regeneration and skin wound contraction to accelerate healing. The significant improvement in vascular reconstruction is attributed to the synergistic effect of arginine and deferoxamine (DFO) released from the hydrogels. Additionally, the contraction force of the hydrogel actively promotes skin closure in wounds. Remarkably, groups treated with hydroxybutyl chitosan methacrylate combined with arginine (HBC_m_Arg/DFO) exhibited increased vascularization, and greater wound maturity, leading to enhanced healing. These results highlight the synergistic impact of pro-angiogenic and mechanical properties of the HBC_m_Arg/DFO hydrogel in accelerating wound healing in rats.
Collapse
Affiliation(s)
- Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Daohuan Lu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Caixia Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Dating Pei
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Cuiping Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Huilong Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China; National Engineering Research Center for Healthcare Devices, Guangzhou 510632, PR China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, PR China.
| |
Collapse
|
9
|
Yang X, Guo D, Ji X, Shi C, Luo J. Engineering Nanotrap Hydrogel for Immune Modulation in Wound Healing. Macromol Rapid Commun 2023; 44:e2300322. [PMID: 37533180 PMCID: PMC10834856 DOI: 10.1002/marc.202300322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Imbalanced immune regulation leads to the abnormal wound healing process, e.g., chronic unhealing wound or hypertrophic scar formation. Thus, the attenuation of the overflowing inflammatory factors is a viable approach to maintain the homeostatic immune regulation to facilitate normal wound healing. A versatile telodendrimer (TD) nanotrap (NT) platform is developed for efficient biomolecular protein binding. The conjugation of TD NT in size-exclusive biocompatible hydrogel resin allows for topical application for cytokine scavenging. Fine-tuning the TD NT density/valency in hydrogel resin controls resin swelling, optimizes molecular diffusion, and improves cytokine capture for effective immune modulation. The hydrogel with reduced TD NT density allows for higher protein/cytokine adsorption capacity with faster kinetics, due to the reduced barrier of TD NT nano-assembly. The positively charged TD NT hydrogel exhibits superior removal of negatively charged proinflammatory cytokines from the lipopolysaccharide (LPS, a potent endotoxin) primed immune cell culture medium. The negatively charged TD NT hydrogel removes positively charged anti-inflammatory cytokines efficiently from cell culture medium. TD NT hydrogel effectively constrains the local inflammation induced by subcutaneous LPS injection in mice. These results indicate the great potential applications of the engineered TD NT hydrogel as topical immune modulatory treatments to attenuate local inflammation.
Collapse
Affiliation(s)
- Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Immunology and Microbiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
10
|
Li Z, Yang L, Zhang D, Wang W, Huang Q, Liu Q, Shi K, Yu Y, Gao N, Chen H, Jiang S, Xie Z, Zeng X. Mussel-inspired "plug-and-play" hydrogel glue for postoperative tumor recurrence and wound infection inhibition. J Colloid Interface Sci 2023; 650:1907-1917. [PMID: 37517190 DOI: 10.1016/j.jcis.2023.07.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Currently, clinical tumor resection is faced with two options: open and minimally invasive surgery. Open surgery is easy to completely remove the lesion but is prone to infection, while minimally invasive surgery recovers faster but may cause tumor recurrence. To fill the shortcomings of the two surgical modes and make the choice for tumor resection more effortlessly, we developed a postoperative black phosphorus-Ag nanocomposites-loaded dopamine-modified hyaluronic acid-Pluronic® F127 (BP-Ag@HA-DA-Plu) hydrogel implantation system that can prevent tumor recurrence and wound infection simultaneously. Experiments have shown that the hydrogel system combined with 808 nm near-infrared (NIR) irradiation has excellent anti-tumor, antibacterial, and wound healing abilities. Additionally, unlike existing surgical hydrogel products that require inconvenient in-situ cross-linking, the BP-Ag@HA-DA-Plu hydrogel system offers "plug-and-play" functionality during surgery due to its thermo-responsiveness, injectability, and adhesion, thereby greatly improving the efficiency of surgery.
Collapse
Affiliation(s)
- Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Dan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wenyan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qingyun Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Kexin Shi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yongkang Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Nansha Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shaoyun Jiang
- Stomatological Center, Peking University Shenzhen Hospital, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen 518036, China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
11
|
Ergin AD, Üner B, Balcı Ş, Demirbağ Ç, Benetti C, Oltulu Ç. Improving the Bioavailability and Efficacy of Coenzyme Q10 on Alzheimer's Disease Through the Arginine Based Proniosomes. J Pharm Sci 2023; 112:2921-2932. [PMID: 37506768 DOI: 10.1016/j.xphs.2023.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Coenzyme Q10 (CoQ10) is a fat-soluble vitamin-with a benzoquinone-like structure. CoQ10 plays a role in membrane stability, energy conversion, and ATP production. It is also one of the important antioxidants in the body. The bioavailability of exogenous CoQ10 is extremely low due to its poor aqueous solubility and large molecular mass. In this study, mixed proniosomal drug delivery systems have been used to increase solubility and bioavailability of CoQ10. Arginine (semi-essential amino acid) was incorporated in the formulation composition to achieve higher efficacy by boosting nitric oxide presence, endothelial dysfunction, and cellular uptake. Proniosomes were investigated in terms of particle size, polydispersity index, zeta potential, encapsulation efficiency, and process yield, and optimization studies were carried on by utilizing STATISTICA 8.0 software considering dependent factors (carrier amount, drug amount, and surfactant ratio). Optimum proniosome formulation (particle size 187.5 ± 16.35 nm, zeta potential: -44.7 ± 12.8 mV, encapsulation efficiency 99.05±0.30%, and product yield: 90.55%) was evaluated for thermal analysis, in-vitro drug release using microcentrifuge method. In-vitro cytotoxicity studies of proniosomes were performed on intestinal Epithelial Cells (Cellartis®, ChiPSC18) and no cytotoxic effects was seen during the 72 h. Besides, anti Alzheimer effect was investigated on APPSL-GFP lentivirus-infected human neural cells (APPSL-GFP-l-HNC) and Alzheimer biomarkers (p-tau181 and p-tau217). While CoQ10's relative bioavailability was statistically increased by proniosome compared to CoQ10 suspension (p<0.01, Grubb test). PK parameters of proniosome formulation, obtained with non-compartmental modeling, were fitting to the data (R2=0.956±0.026). The study results proved that proniosomal formulation has a high potential drug delivery system for both increasing bioavailability and anti-Alzheimer effect of CoQ10.
Collapse
Affiliation(s)
- Ahmet Doğan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey; Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, Edirne, Turkey; Department of Neuroscience, University of Turin, Turin, Italy.
| | - Burcu Üner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, St. Louis College of Pharmacy, USA
| | - Şencan Balcı
- Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, Edirne, Turkey
| | - Çağlar Demirbağ
- Department of Analytical Chemistry, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Camillo Benetti
- Faculty of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Çağatay Oltulu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| |
Collapse
|
12
|
Ergin AD, Üner B, Balcı Ş, Demirbağ Ç, Benetti C, Oltulu Ç. Improving the Bioavailability and Efficacy of Coenzyme Q10 on Alzheimer's Disease Through the Arginine Based Proniosomes. J Pharm Sci 2023; 112:2921-2932. [DOI: 10.1016/j.xphs.2023.07.020 doi:10.1016/j.ijpharm.2023.123021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
13
|
Ergin AD, Üner B, Balcı Ş, Demirbağ Ç, Benetti C, Oltulu Ç. Improving the Bioavailability and Efficacy of Coenzyme Q10 on Alzheimer's Disease Through the Arginine Based Proniosomes. J Pharm Sci 2023; 112:2921-2932. [DOI: 17.https:/doi.org/10.1016/j.xphs.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
14
|
Tanha A, Rabiee M, Rostami A, Ahmadi S. A green-based approach for noninvasive skin rejuvenation: Potential application of hyaluronic acid. ENVIRONMENTAL RESEARCH 2023; 234:116467. [PMID: 37343757 DOI: 10.1016/j.envres.2023.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Gradually, loss of skin elasticity and elastic properties occurs after 30 years of age and will be associated with several changes, including creating wrinkles, skin laxity (sagging skin), and skin blemishes. In general, people all over the world are looking for ways to keep their facial skin young over time. There are several strategies to skin rejuvenate, including invasive and non-invasive methods. However, invasive methods have less popularity than non-invasive methods due to their need for specialist physicians (medical expertise), localized neuropathic pains for patients, the prevalence and incidence of skin infections, and high-cost clinical services. In the meantime, skin hydration is one of the simplest non-invasive methods for skin rejuvenation, and HA, with anti-aging and skin collagen-stimulating properties, has been introduced as a natural skin moisturizing agent. Therefore, since this composition maintains facial skin moisture and radiance, and improves its elasticity, it has always been considered by experts and specialist physicians. On the other hand, due to its lipophilic properties, hydrophilic macromolecules containing HA cannot pass through the stratum corneum. However, they have temporary and superficial softening effects on the skin. Hence, some nanocarriers have been suggested to overcome this problem and develop the properties and positive influences of HA on skin rejuvenation. Therefore, the present study aimed to introduce some new non-invasive approaches in facial skin rejuvenation, including applying liposomes, niosomes, ethosomes, and ionic liquids, to transport HA into the inner and deeper layers of the skin, including Dermis. In this review article, we examine non-invasive methods using nanoparticles to deliver HA to the epidermis and dermis of the skin for skin rejuvenation.
Collapse
Affiliation(s)
- Amirabas Tanha
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Azin Rostami
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Lay SH, Margono A, Bagio DA, Julianto I. Viability of human dental pulp stem cells: The potential of L-arginine-based culture media. J Adv Pharm Technol Res 2023; 14:306-310. [PMID: 38107459 PMCID: PMC10723171 DOI: 10.4103/japtr.japtr_719_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/02/2023] [Accepted: 06/29/2023] [Indexed: 12/19/2023] Open
Abstract
Dental pulp is built by proteins that have various roles in the biological process of pulp, such as structural protein, regulation protein, and catalytic protein. L-arginine, an amino acid and one of the building blocks of proteins, regulates pro-inflammatory and anti-inflammatory activity. Therefore, L-arginine-based culture has potential to promote dental pulp regeneration. This study aimed to investigate the potential of L-arginine-based culture in improving the viability of human dental pulp stem cells (hDPSCs). We evaluated the viability of hDPSCs in culture media supplemented with different concentrations of L-arginine amino acid (250, 300, 350, and 400 µmol/L) and Dulbecco's Modified Eagle Medium plus fetal bovine serum 10% (control) using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay after 24-h incubation time. Statistical analysis was conducted using a one-way analysis of variance and post hoc least significant difference test. In qualitative analysis, the 4´, 6-diamidino-2-phenylindole staining method was used. The evaluation has shown a significant result when 250, 300, and 350 μmol/L concentration of L-arginine amino acid culture media compared with control, and 400 μmol/L has the best result and was not significantly different with control toward viability of hDPSCs.
Collapse
Affiliation(s)
- Sammy Henry Lay
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Anggraini Margono
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Dini Asrianti Bagio
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Indah Julianto
- Department of Dermatology and Venereology, Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| |
Collapse
|
16
|
Zheng H, Zhou Y, Zheng Y, Liu G. Advances in hydrogels for the treatment of periodontitis. J Mater Chem B 2023; 11:7321-7333. [PMID: 37431231 DOI: 10.1039/d3tb00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Periodontitis is the second most prevalent oral disease and can cause serious harm to human health. Hydrogels are excellent biomaterials that can be used for periodontitis as drug delivery platforms to achieve inflammation control through high drug delivery efficiency and sustained drug release and as tissue scaffolds to achieve tissue remodelling through encapsulated cell wrapping and effective mass transfer. In this review, we summarize the latest advances in the treatment of periodontitis with hydrogels. The pathogenic mechanisms of periodontitis are introduced first, followed by the recent progress of hydrogels in controlling inflammation and tissue reconstruction, in which the specific performance of hydrogels is discussed in detail. Finally, the challenges and limitations of hydrogels for clinical applications in periodontitis are discussed and possible directions for development are proposed. This review aims to provide a reference for the design and fabrication of hydrogels for the treatment of periodontitis.
Collapse
Affiliation(s)
- Huiyu Zheng
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yuan Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yu Zheng
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Guiting Liu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
17
|
Mao G, Tian S, Shi Y, Yang J, Li H, Tang H, Yang W. Preparation and evaluation of a novel alginate-arginine-zinc ion hydrogel film for skin wound healing. Carbohydr Polym 2023; 311:120757. [PMID: 37028858 DOI: 10.1016/j.carbpol.2023.120757] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
In this paper, the mixed solution of sodium alginate (SA) and arginine (Arg) was dried into a film and then crosslinked with zinc ion to form sodium alginate-arginine-zinc ion (SA-Arg-Zn2+) hydrogel for skin wound dressings. SA-Arg-Zn2+ hydrogel had higher swelling ability, which was beneficial to absorbing wound exudate. Moreover, it exhibited antioxidant activity and strong inhibition against E. coli and S. aureus, and had no obvious cytotoxicity to NIH 3T3 fibroblasts. Compared with other dressings utilized in rat skin wound, SA-Arg-Zn2+ hydrogel showed better wound healing efficacy and the wound closure ratio reached to 100 % on the 14th day. The result of Elisa test indicated that SA-Arg-Zn2+ hydrogel down-regulated the expression of inflammatory factors (TNF-α and IL-6) and promoted the growth factor levels (VEGF and TGF-β1). Furthermore, H&E staining results confirmed that SA-Arg-Zn2+ hydrogel could reduce wound inflammation and accelerate re-epithelialization, angiogenesis and wound healing. Therefore, SA-Arg-Zn2+ hydrogel is an effective and innovative wound dressing, moreover, the preparation technique is simple and feasible for industrial application.
Collapse
|
18
|
Cheng S, Pan M, Hu D, Han R, Li L, Bei Z, Li Y, Sun A, Qian Z. Adhesive chitosan-based hydrogel assisted with photothermal antibacterial property to prompt mice infected skin wound healing. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
19
|
Fang Y, Li G, Huang C, Huang K, Zhao Y, Nie T, Wu J. Tomato based gelatin methacryloyl hydrogel as an effective natural and low-cost scaffold for accelerative wound healing. Int J Biol Macromol 2023; 229:123-135. [PMID: 36528146 DOI: 10.1016/j.ijbiomac.2022.12.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Oxidative stress and infection are the main reasons for postponement of wound healing rate. They can potentially lead to serious inflammation and eventually lead to a longer and more painful recovery phase. Although wound dressings based on synthetic materials with antioxidative property have been proved to exhibit remarkable effect in controlling ROS level and improving wound healing, issues, such as high cost in raw materials, complicated procedures, usage of various toxic additives, and potential allergies, have significantly confined further clinical applications. In this study, a novel type of tissue engineering scaffold, based on tomatoes (Solanum lycopersicon) and gelatin methacryloyl (GelMA), was prepared via facile lyophilization and photo cross-link method (SL/GelMA). By taking advantages of various antioxidative components, such as carotenoids, flavonoids, phenolic acids, vitamin E, and vitamin C in tomatoes, SL/GelMA can effectively regulate ROS level, relieve the oxidative stress in wound bed, promote cell migration and angiogenesis, contribute to collagen deposition, and thus accelerate the rate of wound enclosure. Along with its high biocompatibility and low allergic potential, we believe that the food-derived wound dressing with facile preparation method, easy accessibility, and high cost-effectiveness can be translated for clinical treatments of various chronic wounds.
Collapse
Affiliation(s)
- Yifei Fang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Guangze Li
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Chunlin Huang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Keqing Huang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Yi Zhao
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Tianqi Nie
- Guangzhou Twelfth People's Hospital, Guangzhou 510620, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China; Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
20
|
Wu Y, Xia T, Ma X, Lei L, Du L, Xu X, Liu X, Shi Y, Li X, Lin D. Autocatalytic strategy for tunning drug release from peptide-drug supramolecular hydrogel. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
21
|
Yao H, Yuan X, Wu Z, Park S, Zhang W, Chong H, Lin L, Piao Y. Fabrication and Performance Evaluation of Gelatin/Sodium Alginate Hydrogel-Based Macrophage and MSC Cell-Encapsulated Paracrine System with Potential Application in Wound Healing. Int J Mol Sci 2023; 24:ijms24021240. [PMID: 36674754 PMCID: PMC9867201 DOI: 10.3390/ijms24021240] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
A gelatin/sodium alginate-based hydrogel microsphere has been fabricated after reaction condition optimization. Macrophages (RAW246.7) and adipose mesenchymal stem cells (ADSC) have been subsequently encapsulated in the microsphere in order to construct a 3D paracrine system for wound healing treatment. The synthesized microsphere displayed neglectable cytotoxicity toward both encapsulated cells until 10 days of incubation, indicating promising biocompatibility of the microsphere. A qRT-PCR and ELISA experiment revealed positive regulation of cytokines (Arg-1, IL-6, IL-8, IL-10, bFGF, HGF, VEGF, TLR-1, and CXCL13) expression regarding macrophage phenotype transformation and anti-inflammatory performance both inside the microsphere and in the microenvironment of established in vitro inflammatory model. Additionally, positive tendency of cytokine expression benefit wound healing was more pronounced in a fabricated 3D paracrine system than that of a 2D paracrine system. Furthermore, the 3D paracrine system exhibited more efficiently in the wound healing rate compared to the 2D paracrine system in an in vitro model. These results suggested the current paracrine system could be potentially used as a robust wound healing dressing.
Collapse
Affiliation(s)
- Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaohui Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Sumin Park
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea
| | - Hui Chong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.C.); (L.L.)
| | - Liwei Lin
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (H.C.); (L.L.)
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea
| |
Collapse
|
22
|
Natural okra-based hydrogel for chronic diabetic wound healing. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Advancements in Hydrogel Application for Ischemic Stroke Therapy. Gels 2022; 8:gels8120777. [PMID: 36547301 PMCID: PMC9778209 DOI: 10.3390/gels8120777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability worldwide. There is almost no effective treatment for this disease. Therefore, developing effective treatment for ischemic stroke is urgently needed. Efficient delivery of therapeutic drugs to ischemic sites remained a great challenge for improved treatment of strokes. In recent years, hydrogel-based strategies have been widely investigated for new and improved therapies. They have the advantage of delivering therapeutics in a controlled manner to the poststroke sites, aiming to enhance the intrinsic repair and regeneration. In this review, we discuss the pathophysiology of stroke and the development of injectable hydrogels in the application of both stroke treatment and neural tissue engineering. We also discuss the prospect and the challenges of hydrogels in the treatment of ischemic strokes.
Collapse
|
24
|
Saravanakumar K, Park S, Santosh SS, Ganeshalingam A, Thiripuranathar G, Sathiyaseelan A, Vijayasarathy S, Swaminathan A, Priya VV, Wang MH. Application of hyaluronic acid in tissue engineering, regenerative medicine, and nanomedicine: A review. Int J Biol Macromol 2022; 222:2744-2760. [DOI: 10.1016/j.ijbiomac.2022.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
25
|
Aderibigbe BA. Hybrid-Based Wound Dressings: Combination of Synthetic and Biopolymers. Polymers (Basel) 2022; 14:3806. [PMID: 36145951 PMCID: PMC9502880 DOI: 10.3390/polym14183806] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Most commercialized wound dressings are polymer-based. Synthetic and natural polymers have been utilized widely for the development of wound dressings. However, the use of natural polymers is limited by their poor mechanical properties, resulting in their combination with synthetic polymers and other materials to enhance their mechanical properties. Natural polymers are mostly affordable, biocompatible, and biodegradable with promising antimicrobial activity. They have been further tailored into unique hybrid wound dressings when combined with synthetic polymers and selected biomaterials. Some important features required in an ideal wound dressing include the capability to prevent bacteria invasion, reduce odor, absorb exudates, be comfortable, facilitate easy application and removal as well as frequent changing, prevent further skin tear and irritation when applied or removed, and provide a moist environment and soothing effect, be permeable to gases, etc. The efficacy of polymers in the design of wound dressings cannot be overemphasized. This review article reports the efficacy of wound dressings prepared from a combination of synthetic and natural polymers.
Collapse
|
26
|
Wang Y, Luo W, Lin F, Liu W, Gu R. Epigallocatechin-3-gallate selenium nanoparticles for neuroprotection by scavenging reactive oxygen species and reducing inflammation. Front Bioeng Biotechnol 2022; 10:989602. [PMID: 36159667 PMCID: PMC9493277 DOI: 10.3389/fbioe.2022.989602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose: Spinal cord injury (SCI) is a severely crippling injury. Scavenging reactive oxygen species (ROS) and suppressing inflammation to ameliorate secondary injury using biomaterials has turned into a promising strategy for SCI recuperation. Herein, epigallocatechin-3-gallate selenium nanoparticles (EGCG-Se NP) that scavenge ROS and attenuate inflammation were used for neuroprotection in SCI. Methods: EGCG-Se NP were arranged using a simple redox framework. The size, morphology, and chemical structure of the EGCG-Se NP were characterized. The protective effect of EGCG-Se NP for neuroprotection was examined in cell culture and in an SCI rat model. Results: EGCG-Se NP could promptly scavenge excess ROS and safeguard PC12 cells against H2O2-induced oxidative harm in vitro. After intravenous delivery in SCI rats, EGCG-Se NP significantly improved locomotor capacity and diminished the injury region by safeguarding neurons and myelin sheaths. Component studies showed that the main restorative impact of EGCG-Se NP was due to their ROS-scavenging and anti-inflammatory properties. Conclusion: This study showed the superior neuroprotective effect of EGCG-Se NP through ROS sequestration and anti-inflammatory capabilities. EGCG-Se NP could be a promising and effective treatment for SCI.
Collapse
Affiliation(s)
| | | | | | | | - Rui Gu
- *Correspondence: Wanguo Liu, ; Rui Gu,
| |
Collapse
|