1
|
Krishnamoorthy K, Pazhamalai P, Swaminathan R, Mohan V, Kim S. Unravelling the Bi-Functional Electrocatalytic Properties of {Mo 72Fe 30} Polyoxometalate Nanostructures for Overall Water Splitting Using Scanning Electrochemical Microscope and Electrochemical Gating Methods. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401073. [PMID: 38610120 PMCID: PMC11220659 DOI: 10.1002/advs.202401073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Indexed: 04/14/2024]
Abstract
This study reports the use of Keplerate-type {Mo72Fe30} polyoxometalate (POMs) nanostructures as a bi-functional-electrocatalyst for HER and OER in an alkaline medium with a lower overpotential (135 mV for HER and 264 mV for OER), and excellent electrochemical stability. The bi-functional catalytic properties of {Mo72Fe30} POM are studied using a scanning electrochemical microscope (SECM) via current mapping using substrate generation and tip collection mode. Furthermore, the bipolar nature of the {Mo72Fe30} POM nano-electrocatalysts is studied using the electrochemical gating via simultaneous monitoring of the electrochemical (cell) and electrical ({Mo72Fe30} POM) signals. Next, a prototype water electrolyzer fabricated using {Mo72Fe30} POM electrocatalysts showed they can drive 10 mA cm-2 with a low cell voltage of 1.62 V in lab-scale test conditions. Notably, the {Mo72Fe30} POM electrolyzers' performance assessment based on recommended conditions for industrial aspects shows that they require a very low overpotential of 1.89 V to drive 500 mA cm-2, highlighting their promising candidature toward clean-hydrogen production.
Collapse
Affiliation(s)
- Karthikeyan Krishnamoorthy
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
- Research Institute of New Energy Industry (RINEI)Jeju National UniversityJeju63243South Korea
- CSIR‐Advanced Materials and Processes Research InstituteBhopalMadhya Pradesh462026India
| | - Parthiban Pazhamalai
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
- Research Institute of New Energy Industry (RINEI)Jeju National UniversityJeju63243South Korea
| | - Rajavarman Swaminathan
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
| | - Vigneshwaran Mohan
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
| | - Sang‐Jae Kim
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
- Research Institute of New Energy Industry (RINEI)Jeju National UniversityJeju63243South Korea
- Nanomaterials & System LabMajor of Mechanical System EngineeringCollege of EngineeringJeju National UniversityJeju63243South Korea
| |
Collapse
|
2
|
Wang W, Qi J, Wu Z, Zhai W, Pan Y, Bao K, Zhai L, Wu J, Ke C, Wang L, Ding M, He Q. On-chip electrocatalytic microdevices. Nat Protoc 2023; 18:2891-2926. [PMID: 37596356 DOI: 10.1038/s41596-023-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/25/2023] [Indexed: 08/20/2023]
Abstract
On-chip electrocatalytic microdevices (OCEMs) are an emerging electrochemical platform specialized for investigating nanocatalysts at the microscopic level. The OCEM platform allows high-precision electrochemical measurements at the individual nanomaterial level and, more importantly, offers unique perspectives inaccessible with conventional electrochemical methods. This protocol describes the critical concepts, experimental standardization, operational principles and data analysis of OCEMs. Specifically, standard protocols for the measurement of the electrocatalytic hydrogen evolution reaction of individual 2D nanosheets are introduced with data validation, interpretation and benchmarking. A series of factors (e.g., the exposed area of material, the choice of passivation layer and current leakage) that could have effects on the accuracy and reliability of measurement are discussed. In addition, as an example of the high adaptability of OCEMs, the protocol for in situ electrical transport measurement is detailed. We believe that this protocol will promote the general adoption of the OCEM platform and inspire further development in the near future. This protocol requires essential knowledge in chemical synthesis, device fabrication and electrochemistry.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Junlei Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zongxiao Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Kai Bao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jingkun Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chengxuan Ke
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lingzhi Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Frenkel-defected monolayer MoS 2 catalysts for efficient hydrogen evolution. Nat Commun 2022; 13:2193. [PMID: 35459263 PMCID: PMC9033855 DOI: 10.1038/s41467-022-29929-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
Defect engineering is an effective strategy to improve the activity of two-dimensional molybdenum disulfide base planes toward electrocatalytic hydrogen evolution reaction. Here, we report a Frenkel-defected monolayer MoS2 catalyst, in which a fraction of Mo atoms in MoS2 spontaneously leave their places in the lattice, creating vacancies and becoming interstitials by lodging in nearby locations. Unique charge distributions are introduced in the MoS2 surface planes, and those interstitial Mo atoms are more conducive to H adsorption, thus greatly promoting the HER activity of monolayer MoS2 base planes. At the current density of 10 mA cm−2, the optimal Frenkel-defected monolayer MoS2 exhibits a lower overpotential (164 mV) than either pristine monolayer MoS2 surface plane (358 mV) or Pt-single-atom doped MoS2 (211 mV). This work provides insights into the structure-property relationship of point-defected MoS2 and highlights the advantages of Frenkel defects in tuning the catalytic performance of MoS2 materials. While material defect sites are active for chemical reactions, it is important to understand how different defect types impact reactivity. Here, authors prepare Frenkel-defected MoS2 monolayers and demonstrate improved performances for H2 evolution electrocatalysis than pristine or doped MoS2.
Collapse
|