1
|
Chen JZ, Li ZA, Lei JT, Chen PP, Zhao DL. Accelerated Ion-Electron Transport in Bi-Heterostructures Constructed Based on Ohmic Contacts for Efficient Bi-Directional Catalysis of Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408284. [PMID: 39520321 DOI: 10.1002/smll.202408284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Although lithium-sulfur batteries have satisfactory theoretical specific capacity and energy density, they are difficult to further commercialize due to the shuttle effect of soluble polysulfides and slow sulfur oxidation kinetics. Based on this, in this work, the catalyst MXene-VS4-SnS2 (MVS), a dual heterostructured catalyst with ohmic contacts, is prepared by a one-step hydrothermal method and electrostatic self-adsorption for lithium-sulfur battery cathode materials. Experimental and theoretical results show that the ohmic contact induces spontaneous charge rearrangement, resulting in the formation of a fast charge transfer pathway at the MVS heterojunction interface, which helps to reduce the energy barrier for polysulfide reduction and Li2S oxidation during the discharge/charge process. In addition, the inherent sulfophilicity of VS4 and SnS2 promotes the conversion of S species, while the pleated MXene nanosheets not only provide a highly conductive network for the active sulfur but also retain a rich internal space to maintain the integrity of the cathode structure during the continuous cycling process. As a result, the MVS cathode exhibits excellent electrochemical performance even under high sulfur loading. The integration of excellent performance with a facile synthesis process provides a promising approach for designing highly efficient electrocatalysts suitable for the energy field.
Collapse
Affiliation(s)
- Jing-Zhou Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| | - Zi-Ang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| | - Jia-Ting Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| | - Pei-Pei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| | - Dong-Lin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Luo R, Zhao J, Zheng M, Wang Z, Zhang S, Zhang J, Xiao Y, Jiang Y, Cai Z, Cheng N. Built-in Electric Field Within CoSe 2-FeSe 2 Heterostructure for Enhanced Sulfur Reduction Reaction in Li-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406415. [PMID: 39279464 DOI: 10.1002/smll.202406415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/28/2024] [Indexed: 09/18/2024]
Abstract
The conversion of Li2S4 to Li2S is the most important and slowest rate-limiting step in the complex sulfur reduction reaction (SRR) for Li-S batteries, the adjustment of which can effectively inhibit the notorious "shuttle effect". Herein, a CoSe2-FeSe2 heterostructure embedded in 3D N-doped nanocage as a modified layer on commercial separator is designed (CoSe2-FeSe2@NC//PP). The CoSe2-FeSe2 heterostructure forms a built-in electric field at the two-phase interface, which leads to the optimized adsorption force on polysulfides and the accelerated reaction kinetics for Li2S4-Li2S evolution. Density functional theory (DFT) calculations and experimental results combine to show that the liquid-solid reaction (Li2S4-Li2S2/Li2S) is significantly enhanced in terms of thermodynamics and electrodynamics. Consequently, the batteries assembled with CoSe2-FeSe2@NC//PP delivered an excellent rate capability (606 mAh g-1 under 8.0 C) and a long cycling lifespan (only 0.056% at 1.0 C after 1000 cycles). In addition, the cells can provide high initial capacity of 887 mAh g-1 at sulfur loading of 5.8 mg cm-2 and 0.1 C. This work would provide valuable insights into binary metal selenide heterostructures for liquid-solid conversion in Li-S batteries.
Collapse
Affiliation(s)
- Ruijian Luo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Junzhe Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ming Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zichen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Shunqiang Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jiancan Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yong Xiao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - YingHui Jiang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhixiong Cai
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
3
|
Zhang B, Qie J, You J, Gao X, Li Y, Wang W. Multifunctional Composite Separator Based on NiS 2/NiSe 2 Homologous Heterostructure Polyhedron Promotes Polysulfide Conversion for High Performance Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62093-62106. [PMID: 39483066 DOI: 10.1021/acsami.4c13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The shuttle effect significantly hinders the industrialization of high-energy-density lithium-sulfur batteries. To address this issue, NiS2/NiSe2 homologous heterostructure polyhedron (HHP) composite separators were developed to immobilize polysulfides and promote their swift conversion. An in-situ visualization symmetrical cell was specifically designed to show the rapid polysulfide adsorption capability of NiS2/NiSe2 HHP, while the electrolyte-separator interfacial contact behavior was simulated to elucidate the mechanism of action of the composite separator in affecting the homogeneous nucleation of lithium metal surfaces. The electrochemical experimental result highlights the substantial enhancement in the reaction kinetics of polysulfides facilitated by NiS2/NiSe2 HHP, owing to its high Li+ diffusion coefficient and Li2S deposition capacity. The NiS2/NiSe2 HHP cells demonstrate high initial specific capacity (1224.1 mAh g-1) at 0.2 C and minimal decay rates (0.073%) at 2 C. The NiS2/NiSe2 HHP separator has high electrochemical catalytic activity with multiple adsorption sites, enabling the rapid polysulfide conversion and contributing to the preparation of high-performance lithium-sulfur batteries.
Collapse
Affiliation(s)
- Bo Zhang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaxin Qie
- Hohhot No. 2 High School, Hohhot, Inner Mongolia 010090, China
| | - Jiyuan You
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaotong Gao
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuqian Li
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenju Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Huang A, Kong L, Zhang B, Liu X, Wang L, Li L, Xu J. Electrochemical Restructuring Driven Catalytic Cycle of Bi-Based Heterojunctions for High-Performance Lithium-Sulfur Batteries. ACS NANO 2024; 18:12795-12807. [PMID: 38719733 DOI: 10.1021/acsnano.3c12279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Restructuring is an important phenomenon in catalytic reactions. Conversion-type materials with suitable redox potential may undergo in situ electrochemically driven restructurings and induce highly active catalytic sites in a working lithium-sulfur battery. Herein, driven by the electrochemical conversion reaction of BiVO4, a reversible catalytic cycle of Bi/amorphous Li3VO4 (a-Li3VO4) and Bi2S3/a-Li3VO4 heterojunctions is constructed, which targets the oxidation of Li2S and the conversion of polysulfide, respectively. The heterostructures and electrochemically driven size confinement provide abundant sites for shuttle restraining and sulfur conversion. Especially, the p-block Bi and Bi2S3 could dramatically reduce the conversion energy barriers of Li2S and polysulfide by virtue of the p-p orbital hybridization, promoting bidirectional reactions of the sulfur cathode. As a result, the corresponding sulfur cathode possesses a high reversible capacity of 7.5 mAh cm-2 after 120 cycles under a high sulfur loading of 10.3 mg cm-2 with a current density of 0.38 mA cm-2. This study furnishes a feasible scheme to obtain highly effective catalysts for bidirectional sulfur redox by utilizing the electrochemically induced restructuring.
Collapse
Affiliation(s)
- Ao Huang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Linglong Kong
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, School of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Bowen Zhang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Xuefan Liu
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Lu Wang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Lifang Li
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Jing Xu
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| |
Collapse
|
5
|
Lang X, Wang T, Wang Z, Qu T, Li L, Yao C, Lai Q, Cai K. Ti x+ in-situ intercalation and interlayer modification via titanium foil/vanadium ion solution interface of VO 2.375 as sulfur-wrapped matrix enabling long-life lithium sulfur battery. J Colloid Interface Sci 2024; 659:560-568. [PMID: 38198933 DOI: 10.1016/j.jcis.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Lithium sulfur battery (LSB) has great potential as a promising next-generation energy storage system owing to ultra-high theoretical specific capacity and energy density. However, the polysulfide shuttle effect and slow redox kinetics are recognized the most stumbling blocks on the way of commercializing LSB. On this account, for the first time, we use Tix+ in-situ intercalation strategy via titanium foil/vanadium ion (V5+) solution interface to modify the layer of vanadium oxide for long cycle LSB. The inserted Tix+ strengthens interlayer interaction and enhances lithium-ion mobility rate. Meanwhile, based on density functional theory (DFT) calculation, the mixed valence of V5+/V4+ in the vanadium oxide structure reduces the stress and strain of lithium-ion intercalation through the interlayer support of titanium ions (Tix+). Also, Tix+ refines the structural stability of the sulfur wrapped composite matrix so as to facilitate the LiPSs transformation, and improve the electrochemical performances. Consequently, the Ti-VO2.375/S cathode delivers a lower capacity decay of 0.037 % per cycle over 1500 cycles with a stable coulombic efficiency around 100 %.
Collapse
Affiliation(s)
- Xiaoshi Lang
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Tan Wang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenhua Wang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Tingting Qu
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, Liaoning, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Lan Li
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Chuangang Yao
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Qinzhi Lai
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, Hebei Province, China
| | - Kedi Cai
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| |
Collapse
|
6
|
Li R, Bai Z, Hou W, Wu Z, Feng P, Bai Y, Sun K, Wang Z. Enhancing electrochemical conversion of lithium polysulfide by 1T-rich MoSe2 nanosheets for high performance lithium-sulfur batteries. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Fan XZ, Liu M, Zhang R, Zhang Y, Wang S, Nan H, Han Y, Kong L. An odyssey of lithium metal anode in liquid lithium–sulfur batteries. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|