1
|
Skvortsova SV, Verkhov FK, Nikolaenkova EB, Rakhmanova MI, Kokina TE, Sukhikh TS, Shekhovtsov NA, Bushuev MB. Interplay of the Cu⋯Cu distance and coordination geometry as a factor affecting the quantum efficiency in dimeric copper(I) halide complexes with derivatives of 4-pyrazolylpyrimidine-2-thiol. Dalton Trans 2025. [PMID: 40365655 DOI: 10.1039/d5dt00498e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Two bicyclic pyrazolylpyrimidine compounds, 2-benzylthio-4-(3,5-dimethyl-1H-pyrazol-1-yl)pyrimidine (LH) and 2-benzylthio-4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methylpyrimidine (LMe), were synthesized and studied as ligands for the preparation of copper(I) halido complexes. In the solid state, LH and LMe demonstrate dual excitation-wavelength dependent emission, i.e. fluorescence at higher excitation energies and phosphorescence at lower excitation energies due to the presence of a heavy sulphur atom. The reactions of LH and LMe with CuBr and CuI afforded a series of centrosymmetric binuclear complexes of the [Cu2L2Hal2] type (L = LH, Hal = Br, I; L = LMe, Hal = I). The possibility of rotation of the benzylthio group relative to the pyrazolylpyrimidine core leads to the isolation of two polymorphic modifications of the copper(I) iodido complex with LH, which differ by the Cu⋯Cu distance by more than 0.2 Å (2.86 Å for [Cu2(LH)2I2] (form I)vs. 2.65 Å for [Cu2(LH)2I2] (form II)). The isolation of the [Cu2(LH)2I2] complex in two different crystalline forms made it possible to reveal the influence of a rarely explored factor, namely the change in the Cu⋯Cu distance in a single molecule, on the photoluminescence quantum efficiency. Two structural indices, τdim, which showcases the degree of merging of CuLHal monomers into the centrosymmetric [Cu2L2Hal2] dimers, and τplan, which characterises the degree of planarization of the N2CuHal2CuN2 unit, were introduced and used for combined experimental and theoretical analyses of the relation between the structure of the complexes and their luminescence. All complexes exhibit phosphorescence of the ligand-to-halide charge transfer (LXCT) character in the orange region. According to TD-DFT calculations, an increase in the Cu⋯Cu distance facilitates structural rearrangement in the T1 state followed by a rapid decrease in the T1-S0 energy gap and subsequent non-radiative decay via electron-phonon coupling, which substantiates the higher photoluminescence quantum yield (PLQY) of [Cu2(LH)2I2] (form II) (Cu⋯Cu 2.65 Å) compared to that of [Cu2(LH)2I2] (form I) (Cu⋯Cu 2.86 Å).
Collapse
Affiliation(s)
- Sofia V Skvortsova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
- Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia
| | - Fyodor K Verkhov
- Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Elena B Nikolaenkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Marianna I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Tatiana E Kokina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Nikita A Shekhovtsov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Mark B Bushuev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| |
Collapse
|
2
|
Chatterjee J, Tanwar R, S A, Chatterjee A, Ambhore MD, Kabir M, Mandal P, Hazra P. Controlling Triplet-Harvesting Pathways and Nonlinear Optical Properties in Cu(I) Iodide-Based Polymers through Ligand Engineering. J Phys Chem Lett 2025; 16:1549-1558. [PMID: 39903830 DOI: 10.1021/acs.jpclett.4c03267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Organic-inorganic hybrid metal halides have become enormously important in optoelectronics, sensing, photosensitization, etc. In this study, we report a structural transition from a staircase configuration to a cubane configuration in Cu(I) iodide-based polymers influenced by the coordination behavior of two different π*-acceptor ligands. The staircase polymer structure, coordinated with 3-cyanopyridine, demonstrates efficient thermally activated delayed fluorescence from (metal+halide)-to-ligand charge transfer [1/3(M+X)LCT] states, with a singlet-triplet energy splitting of ∼9 meV. Conversely, upon replacement of the cyano with an amino group at the same position, a one-dimensional polymeric structure of Cu4I4 cubane-type clusters is formed, which shows strong cluster-centered (3CC) orange emission at room temperature. Temperature-dependent photoluminescence studies indicate that the 3CC state behaves as a self-trapped excitonic state with significant exciton-phonon coupling having a Huang-Rhys factor of 58.6. Additionally, we report this cubane-type cluster polymer acts as an efficient nonlinear optical material showing third harmonic generation with a χ(3) value of 1.32 × 10-18 m2 V-2 and a laser-induced damage threshold of 25.87 GW/cm2.
Collapse
Affiliation(s)
- Joy Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Riteeka Tanwar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Anupama S
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Abhijit Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Madan D Ambhore
- Department of Chemistry, Yeshwant Mahavidyalaya Nanded, Nanded 431602, Maharashtra, India
| | - Mukul Kabir
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Pankaj Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Partha Hazra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| |
Collapse
|
3
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
4
|
Kumar A, Kim D, Nguyen G, Jiang C, Chakraborty S, Teets TS. Photophysical properties of three-coordinate heteroleptic Cu(I) β-diketiminate triarylphosphine complexes. Dalton Trans 2024; 54:396-404. [PMID: 39552323 DOI: 10.1039/d4dt02681k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A series of heteroleptic copper(I) β-diketiminate triarylphosphine complexes is reported, having the general formula Cu(R1NacNacR2)(PPhX3), where R1NacNacR2 is a substituted β-diketiminate and PPhX3 is a triphenylphosphine derivative. A total of five different R1NacNacR2 ligands and three different triarylphosphines are used to assemble the nine complexes. The syntheses, X-ray crystal structures, cyclic voltammograms, and UV-vis absorption spectra of all compounds are described. Whereas most of the compounds are weakly luminescent or only luminesce at 77 K, the four complexes with the more sterically encumbered β-diketiminate ligands, with methyl or isopropyl substituents at the 2- and 6-positions of the N-phenyl rings, exhibit weak room-temperature photoluminescence with peaks between 519 and 566 nm and long excited-state lifetimes in the range of 15-70 μs. The sterically encumbering substituents in this subset have subtle effects on the UV-vis absorption maximum, which red shifts slightly as the steric bulk increases, as well as significant effects on the photoluminescence lifetime, which is observed to increase as the steric bulk is augmented. Substituents on the triarylphosphine also influence the excited-state dynamics in the bulky complexes, with the more electron-rich tris(4-methoxyphenyl)phosphine (PPhOMe3) giving longer-excited-state lifetimes compared to triphenylphosphine (PPh3) when the same R1NacNacR2 ligand is used.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Dooyoung Kim
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Giao Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Chenggang Jiang
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Soumi Chakraborty
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
5
|
Tiwari V, Gallagher-Jones M, Hwang H, Duan HG, Kirkland AI, Miller RJD, Jha A. Crystal Lattice-Induced Stress modulates Photoinduced Jahn-Teller Distortion Dynamics. ACS PHYSICAL CHEMISTRY AU 2024; 4:660-668. [PMID: 39634641 PMCID: PMC11613236 DOI: 10.1021/acsphyschemau.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 12/07/2024]
Abstract
Efficient photoredox chemical transformations are essential to the development of novel, cost-effective, and environmentally friendly synthetic methodologies. The concept of the entatic state in bioinorganic catalysis proposes that a preorganized structural configuration can reduce the energy barriers associated with chemical reactions. This concept provides one of the guiding principles to enhance catalytic efficiency by maintaining high-energy conformations close to the reaction's transition state. Copper(I)-based photocatalysts, recognized for their low toxicity and highly negative oxidation potentials, are of particular interest in entasis studies. In this study, we explore the impact of entasis caused by stress induced by the surrounding lattice on the excited state dynamics of a prototypical copper(I)-based photocatalyst in a single crystal form. Using femtosecond broadband transient absorption spectroscopy, we show that triplet state formation from the entactic state is faster (∼3.9 ps) in crystals compared with solution (∼11.3 ps). The observed faster intersystem crossing in crystals hints toward the possible existence of distorted square planar geometry with higher spin-orbit coupling at the minima of the S1 state. We further discuss the influence of entasis on vibrationally coherent photoinduced Jahn-Teller distortions. Our findings reveal the photophysical properties of the copper complex under lattice-induced stress, which can be extended to enhance the broader applicability of the entatic state concept in other transition metal systems. Understanding how environmental stress-induced geometric constraints within crystal lattices affect photochemical behavior opens avenues for designing more efficient photocatalytic systems based on transition metals, potentially enhancing their applicability to sustainable chemical synthesis.
Collapse
Affiliation(s)
- Vandana Tiwari
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department
of Chemical Science, Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Hyein Hwang
- European
XFEL, Holzkoppel 4, Schenefeld 22869, Germany
- The
Hamburg Centre for Ultrafast Imaging,Luruper Chaussee 149, Hamburg 22761, Germany
| | - Hong-Guang Duan
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Angus I. Kirkland
- Rosalind
Franklin Institute, Harwell OX11 0QX, Oxfordshire, United Kingdom
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - R. J. Dwayne Miller
- The
Departments of Chemistry and Physics, University
of Toronto, 80 St. George Street, Toronto M5S 3H6, Canada
| | - Ajay Jha
- Rosalind
Franklin Institute, Harwell OX11 0QX, Oxfordshire, United Kingdom
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
6
|
Castellano FN, Rosko MC. Steric and Electronic Influence of Excited-State Decay in Cu(I) MLCT Chromophores. Acc Chem Res 2024; 57:2872-2886. [PMID: 39259501 DOI: 10.1021/acs.accounts.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
ConspectusFor the past 11 years, a dedicated effort in our research group focused on fundamentally advancing the photophysical properties of cuprous bis-phenanthroline-based metal-to-ligand charge transfer (MLCT) excited states. We rationalized that, by gaining control over the numerous factors limiting the more widespread use of CuI MLCT photosensitizers, they would be readily adopted in numerous light-activated applications given the earth-abundance of copper and the extensive library of 1,10-phenanthrolines developed over the last century. Significant progress has been achieved by recognizing valuable structure-property concepts developed by other researchers in tandem with detailed ultrafast and conventional time-scale investigations, in-silico-inspired molecular designs to predict spectroscopic properties, and applying novel synthetic methodologies. Ultimately, we achieved a plateau in exerting cooperative steric influence to control CuI MLCT excited state decay. This led to combining sterics with π-conjugation and/or inductive electronic effects to further exert control over molecular photophysical properties. The lessons gleaned from our studies of homoleptic complexes were recently extended to heteroleptic bis(phenanthrolines) featuring enhanced visible light absorption properties and long-lived room-temperature photoluminescence. This Account navigates the reader through our intellectual journey of decision-making, molecular and experimental design, and data interpretation in parallel with appropriate background information related to the quantitative characterization of molecular photophysics using CuI MLCT chromophores as prototypical examples.Initially, CuI MLCT excited states, their energetics, and relevant structural conformation changes implicated in their photophysical decay processes are described. This is followed by a discussion of the literature that motivated our research in this area. This led to our first molecular design in 2013, achieving a 7-fold increase in excited state lifetime relative to the current state-of-the-art. The lifetime and photophysical property enhancement resulted from using 2,9-branched alkyl groups in conjunction with flanking 3,8-methyl substituents, a strategy we adapted from the McMillin group, which was initially described in the late 1990s. Applications of this newly conceived chromophore are presented in solar hydrogen-producing photocatalysis, photochemical upconversion, and photosensitization of [4 + 4] anthracene dimerization of potential interest in thermal storage of solar energy in metastable intermediates. Ultrafast transient absorption and fluorescence upconversion spectroscopic characterization of this and related CuI molecules inform the resultant photophysical properties and vice versa, so the most comprehensive structure-property understanding becomes realized when these experimental tools are collectively utilized to investigate the same series of molecules. Computationally guided structural designs generated newly conceived molecules featuring visible light-harvesting and 2,9-cycloalkane substituted complexes. The latter eventually produced record-setting excited state lifetimes in molecules leveraging both cooperative steric influence and electronic inductive effects. Using photoluminescence data from structurally homologous CuI MLCT excited states collected over 44 years, an energy gap correlation successfully modeled the data spanning a 0.3 eV emission energy range. Finally, a new research direction is revealed detailing structure-photophysical property relationships in heteroleptic CuI phenanthroline chromophores that are photoluminescent at room temperature.
Collapse
Affiliation(s)
- Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
7
|
Kaur B, Gourkhede R, Balakrishna MS. Luminescence Behavior of Cationic and Neutral Cu I Complexes of Phosphine and Pyridine Embedded 1,2,3-Triazole. Inorg Chem 2024; 63:16981-16990. [PMID: 39236159 DOI: 10.1021/acs.inorgchem.4c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Synthesis of a potentially polydentate, phosphine and pyridine embedded 1,2,3-triazole, o-Ph2P(C6H4)C(CH)-1,2,3-N3(CH2)(Py) (1) (here onward referred to as "P∩N3∩N") and its copper complexes are described. Reactions of 1 with CuX yielded mononuclear [Cu{(P∩N3∩N)2-κ2-P,N}]X (2 - 4; X = I, CuBr2 and CuCl2) and dinuclear [Cu2{(P∩N3∩N)2-κ4-P,N,N,N}]X (5 X = OTf, 6 X = BF4) complexes. Interestingly, the cationic complex [Cu{(P∩N3∩N)2-κ2-P,N}]I (2) in acetonitrile changes into neutral complex [Cu3(μ2-I)2(μ3-I)(NCCH3){(P∩N3∩N)-κ4(μ2-P,N)(μ2-N,N)}](7), which on addition of dichloromethane reverts back to the cationic form. The photoluminescent characteristics of cationic complexes are significantly impacted by the nature of counteranions and hence the corresponding photoluminescence quantum yields. Cationic complex 2 showed an increase in quantum yield and lifetime on changing over to neutral complex 7. TD-DFT calculations also assisted in assessing the photophysical properties.
Collapse
Affiliation(s)
- Bhupinder Kaur
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rani Gourkhede
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Giobbio G, Coto PB, Lohier JF, Renaud JL, Gaillard S, Costa RD. [Ag(IPr)(bpy)][PF 6]: brightness and darkness playing with aggregation induced phosphorescence for light-emitting electrochemical cells. Dalton Trans 2024; 53:12307-12315. [PMID: 38984528 DOI: 10.1039/d4dt01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Heteroleptic silver(I) complexes have recently started to attract attention in thin-film lighting technologies as an alternative to copper(I) analogues due to the lack of flattening distortion upon excitation. However, the interpretation of their photophysical behavior is challenging going from traditional fluorescence/phosphorescence to a temperature-dependent dual emission mechanism and ligand-lock assisted thermally activated delayed fluorescence. Herein, we unveil the photoluminescence behavior of a three-coordinated Ag(I) complex with the N-heterocyclic carbene (NHC) ligand and 2,2'-bipyridine (bpy) as the N^N ligand. In contrast to its low-emissive Cu(I) complex structural analogues, a strong greenish emission was attributed to the presence of aggregates formed by π-π intermolecular interactions as revealed by the X-ray structure and aggregation induced emission (AIE) studies in solution. In addition, the temperature-dependent time-resolved spectroscopic and computational studies demonstrated that the emission mechanism is related to a phosphorescence emission mechanism of two very close lying (ΔE = 0.08 eV) excited triplet states, exhibiting a similar delocalized nature over the bipyridine ligands. Unfortunately, this favourable AIE is lost upon forming homogeneous thin films suitable for lighting devices. Though the films showed very poor emission, the electrochemical stability under device operation conditions is remarkable compared to the prior-art, highlighting the potential of [Ag(NHC)(N^N)][X] complexes in thin-film lighting.
Collapse
Affiliation(s)
- Ginevra Giobbio
- Normandy University, ENSICAEN, UNICAEN, CNRS, LCMT, 1400 Caen, France.
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, 94315 Straubing, Germany.
| | - Pedro B Coto
- Spanish National Research Council (CSIC) and Donostia International Physics Center (DIPC), Material Physics Center (CFM), 20018 Donostia - San Sebastián, Spain.
| | | | - Jean-Luc Renaud
- Normandy University, ENSICAEN, UNICAEN, CNRS, LCMT, 1400 Caen, France.
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 75005 Paris, France
| | - Sylvain Gaillard
- Normandy University, ENSICAEN, UNICAEN, CNRS, LCMT, 1400 Caen, France.
| | - Rubén D Costa
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, 94315 Straubing, Germany.
| |
Collapse
|
9
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Camacho-Montes H, Aizpuru APL, Dominguez-Garcia R, Guzman-Pando A, Camarillo-Cisneros J. Copper complex molecules as dye-sensitizers: Hybrid MetaGGA and standard + van der Waals functionals. J Mol Graph Model 2024; 128:108724. [PMID: 38340691 DOI: 10.1016/j.jmgm.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
This study focuses on the use of Density Functional Theory calculations with two main approaches: computational chemistry and computational physics. The following three cases were considered for the derivation: (I) computational chemistry using the M06 hybrid functional, (II) computational chemistry using the standard PBE functional including vdW interactions, and (III) computational physics using the standard PBE functional including vdW interactions and periodic boundary conditions. Since the approximation using hybrid functionals M06 has been extensively validated, this method was used as a reference. The second and third methods are less expensive, it is ideal for use to extend large systems. From the sensitized molecules are found in the gas phase and include solvent effects through the integral equation formalism polarizable continuum model. In a systematic analysis of 15 Cu complex molecules, a complete characterization for DSSCs has been carried out and molecular geometry, electronic and optical measurements have been reported.
Collapse
Affiliation(s)
- H Camacho-Montes
- Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ciudad Juarez, Mexico
| | - A P Leyva Aizpuru
- Computational Chemistry Physics Laboratory, Universidad Autonoma de Chihuahua, Campus II, Chihuahua, Mexico
| | - R Dominguez-Garcia
- Centro de Investigacion en Materiales Avanzados, Av. Miguel de Cervantes Saavedra 120, Chihuahua, Mexico
| | - A Guzman-Pando
- Computational Chemistry Physics Laboratory, Universidad Autonoma de Chihuahua, Campus II, Chihuahua, Mexico
| | - J Camarillo-Cisneros
- Computational Chemistry Physics Laboratory, Universidad Autonoma de Chihuahua, Campus II, Chihuahua, Mexico.
| |
Collapse
|
11
|
Phelan BT, Xie ZL, Liu X, Li X, Mulfort KL, Chen LX. Photodriven electron-transfer dynamics in a series of heteroleptic Cu(I)-anthraquinone dyads. J Chem Phys 2024; 160:144905. [PMID: 38619061 DOI: 10.1063/5.0188245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Solar fuels catalysis is a promising route to efficiently harvesting, storing, and utilizing abundant solar energy. To achieve this promise, however, molecular systems must be designed with sustainable components that can balance numerous photophysical and chemical processes. To that end, we report on the structural and photophysical characterization of a series of Cu(I)-anthraquinone-based electron donor-acceptor dyads. The dyads utilized a heteroleptic Cu(I) bis-diimine architecture with a copper(I) bis-phenanthroline chromophore donor and anthraquinone electron acceptor. We characterized the structures of the complexes using x-ray crystallography and density functional theory calculations and the photophysical properties via resonance Raman and optical transient absorption spectroscopy. The calculations and resonance Raman spectroscopy revealed that excitation of the Cu(I) metal-to-ligand charge-transfer (MLCT) transition transfers the electron to a delocalized ligand orbital. The optical transient absorption spectroscopy demonstrated that each dyad formed the oxidized copper-reduced anthraquinone charge-separated state. Unlike most Cu(I) bis-phenanthroline complexes where increasingly bulky substituents on the phenanthroline ligands lead to longer MLCT excited-state lifetimes, here, we observe a decrease in the long-lived charge-separated state lifetime with increasing steric bulk. The charge-separated state lifetimes were best explained in the context of electron-transfer theory rather than with the energy gap law, which is typical for MLCT excited states, despite the complete conjugation between the phenanthroline and anthraquinone moieties.
Collapse
Affiliation(s)
- Brian T Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Zhu-Lin Xie
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Xiaolin Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Karen L Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
12
|
Prakash O, Lindh L, Gupta AK, Hoang Hai YT, Kaul N, Chábera P, Lindgren F, Ericsson T, Häggström L, Strand D, Yartsev A, Lomoth R, Persson P, Wärnmark K. Tailoring the Photophysical Properties of a Homoleptic Iron(II) Tetra N-Heterocyclic Carbene Complex by Attaching an Imidazolium Group to the (C ∧N ∧C) Pincer Ligand─A Comparative Study. Inorg Chem 2024; 63:2909-2918. [PMID: 38301278 PMCID: PMC10865346 DOI: 10.1021/acs.inorgchem.3c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
We here report the synthesis of the homoleptic iron(II) N-heterocyclic carbene (NHC) complex [Fe(miHpbmi)2](PF6)4 (miHpbmi = 4-((3-methyl-1H-imidazolium-1-yl)pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) and its electrochemical and photophysical properties. The introduction of the π-electron-withdrawing 3-methyl-1H-imidazol-3-ium-1-yl group into the NHC ligand framework resulted in stabilization of the metal-to-ligand charge transfer (MLCT) state and destabilization of the metal-centered (MC) states. This resulted in an improved excited-state lifetime of 16 ps compared to the 9 ps for the unsubstituted parent compound [Fe(pbmi)2](PF6)2 (pbmi = (pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) as well as a stronger MLCT absorption band extending more toward the red spectral region. However, compared to the carboxylic acid derivative [Fe(cpbmi)2](PF6)2 (cpbmi = 1,1'-(4-carboxypyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)), the excited-state lifetime of [Fe(miHpbmi)2](PF6)4 is the same, but both the extinction and the red shift are more pronounced for the former. Hence, this makes [Fe(miHpbmi)2](PF6)4 a promising pH-insensitive analogue of [Fe(cpbmi)2](PF6)2. Finally, the excited-state dynamics of the title compound [Fe(miHpbmi)2](PF6)4 was investigated in solvents with different viscosities, however, showing very little dependency of the depopulation of the excited states on the properties of the solvent used.
Collapse
Affiliation(s)
- Om Prakash
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Linnea Lindh
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Arvind Kumar Gupta
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Yen Tran Hoang Hai
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Nidhi Kaul
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Pavel Chábera
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Fredrik Lindgren
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Tore Ericsson
- Department of Physics—Ångström
Laboratory, Uppsala University, Box 523, Uppsala SE-751
20, Sweden
| | - Lennart Häggström
- Department of Physics—Ångström
Laboratory, Uppsala University, Box 523, Uppsala SE-751
20, Sweden
| | - Daniel Strand
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Arkady Yartsev
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Reiner Lomoth
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Petter Persson
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Kenneth Wärnmark
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| |
Collapse
|
13
|
Zhu H, Pesce L, Chowdhury R, Xue W, Wu K, Ronson TK, Friend RH, Pavan GM, Nitschke JR. Stereocontrolled Self-Assembly of a Helicate-Bridged Cu I12L 4 Cage That Emits Circularly Polarized Light. J Am Chem Soc 2024; 146:2379-2386. [PMID: 38251985 PMCID: PMC10835658 DOI: 10.1021/jacs.3c11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
Control over the stereochemistry of metal-organic cages can give rise to useful functions that are entwined with chirality, such as stereoselective guest binding and chiroptical applications. Here, we report a chiral CuI12L4 pseudo-octahedral cage that self-assembled from condensation of triaminotriptycene, aminoquinaldine, and diformylpyridine subcomponents around CuI templates. The corners of this cage consist of six head-to-tail dicopper(I) helicates whose helical chirality can be controlled by the addition of enantiopure 1,1'-bi-2-naphthol (BINOL) during the assembly process. Chiroptical and nuclear magnetic resonance (NMR) studies elucidated the process and mechanism of stereochemical information transfer from BINOL to the cage during the assembly process. Initially formed CuI(BINOL)2 thus underwent stereoselective ligand exchange during the formation of the chiral helicate corners of the cage, which determined the overall cage stereochemistry. The resulting dicopper(I) helicate corners of the cage were also shown to generate circularly polarized luminescence.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Luca Pesce
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland
| | - Rituparno Chowdhury
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Weichao Xue
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Kai Wu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tanya K. Ronson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Richard H. Friend
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Giovanni M. Pavan
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland
- Department
of Applied Science and Techology, Politecnico
di Torino, 10129 Torino, Italy
| | - Jonathan R. Nitschke
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
14
|
Rosko MC, Wheeler JP, Alameh R, Faulkner AP, Durand N, Castellano FN. Enhanced Visible Light Absorption in Heteroleptic Cuprous Phenanthrolines. Inorg Chem 2024; 63:1692-1701. [PMID: 38190287 DOI: 10.1021/acs.inorgchem.3c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This work presents a series of Cu(I) heteroleptic 1,10-phenanthroline chromophores featuring enhanced UVA and visible-light-harvesting properties manifested through vectorial control of the copper-to-phenanthroline charge-transfer transitions. The molecules were prepared using the HETPHEN strategy, wherein a sterically congested 2,9-dimesityl-1,10-phenanthrolne (mesPhen) ligand was paired with a second phenanthroline ligand incorporating extended π-systems in their 4,7-positions. The combination of electrochemistry, static and time-resolved electronic spectroscopy, 77 K photoluminescence spectra, and time-dependent density functional theory calculations corroborated all of the experimental findings. The model chromophore, [Cu(mesPhen)(phen)]+ (1), lacking 4,7-substitutions preferentially reduces the mesPhen ligand in the lowest energy metal-to-ligand charge-transfer (MLCT) excited state. The remaining cuprous phenanthrolines (2-4) preferentially reduce their π-conjugated ligands in the low-lying MLCT excited state. The absorption cross sections of 2-4 were enhanced (εMLCTmax = 7430-9980 M-1 cm-1) and significantly broadened across the UVA and visible regions of the spectrum compared to 1 (εMLCTmax = 6494 M-1 cm-1). The excited-state decay mechanism mirrored those of long-lived homoleptic Cu(I) phenanthrolines, yielding three distinguishable time constants in ultrafast transient absorption experiments. These represent pseudo-Jahn-Teller distortion (τ1), singlet-triplet intersystem crossing (τ2), and the relaxed MLCT excited-state lifetime (τ3). Effective light-harvesting from Cu(I)-based chromophores can now be rationalized within the HETPHEN strategy while achieving directionality in their respective MLCT transitions, valuable for integration into more complex donor-acceptor architectures and longer-lived photosensitizers.
Collapse
Affiliation(s)
- Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan P Wheeler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Reem Alameh
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Adrienne P Faulkner
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Nicolas Durand
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
15
|
Choroba K, Penkala M, Palion-Gazda J, Malicka E, Machura B. Pyrenyl-Substituted Imidazo[4,5- f][1,10]phenanthroline Rhenium(I) Complexes with Record-High Triplet Excited-State Lifetimes at Room Temperature: Steric Control of Photoinduced Processes in Bichromophoric Systems. Inorg Chem 2023; 62:19256-19269. [PMID: 37950694 PMCID: PMC10685448 DOI: 10.1021/acs.inorgchem.3c02662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Photochemical applications based on intermolecular photoinduced energy triplet state transfer require photosensitizers with strong visible absorptivity and extended triplet excited-state lifetimes. Using a bichromophore approach, two Re(I) tricarbonyl complexes with 2-(1-pyrenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (pyr-imphen) and 1-(4-(methyl)phenyl)-2-(1-pyrenyl)-imidazo[4,5-f][1,10]phenanthroline (pyr-tol-imphen) showing extraordinary long triplet excited states at room temperature (>1000 μs) were obtained, and their ground- and excited-state properties were thoroughly investigated by a wide range of spectroscopic methods, including femtosecond transient absorption (fs-TA). It is worth noting that the designed [ReCl(CO)3(pyr-imphen)] (1) and [ReCl(CO)3(pyr-tol-imphen)] (2) complexes form a unique pair differing in the mutual chromophore arrangement due to introduction of a 4-(methyl)phenyl substituent into the imidazole ring at the H1-position, imposing an increase in the dihedral angle between the pyrene and {ReCl(CO)3(imphen)} chromophores. The magnitude of the electronic coupling between the pyrene and {ReCl(CO)3(imphen)} chromophores was found to be an efficient tool to tune the photophysical properties of 1 and 2. The usefulness of designed Re(I) compounds as triplet photosensitizers was successfully verified by examination of their abilities for 1O2 generation and triplet-triplet annihilation upconversion. The phosphorescence lifetimes, ∼1800 μs for 1 and ∼1500 μs for 2, are the longest lifetimes reported for Re(I) diimine carbonyl complexes in solution at room temperature.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Mateusz Penkala
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Ewa Malicka
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| |
Collapse
|
16
|
Wang D, Hu W, Liu C, Huang J, Zhang X. Electronic Tuning of Photoexcited Dynamics in Heteroleptic Cu(I) Complex Photosensitizers. J Phys Chem Lett 2023; 14:10137-10144. [PMID: 37922426 DOI: 10.1021/acs.jpclett.3c02503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Photoexcited dynamics of heteroleptic Cu(I) complexes as noble-metal-free photosensitizers are closely intertwined with the nature of their ligands. By utilizing ultrafast optical and X-ray transient absorption spectroscopies, we characterized a new set of heteroleptic Cu(I) complexes [Cu(PPh3)2(BPyR)]+ (R = CH3, H, Br to COOCH3), with an increase in the electron-withdrawing ability of the functional group (R). We found that after the transient photooxidation of Cu(I) to Cu(II), the increasing electron-withdrawing ability of R barely affects the internal conversion (IC) (e.g., Jahn-taller (JT) distortion) between singlet MLCT states. However, it does accelerate the dynamics of intersystem crossing (ISC) between singlet and triplet MLCT states and the subsequent decay from the triplet MLCT state to the ground state. The associated lifetime constants are reduced by up to 300%. Our understanding of the photoexcited dynamics in heteroleptic Cu(I) complexes through ligand electronic tuning provides valuable insight into the rational design of efficient Cu(I) complex photosensitizers.
Collapse
Affiliation(s)
- Denan Wang
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Wenhui Hu
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
- Department of Chemistry and Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| |
Collapse
|
17
|
Kim D, Rosko MC, Dang VQ, Castellano FN, Teets TS. Sterically Encumbered Heteroleptic Copper(I) β-Diketiminate Complexes with Extended Excited-State Lifetimes. Inorg Chem 2023; 62:16759-16769. [PMID: 37782937 DOI: 10.1021/acs.inorgchem.3c02042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
One of the main challenges in developing effective copper(I) photosensitizers is their short excited-state lifetimes, usually attributed to structural distortion upon light excitation. We have previously introduced copper(I) charge-transfer chromophores of the general formula Cu(N^N)(ArNacNac), where N^N is a conjugated diimine ligand and ArNacNac is a substituted β-diketiminate ligand. These chromophores were promising regarding their tunable redox potentials and intense visible absorption but were ineffective as photosensitizers, presumably due to short excited-state lifetimes. Here, we introduce sterically crowded analogues of these heteroleptic chromophores with bulky alkyl substituents on the N^N and/or ArNacNac ligand. Structural analysis was combined with electrochemical and photophysical characterization, including ultrafast transient absorption (UFTA) spectroscopy to investigate the effects of the alkyl groups on the excited-state lifetimes of the complexes. The molecular structures determined by single-crystal X-ray diffraction display more distortion in the ground state as alkyl substituents are introduced into the phenanthroline or the NacNac ligand, showing smaller τ4 values due to the steric hindrance. UFTA measurements were carried out to determine the excited-state dynamics. Sterically encumbered Cu5 and Cu6 display excited-state lifetimes 15-20 times longer than unsubstituted complex Cu1, likely indicating that the incorporation of bulky alkyl substituents inhibits the pseudo-Jahn-Teller (PJT) flattening distortion in the excited state. This work suggests that the steric properties of these heteroleptic copper(I) charge-transfer chromophores can be readily modified and that the excited-state dynamics are strongly responsive to these modifications.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Vinh Q Dang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
18
|
Xie ZL, Gupta N, Niklas J, Poluektov OG, Lynch VM, Glusac KD, Mulfort KL. Photochemical charge accumulation in a heteroleptic copper(i)-anthraquinone molecular dyad via proton-coupled electron transfer. Chem Sci 2023; 14:10219-10235. [PMID: 37772110 PMCID: PMC10529959 DOI: 10.1039/d3sc03428c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Developing efficient photocatalysts that perform multi electron redox reactions is critical to achieving solar energy conversion. One can reach this goal by developing systems which mimic natural photosynthesis and exploit strategies such as proton-coupled electron transfer (PCET) to achieve photochemical charge accumulation. We report herein a heteroleptic Cu(i)bis(phenanthroline) complex, Cu-AnQ, featuring a fused phenazine-anthraquinone moiety that photochemically accumulates two electrons in the anthraquinone unit via PCET. Full spectroscopic and electrochemical analyses allowed us to identify the reduced species and revealed that up to three electrons can be accumulated in the phenazine-anthraquinone ring system under electrochemical conditions. Continuous photolysis of Cu-AnQ in the presence of sacrificial electron donor produced doubly reduced monoprotonated photoproduct confirmed unambiguously by X-ray crystallography. Formation of this photoproduct indicates that a PCET process occurred during illumination and two electrons were accumulated in the system. The role of the heteroleptic Cu(i)bis(phenanthroline) moiety participating in the photochemical charge accumulation as a light absorber was evidenced by comparing the photolysis of Cu-AnQ and the free AnQ ligand with less reductive triethylamine as a sacrificial electron donor, in which photogenerated doubly reduced species was observed with Cu-AnQ, but not with the free ligand. The thermodynamic properties of Cu-AnQ were examined by DFT which mapped the probable reaction pathway for photochemical charge accumulation and the capacity for solar energy stored in the process. This study presents a unique system built on earth-abundant transition metal complex to store electrons, and tune the storage of solar energy by the degree of protonation of the electron acceptor.
Collapse
Affiliation(s)
- Zhu-Lin Xie
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Nikita Gupta
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Jens Niklas
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Oleg G Poluektov
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | | | - Ksenija D Glusac
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| |
Collapse
|
19
|
Wang L, Xie ZL, Phelan BT, Lynch VM, Chen LX, Mulfort KL. Changing Directions: Influence of Ligand Electronics on the Directionality and Kinetics of Photoinduced Charge Transfer in Cu(I)Diimine Complexes. Inorg Chem 2023; 62:14368-14376. [PMID: 37620247 DOI: 10.1021/acs.inorgchem.3c02043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
A key challenge to the effective utilization of solar energy is to promote efficient photoinduced charge transfer, specifically avoiding unproductive, circuitous electron-transfer pathways and optimizing the kinetics of charge separation and recombination. We hypothesize that one way to address this challenge is to develop a fundamental understanding of how to initiate and control directional photoinduced charge transfer, particularly for earth-abundant first-row transition-metal coordination complexes, which typically suffer from relatively short excited-state lifetimes. Here, we report a series of functionalized heteroleptic copper(I)bis(phenanthroline) complexes, which have allowed us to investigate the directionality of intramolecular photoinduced metal-to-ligand charge transfer (MLCT) as a function of the substituent Hammett parameter. Ultrafast transient absorption suggests a complicated interplay of MLCT localization and solvent interaction with the Cu(II) center of the MLCT state. This work provides a set of design principles for directional charge transfer in earth-abundant complexes and can be used to efficiently design pathways for connecting the molecular modules to catalysts or electrodes and integration into systems for light-driven catalysis.
Collapse
Affiliation(s)
- Lei Wang
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhu-Lin Xie
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Brian T Phelan
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Vincent M Lynch
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lin X Chen
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
20
|
Rafiq S, Weingartz NP, Kromer S, Castellano FN, Chen LX. Spin-vibronic coherence drives singlet-triplet conversion. Nature 2023; 620:776-781. [PMID: 37468632 DOI: 10.1038/s41586-023-06233-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/18/2023] [Indexed: 07/21/2023]
Abstract
Design-specific control over the transitions between excited electronic states with different spin multiplicities is of the utmost importance in molecular and materials chemistry1-3. Previous studies have indicated that the combination of spin-orbit and vibronic effects, collectively termed the spin-vibronic effect, can accelerate quantum-mechanically forbidden transitions at non-adiabatic crossings4,5. However, it has been difficult to identify precise experimental manifestations of the spin-vibronic mechanism. Here we present coherence spectroscopy experiments that reveal the interplay between the spin, electronic and vibrational degrees of freedom that drive efficient singlet-triplet conversion in four structurally related dinuclear Pt(II) metal-metal-to-ligand charge-transfer (MMLCT) complexes. Photoexcitation activates the formation of a Pt-Pt bond, launching a stretching vibrational wavepacket. The molecular-structure-dependent decoherence and recoherence dynamics of this wavepacket resolve the spin-vibronic mechanism. We find that vectorial motion along the Pt-Pt stretching coordinates tunes the singlet and intermediate-state energy gap irreversibly towards the conical intersection and subsequently drives formation of the lowest stable triplet state in a ratcheting fashion. This work demonstrates the viability of using vibronic coherences as probes6-9 to clarify the interplay among spin, electronic and nuclear dynamics in spin-conversion processes, and this could inspire new modular designs to tailor the properties of excited states.
Collapse
Affiliation(s)
- Shahnawaz Rafiq
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Nicholas P Weingartz
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Sarah Kromer
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
21
|
Cîrcu V, Ganea CP, Secu M, Manaila-Maximean D, Marinescu GC, Popescu RG, Pasuk I. Columnar Liquid Crystals of Copper(I) Complexes with Ionic Conductivity and Solid State Emission. Molecules 2023; 28:molecules28104196. [PMID: 37241937 DOI: 10.3390/molecules28104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Two neutral copper(I) halide complexes ([Cu(BTU)2X], X = Cl, Br) were prepared by the reduction of the corresponding copper(II) halides (chloride or bromide) with a benzoylthiourea (BTU, N-(3,4-diheptyloxybenzoyl)-N'-(4-heptadecafluorooctylphenyl)thiourea) ligand in ethanol. The two copper(I) complexes show a very interesting combination of 2D supramolecular structures, liquid crystalline, emission, and 1D ionic conduction properties. Their chemical structure was ascribed based on ESI-MS, elemental analysis, IR, and NMR spectroscopies (1H and 13C), while the mesomorphic behavior was analyzed through a combination of differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and powder X-ray diffraction (XRD). These new copper(I) complexes have mesomorphic properties and exhibit a hexagonal columnar mesophase over a large temperature range, more than 100 K, as evidenced by DSC studies and POM observations. The thermogravimetric analysis (TG) indicated a very good thermal stability of these samples up to the isotropization temperatures and over the whole temperature range of the liquid crystalline phase existence. Both complexes displayed a solid-state emission with quantum yields up to 8% at ambient temperature. The electrical properties of the new metallomesogens were investigated by variable temperature dielectric spectroscopy over the entire temperature range of the liquid crystalline phase. It was found that the liquid crystal phases favoured anhydrous proton conduction provided by the hydrogen-bonding networks formed by the NH…X moieties (X = halide or oxygen) of the benzoylthiourea ligand in the copper(I) complexes. A proton conductivity of 2.97 × 10-7 S·cm-1 was achieved at 430 K for the chloro-complex and 1.37 × 10-6 S·cm-1 at 440K for the related bromo-complex.
Collapse
Affiliation(s)
- Viorel Cîrcu
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, 4-12 Regina Elisabeta Bld., Sector 5, 030018 Bucharest, Romania
| | - Constantin P Ganea
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Mihail Secu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Doina Manaila-Maximean
- Department of Physics, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., 050094 Bucharest, Romania
| | | | - Roua Gabriela Popescu
- Asociația Independent Research, 58 Timișului, Sector 1, 012416 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Iuliana Pasuk
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| |
Collapse
|
22
|
Malme JT, Clendening RA, Ash R, Curry T, Ren T, Vura-Weis J. Nanosecond Metal-to-Ligand Charge-Transfer State in an Fe(II) Chromophore: Lifetime Enhancement via Nested Potentials. J Am Chem Soc 2023; 145:6029-6034. [PMID: 36913625 DOI: 10.1021/jacs.2c13532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Examples of Fe complexes with long-lived (≥1 ns) charge-transfer states are limited to pseudo-octahedral geometries with strong σ-donor chelates. Alternative strategies based on varying both coordination motifs and ligand donicity are highly desirable. Reported herein is an air-stable, tetragonal FeII complex, Fe(HMTI)(CN)2 (HMTI = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene), with a 1.25 ns metal-to-ligand charge-transfer (MLCT) lifetime. The structure has been determined, and the photophysical properties have been examined in a variety of solvents. The HMTI ligand is highly π-acidic due to low-lying π*(C═N), which enhances ΔFe via stabilizing t2g orbitals. The inflexible geometry of the macrocycle results in short Fe-N bonds, and density functional theory calculations show that this rigidity results in an unusual set of nested potential energy surfaces. Moreover, the lifetime and energy of the MLCT state depends strongly on the solvent environment. This dependence is caused by modulation of the axial ligand-field strength by Lewis acid-base interactions between the solvent and the cyano ligands. This work represents the first example of a long-lived charge transfer state in an FeII macrocyclic species.
Collapse
Affiliation(s)
- Justin T Malme
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Reese A Clendening
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ryan Ash
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Taylor Curry
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tong Ren
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Katayama T, Choi TK, Khakhulin D, Dohn AO, Milne CJ, Vankó G, Németh Z, Lima FA, Szlachetko J, Sato T, Nozawa S, Adachi SI, Yabashi M, Penfold TJ, Gawelda W, Levi G. Atomic-scale observation of solvent reorganization influencing photoinduced structural dynamics in a copper complex photosensitizer. Chem Sci 2023; 14:2572-2584. [PMID: 36908966 PMCID: PMC9993854 DOI: 10.1039/d2sc06600a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Photochemical reactions in solution are governed by a complex interplay between transient intramolecular electronic and nuclear structural changes and accompanying solvent rearrangements. State-of-the-art time-resolved X-ray solution scattering has emerged in the last decade as a powerful technique to observe solute and solvent motions in real time. However, disentangling solute and solvent dynamics and how they mutually influence each other remains challenging. Here, we simultaneously measure femtosecond X-ray emission and scattering to track both the intramolecular and solvation structural dynamics following photoexcitation of a solvated copper photosensitizer. Quantitative analysis assisted by molecular dynamics simulations reveals a two-step ligand flattening strongly coupled to the solvent reorganization, which conventional optical methods could not discern. First, a ballistic flattening triggers coherent motions of surrounding acetonitrile molecules. In turn, the approach of acetonitrile molecules to the copper atom mediates the decay of intramolecular coherent vibrations and induces a further ligand flattening. These direct structural insights reveal that photoinduced solute and solvent motions can be intimately intertwined, explaining how the key initial steps of light harvesting are affected by the solvent on the atomic time and length scale. Ultimately, this work takes a step forward in understanding the microscopic mechanisms of the bidirectional influence between transient solvent reorganization and photoinduced solute structural dynamics.
Collapse
Affiliation(s)
- Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute Kouto 1-1-1, Sayo Hyogo 679-5198 Japan.,RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Tae-Kyu Choi
- XFEL Division, Pohang Accelerator Laboratory Jigok-ro 127-80 Pohang 37673 Republic of Korea
| | | | - Asmus O Dohn
- Science Institute, University of Iceland 107 Reykjavík Iceland .,DTU Physics, Technical University of Denmark Kongens Lyngby Denmark
| | | | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | | | - Jakub Szlachetko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University PL-30392 Kraków Poland
| | - Tokushi Sato
- European XFEL Holzkoppel 4, Schenefeld 22869 Germany
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Thomas J Penfold
- Chemistry-School of Natural and Environmental Sciences, Newcastle University Newcastle Upon-Tyne NE1 7RU UK
| | - Wojciech Gawelda
- Departamento de Química, Universidad Autónoma de Madrid, Campus Cantoblanco 28047 Madrid Spain.,IMDEA-Nanociencia, Campus Cantoblanco C/Faraday 9 28049 Madrid Spain.,Faculty of Physics, Adam Mickiewicz University 61-614 Poznań Poland
| | - Gianluca Levi
- Science Institute, University of Iceland 107 Reykjavík Iceland
| |
Collapse
|
24
|
Hu Q, Zhang C, Wu X, Liang G, Wang L, Niu X, Wang Z, Si WD, Han Y, Huang R, Xiao J, Sun D. Highly Effective Hybrid Copper(I) Iodide Cluster Emitter with Negative Thermal Quenched Phosphorescence for X-Ray Imaging. Angew Chem Int Ed Engl 2023; 62:e202217784. [PMID: 36647290 DOI: 10.1002/anie.202217784] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
The low efficiency triplet emission of hybrid copper(I) iodide clusters is a critical obstacle to their further practical optoelectronic application. Herein, we present an efficient hybrid copper(I) iodide cluster emitter (DBA)4 Cu4 I4 , where the cooperation of excited state structure reorganization and the metallophilicity interaction enables ultra-bright triplet yellow-orange emission with a photoluminescence quantum yield over 94.9 %, and the phonon-assisted de-trapping process of exciton induces the negative thermal quenching effect at 80-300 K. We also investigate the potential of this emitter for X-ray imaging. The (DBA)4 Cu4 I4 wafer demonstrates a light yield higher than 104 photons MeV-1 and a high spatial resolution of ≈5.0 lp mm-1 , showing great potential in practical X-ray imaging applications. Our new copper(I) iodide cluster emitter can serve as a model for investigating the thermodynamic mechanism of photoluminescence in hybrid copper(I) halide phosphorescence materials.
Collapse
Affiliation(s)
- Qingsong Hu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China.,Hubei Longzhong Laboratory, Xiangyang, 441000, Hubei, China
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Xian Wu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China.,Hubei Longzhong Laboratory, Xiangyang, 441000, Hubei, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China.,Hubei Longzhong Laboratory, Xiangyang, 441000, Hubei, China
| | - Lei Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China.,Hubei Longzhong Laboratory, Xiangyang, 441000, Hubei, China
| | - Xiaowei Niu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Yibo Han
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Ruiqin Huang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Jiawen Xiao
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| |
Collapse
|
25
|
Rosko MC, Espinoza EM, Arteta S, Kromer S, Wheeler JP, Castellano FN. Employing Long-Range Inductive Effects to Modulate Metal-to-Ligand Charge Transfer Photoluminescence in Homoleptic Cu(I) Complexes. Inorg Chem 2023; 62:3248-3259. [PMID: 36749829 DOI: 10.1021/acs.inorgchem.2c04315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Four Cu(I) bis(phenanthroline) photosensitizers formulated from a new ligand structural motif (Cu1-Cu4) coded according to their 2,9-substituents were synthesized, structurally characterized, and fully evaluated using steady-state and time-resolved absorption and photoluminescence (PL) measurements as well as electrochemistry. The 2,9-disubstituted-3,4,7,8-tetramethyl-1,10-phenanthroline ligands feature the following six-membered ring systems prepared through photochemical synthesis: 4,4-dimethylcyclohexyl (1), tetrahydro-2H-pyran-4-yl (2), tetrahydro-2H-thiopyran-4-yl (3), and 4,4-difluorocyclohexyl (4). Universally, these Cu(I) metal-to-ligand charge transfer (MLCT) chromophores display excited-state lifetimes on the microsecond time scale at room temperature, including the three longest-lived homoleptic cuprous phenanthroline excited states measured to date in de-aerated CH2Cl2, τ = 2.5-4.3 μs. This series of molecules also feature high PL quantum efficiencies (ΦPL = 5.3-12% in CH2Cl2). Temperature-dependent PL lifetime experiments confirmed that all these molecules exhibit reverse intersystem crossing and display thermally activated delayed PL from a 1MLCT excited state lying slightly above the 3MLCT state, 1050-1490 cm-1. Ultrafast and conventional transient absorption measurements confirmed that the PL originates from the MLCT excited state, which remains sterically arrested, preventing an excessive flattening distortion even when dissolved in Lewis basic CH3CN. Combined PL and electrochemical data provided evidence that Cu1-Cu4 are highly potent photoreductants (Eox* = -1.73 to -1.62 V vs Fc+/0 in CH3CN), whose potentials are altered solely based on which heteroatoms or substituents are resident on the 2,9-appended ring derivatives. It is proposed that long-range electronic inductive effects are responsible for the systematic modulation observed in the PL spectra, excited-state lifetimes, and the ground state absorption spectra and redox potentials. Cu1-Cu4 quantitatively follow the energy gap law, correlating well with structurally related cuprous phenanthrolines and are also shown to triplet photosensitize the excited states of 9,10-diphenylanthracene with bimolecular rate constants ranging from 1.61 to 2.82 × 108 M-1 s-1. The ability to tailor both photophysical and electrochemical properties using long-range inductive effects imposed by the 2,9-ring platforms advocates new directions for future MLCT chromophore discovery.
Collapse
Affiliation(s)
- Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Eli M Espinoza
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Sarah Arteta
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Sarah Kromer
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan P Wheeler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
26
|
Interplay of electronic and geometric structure on Cu phenanthroline, bipyridine and derivative complexes, synthesis, characterization, and reactivity towards oxygen. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Amouri H. Luminescent Complexes of Platinum, Iridium, and Coinage Metals Containing N-Heterocyclic Carbene Ligands: Design, Structural Diversity, and Photophysical Properties. Chem Rev 2023; 123:230-270. [PMID: 36315851 DOI: 10.1021/acs.chemrev.2c00206] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The employment of N-heterocyclic carbenes (NHCs) to design luminescent metal compounds has been the focus of recent intense investigations because of the strong σ-donor properties, which bring stability to the whole system and tend to push the d-d dark states so high in energy that they are rendered thermally inaccessible, thereby generating highly emissive complexes for useful applications such as organic light-emitting diodes (OLEDs), or featuring chiroptical properties, a field that is still in its infancy. Among the NHC complexes, those containing organic chromophores such as naphthalimide, pyrene, and carbazole exhibit rich emission behavior and thus have attracted extensive interest in the past five years, especially carbene coinage metal complexes with carbazolate ligands. In this review, the design strategies of NHC-based luminescent platinum and iridium complexes with large spin-orbit-coupling (SOC) are described first. Subsequent paragraphs illustrate the recent advances of luminescent coinage metal complexes with nucleophilic- and electrophilic-based carbenes based on silver, gold, and copper metal complexes that have the ability to display rich excited state emissions in particular via thermally activated delayed fluorescence (TADF). The luminescence mechanism and excited state dynamics are also described. We then summarize the advance of NHC-metal complexes in the aforementioned fields in recent years. Finally, we propose the development trend of this fast-growing field of luminescent NHC-metal complexes.
Collapse
Affiliation(s)
- Hani Amouri
- CNRS, IPCM (UMR 8232), Sorbonne Université-Faculté des Sciences et Ingénerie Campus Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, Cedex 05, France
| |
Collapse
|
28
|
Dorn M, East NR, Förster C, Kitzmann WR, Moll J, Reichenauer F, Reuter T, Stein L, Heinze K. d-d and charge transfer photochemistry of 3d metal complexes. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:707-788. [DOI: 10.1016/b978-0-12-823144-9.00063-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Seidler B, Tran JH, Hniopek J, Traber P, Görls H, Gräfe S, Schmitt M, Popp J, Schulz M, Dietzek‐Ivanšić B. Photophysics of Anionic Bis(4H-imidazolato)Cu I Complexes. Chemistry 2022; 28:e202202697. [PMID: 36148551 PMCID: PMC10092831 DOI: 10.1002/chem.202202697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 12/29/2022]
Abstract
In this paper, the photophysical behavior of four panchromatically absorbing, homoleptic bis(4H-imidazolato)CuI complexes, with a systematic variation in the electron-withdrawing properties of the imidazolate ligand, were studied by wavelength-dependent time-resolved femtosecond transient absorption spectroscopy. Excitation at 400, 480, and 630 nm populates metal-to-ligand charge transfer, intraligand charge transfer, and mixed-character singlet states. The pump wavelength-dependent transient absorption data were analyzed by a recently established 2D correlation approach. Data analysis revealed that all excitation conditions yield similar excited-state dynamics. Key to the excited-state relaxation is fast, sub-picosecond pseudo-Jahn-Teller distortion, which is accompanied by the relocalization of electron density onto a single ligand from the initially delocalized state at Franck-Condon geometry. Subsequent intersystem crossing to the triplet manifold is followed by a sub-100 ps decay to the ground state. The fast, nonradiative decay is rationalized by the low triplet-state energy as found by DFT calculations, which suggest perspective treatment at the strong coupling limit of the energy gap law.
Collapse
Affiliation(s)
- Bianca Seidler
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
| | - Jens H. Tran
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Julian Hniopek
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
- Abbe Center of Photonics (ACP)Albert-Einstein-Str. 607745JenaGermany
| | - Philipp Traber
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Helmar Görls
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstr. 807743JenaGermany
| | - Stefanie Gräfe
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Abbe Center of Photonics (ACP)Albert-Einstein-Str. 607745JenaGermany
| | - Michael Schmitt
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Abbe Center of Photonics (ACP)Albert-Einstein-Str. 607745JenaGermany
| | - Jürgen Popp
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
- Abbe Center of Photonics (ACP)Albert-Einstein-Str. 607745JenaGermany
| | - Martin Schulz
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
- Abbe Center of Photonics (ACP)Albert-Einstein-Str. 607745JenaGermany
- Centre for Energy and Environmental Chemistry Jena (CEEC-Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| |
Collapse
|
30
|
Substituent effect on the photoinduced geometrical changes of Cu (I)Phen 2 complexes. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Potocny AM, Phelan BT, Sprague-Klein EA, Mara MW, Tiede DM, Chen LX, Mulfort KL. Harnessing Intermolecular Interactions to Promote Long-Lived Photoinduced Charge Separation from Copper Phenanthroline Chromophores. Inorg Chem 2022; 61:19119-19133. [DOI: 10.1021/acs.inorgchem.2c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Andrea M. Potocny
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Brian T. Phelan
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Emily A. Sprague-Klein
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Michael W. Mara
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - David M. Tiede
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Lin X. Chen
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Karen L. Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| |
Collapse
|
32
|
Kim D, Gray TG, Teets TS. Heteroleptic copper(I) charge-transfer chromophores with panchromatic absorption. Chem Commun (Camb) 2022; 58:11446-11449. [PMID: 36148809 DOI: 10.1039/d2cc03873k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new heteroleptic bis-chelate Cu(I) complexes showing panchromatic visible absorption are described here. With this heteroleptic design, we demonstrate that the energy levels of the spatially separated HOMO and LUMO can be independently and systematically controlled via ligand modification, with charge-transfer absorption bands throughout the visible and NIR regions that cover a wider range than typical Cu(I) chromophores.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, TX, 77204-5003, USA.
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
33
|
Ito A, Iwamura M, Sakuda E. Excited-state dynamics of luminescent transition metal complexes with metallophilic and donor–acceptor interactions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Recent Advances in Metal-Based Molecular Photosensitizers for Artificial Photosynthesis. Catalysts 2022. [DOI: 10.3390/catal12080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Artificial photosynthesis (AP) has been extensively applied in energy conversion and environment pollutants treatment. Considering the urgent demand for clean energy for human society, many researchers have endeavored to develop materials for AP. Among the materials for AP, photosensitizers play a critical role in light absorption and charge separation. Due to the fact of their excellent tunability and performance, metal-based complexes stand out from many photocatalysis photosensitizers. In this review, the evaluation parameters for photosensitizers are first summarized and then the recent developments in molecular photosensitizers based on transition metal complexes are presented. The photosensitizers in this review are divided into two categories: noble-metal-based and noble-metal-free complexes. The subcategories for each type of photosensitizer in this review are organized by element, focusing first on ruthenium, iridium, and rhenium and then on manganese, iron, and copper. Various examples of recently developed photosensitizers are also presented.
Collapse
|
35
|
Rentschler M, Boden PJ, Argüello Cordero MA, Steiger ST, Schmid MA, Yang Y, Niedner-Schatteburg G, Karnahl M, Lochbrunner S, Tschierlei S. Unexpected Boost in Activity of a Cu(I) Photosensitizer by Stabilizing a Transient Excited State. Inorg Chem 2022; 61:12249-12261. [PMID: 35877171 DOI: 10.1021/acs.inorgchem.2c01468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we present a slight but surprisingly successful structural modification of the previously reported heteroleptic Cu(I) photosensitizer Cubiipo ([(xantphos)Cu(biipo)]PF6; biipo = 16H-benzo-[4',5']-isoquinolino-[2',1':1,2]-imidazo-[4,5-f]-[1,10]-phenanthrolin-16-one). As a key feature, biipo bears a naphthalimide unit at the back, which is directly fused to a phenanthroline moiety to extend the conjugated π-system. This ligand was now altered to include two additional methyl groups at the 2,9-positions at the phenanthroline scaffold. Comparing the novel Cudmbiipo complex to its predecessor, ultrafast transient absorption spectroscopy reveals the efficient suppression of a major deactivation pathway by stabilization of a transient triplet state. Furthermore, quantitative measurements of singlet oxygen evolution in solution confirmed that a larger fraction of the excited-state population is transferred to the photocatalytically active ligand-centered triplet 3LC state with a much longer lifetime of ∼30 μs compared to Cubiipo (2.6 μs). In addition, Cudmbiipo was compared with the well-established reference complex Cubcp ([(xantphos)Cu(bathocuproine)]PF6) in terms of its photophysical and photocatalytic properties by applying time-resolved femto- and nanosecond absorption, step-scan Fourier transform infrared (FTIR), and emission spectroscopies. Superior light-harvesting properties and a greatly enhanced excited-state lifetime with respect to Cubcp enable Cudmbiipo to be more active in exemplary photocatalytic applications, i.e., in the formation of singlet oxygen and the isomerization of (E)-stilbene.
Collapse
Affiliation(s)
- Martin Rentschler
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Pit Jean Boden
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Miguel A Argüello Cordero
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 23, 18051 Rostock, Germany
| | - Sophie Theres Steiger
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Marie-Ann Schmid
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Yingya Yang
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Gereon Niedner-Schatteburg
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Michael Karnahl
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 23, 18051 Rostock, Germany
| | - Stefanie Tschierlei
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| |
Collapse
|
36
|
Griffin PJ, Charette BJ, Burke JH, Vura-Weis J, Schaller RD, Gosztola DJ, Olshansky L. Toward Improved Charge Separation through Conformational Control in Copper Coordination Complexes. J Am Chem Soc 2022; 144:12116-12126. [PMID: 35762527 DOI: 10.1021/jacs.2c02580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The continued development of solar energy as a renewable resource necessitates new approaches to sustaining photodriven charge separation (CS). We present a bioinspired approach in which photoinduced conformational rearrangements at a ligand are translated into changes in coordination geometry and environment about a bound metal ion. Taking advantage of the differential coordination properties of CuI and CuII, these dynamics aim to facilitate intramolecular electron transfer (ET) from CuI to the ligand to create a CS state. The synthesis and photophysical characterization of CuCl(dpaaR) (dpaa = dipicolylaminoacetophenone, with R = H and OMe) are presented. These ligands incorporate a fluorophore that gives rise to a twisted intramolecular charge transfer (TICT) excited state. Excited-state ligand twisting provides a tetragonal coordination geometry capable of capturing CuII when an internal ortho-OMe binding site is present. NMR, IR, electron paramagnetic resonance (EPR), and optical spectroscopies, X-ray diffraction, and electrochemical methods establish the ground-state properties of these CuI and CuII complexes. The photophysical dynamics of the CuI complexes are explored by time-resolved photoluminescence and optical transient absorption spectroscopies. Relative to control complexes lacking a TICT-active ligand, the lifetimes of CS states are enhanced ∼1000-fold. Further, the presence of the ortho-OMe substituent greatly enhances the lifetime of the TICT* state and biases the coordination environment toward CuII. The presence of CuI decreases photoinduced degradation from 14 to <2% but does not result in significant quenching via ET. Factors affecting CS in these systems are discussed, laying the groundwork for our strategy toward solar energy conversion.
Collapse
Affiliation(s)
- Paul J Griffin
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Bronte J Charette
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - John H Burke
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David J Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lisa Olshansky
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Duston TB, Pike RD, Welch DA, Nicholas AD. Pyridine interaction with γ-CuI: synergy between molecular dynamics and molecular orbital approaches to molecule/surface interactions. Phys Chem Chem Phys 2022; 24:7950-7960. [PMID: 35312738 DOI: 10.1039/d1cp05888f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have used a synergistic computational approach merging Molecular Dynamics (MD) simulations with density functional theory (DFT) to investigate the mechanistic aspects of chemisorption of pyridine (Py) molecules on copper iodide. The presence of both positive and negative ions at the metal halide surface presents a chemical environment in which pyridine molecules may act as charge donors and/or acceptors. Computational results reveal that Py molecules interact with the γ-CuI(111) surface owing to a combination of noncovalent Cu⋯N, Cu/I⋯π/π*, and hydrogen bonding interactions as determined via Natural Bonding Orbitals (NBO). Introduction of surface defect sites alters the interaction dynamics, resulting in a "localizing effect" in which the Py molecules clump together within the defect site. Significant enhancement of hydrogen bonding between C-H σ* and I 6p orbitals results in more tightly surface-bound Py molecules. Our findings provide a platform for understanding the interaction between Py and Py-derivative vapors and metal-based surfaces that contain both electron acceptor and donor atoms.
Collapse
Affiliation(s)
- Titouan B Duston
- Department of Chemistry, William & Mary, Williamsburg, VA 23187, USA.
| | - Robert D Pike
- Department of Chemistry, William & Mary, Williamsburg, VA 23187, USA.
| | - David A Welch
- Chemistry Department, Farmingdale State College, Farmingdale, NY, 11784, USA.
| | - Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA.
| |
Collapse
|
38
|
Yang JG, Song XF, Cheng G, Wu S, Feng X, Cui G, To WP, Chang X, Chen Y, Che CM, Yang C, Li K. Conformational Engineering of Two-Coordinate Gold(I) Complexes: Regulation of Excited-State Dynamics for Efficient Delayed Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13539-13549. [PMID: 35286066 DOI: 10.1021/acsami.2c01776] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbene-Au-amide (CMA) type complexes, in which the amide and carbene ligands act as an electron donor (D) and acceptor (A), respectively, can exhibit strong delayed fluorescence (DF) from a ligand to ligand charge transfer (LLCT) excited state. Although the coplanar donor-acceptor (D-A) conformation has been suggested to be a crucial factor favoring radiative decay of the charge-transfer excited state, the geometric structural factor underpinning the excited-state mechanism of CMA complexes remains an open question. We herein develop a new class of carbene-Au-carbazolate complexes by introducing large aromatic substituents onto the carbazolate ligand, the presence of which are conceived to restrict the rotation of the Au-N bond and thus confine a twisted D-A conformation in both ground and excited states. A highly twisted D-A orientation is found for the complexes in their crystal structures. Photophysical studies reveal that the twisted conformation induces a decrease in the gap (ΔEST) between the lowest singlet excited state (S1) and the triplet manifold (T1) and thus a faster reverse intersystem crossing (RISC) from T1 to S1 at the expense of oscillator strength for an S1 radiative transition. In comparison with the coplanar analogue, the twisted complexes exhibit comparable or improved DF with quantum yields of up to 94% and short emission lifetimes down to sub-microseconds. The tuning of excited-state dynamics has been well interpreted by density functional theory (DFT) and time-dependent DFT (TDDFT) calculations, which unveil much faster RISC rates for twisted complexes. Solution-processed organic light-emitting diodes (OLEDs) based on the new CMA complexes show promising performances with almost negligible efficiency rolloff at a brightness of 1000 cd m-2. This work implies that neither a coplanar ground-state D-A conformation nor a dynamic rotation of the M-N bond is the key to the realization of efficient DF for CMA complexes.
Collapse
Affiliation(s)
- Jian-Gong Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Siping Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Xingyu Feng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Chuluo Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Kai Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
39
|
Bimetallic Copper/Ruthenium/Osmium Complexes: Observation of Conformational Differences Between the Solution Phase and Solid State by Atomic Pair Distribution Function Analysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Vogt M, Smolentsev G. Time‐Resolved X‐Ray Spectroscopy to Study Luminophores with Relevance for OLEDs. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthias Vogt
- Fakultät für Naturwissenschaften II, Institut für Chemie Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Str. 2 06120 Halle (Saale) Germany
| | - Grigory Smolentsev
- Energy and Environment Research Division Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen-PSI Switzerland
| |
Collapse
|
41
|
Santander-Nelli M, Cortés-Arriagada D, Sanhueza L, Dreyse P. Dependence between luminescence properties of Cu( i) complexes and electronic/structural parameters derived from steric effects. NEW J CHEM 2022. [DOI: 10.1039/d2nj00407k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quantification of steric effects induced by bulky N^N ligands and their relationship with the luminescence properties of Cu(i) complexes.
Collapse
Affiliation(s)
- Mireya Santander-Nelli
- Advanced Integrated Technologies (AINTECH), Chorrillo Uno, Parcela 21, Lampa, Santiago, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Diego Cortés-Arriagada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación. Universidad Tecnológica Metropolitana, Ignacio Valdivieso, 2409, San Joaquín, Santiago 8940577, Chile
| | - Luis Sanhueza
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Universidad Católica de Temuco, Av. Rudecindo Ortega 02950, Temuco, Chile
| | - Paulina Dreyse
- Departamento de Química, Universidad Técnica Federico Santa María, Avda. España 1680, Casilla 2390123, Valparaíso, Chile
| |
Collapse
|
42
|
Santander-Nelli M, Sanhueza L, Navas D, Rossin E, Natali M, Dreyse P. Unusual fluorescence behaviour of a heteroleptic Cu( i) complex featuring strong electron donating groups on a diimine ligand. NEW J CHEM 2022. [DOI: 10.1039/d1nj04811b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of a novel bulky diimine ligand and its corresponding heteroleptic Cu(i). Unusual fluorescence behavior of a novel Cu(i) complex due to a strong electron-donor diimine ligand.
Collapse
Affiliation(s)
- Mireya Santander-Nelli
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 2390123, Valparaíso, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Luis Sanhueza
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Universidad Católica de Temuco, Av. Rudecindo Ortega, 02950 Temuco, Chile
| | - Daniel Navas
- Departamento de Química, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| | - Elena Rossin
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Paulina Dreyse
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 2390123, Valparaíso, Chile
| |
Collapse
|
43
|
Sun ZZ, Zhu N, Pan X, Wang G, Yang Y, Qiu QM, Li ZF, Xin XL, Liu JM, Li XQ, Jin Q, Ren ZG, Zhou Q. Designing luminescent diimine-Cu (I)-phosphine complexes by tuning N-ligand and counteranions: correlation of weak interactions, luminescence and THz absorption spectra. CrystEngComm 2022. [DOI: 10.1039/d1ce01574e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, six new [Cu(N^N)(P^P)]+/0 complexes with different N-ligand and counteranions [Cu2(dmp)2(bdppmapy)I2] (1), [Cu2(dmp)2(bdppmapy)(CN)2]·3CH3OH (2), [Cu(dmp)(bdppmapy)](BF4) (3), [Cu(dmp)(bdppmapy)](ClO4) (4), [Cu(phen)(bdppmapy)](BF4) (5), [Cu(phen)(bdppmapy)](ClO4) (6) have been synthesized and characterized (bdppmapy = N,N-bis[(diphenylphosphino)methyl]-2-pyridinamine,...
Collapse
|
44
|
Karimata A, Khusnutdinova JR. Photo- and triboluminescent pyridinophane Cu complexes: New organometallic tools for mechanoresponsive materials. Dalton Trans 2022; 51:3411-3420. [DOI: 10.1039/d1dt04305f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of mechanoresponsive polymers has emerged as a new, attractive area of research in which changes at the molecular level exert macrolevel effects in the bulk material, and vice...
Collapse
|
45
|
Tudor CA, Iliş M, Secu M, Ferbinteanu M, Cîrcu V. Luminescent heteroleptic copper(I) complexes with phosphine and N-benzoyl thiourea ligands: Synthesis, structure and emission properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
46
|
Peppas A, Sokalis D, Perganti D, Schnakenburg G, Falaras P, Philippopoulos A. Sterically demanding pyridine-quinoline anchoring ligands as building blocks for copper(I)-based dye-sensitized solar cells (DSSCs) complexes. Dalton Trans 2022; 51:15049-15066. [DOI: 10.1039/d2dt02382b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pfitzinger condensation reaction was employed to synthesise N^N sterically demanding ligands bearing carboxylic acid anchoring groups, namely 2,2΄-pyridyl-quinoline-4-carboxylic acid (pqca); 6'-methyl-2,2΄-pyridyl-quinoline-4-carboxylic acid (6'-Mepqca); 8-methyl-2,2΄-pyridyl-quinoline-4-carboxylic acid (8-Mepqca) and 8,6'-dimethyl-2,2΄-pyridyl-quinoline-4-carboxylic acid...
Collapse
|
47
|
Shekhovtsov N, Kokina TE, Vinogradova KA, Panarin AY, Rakhmanova MI, Naumov DY, Pervukhina NV, Nikolaenkova EB, Krivopalov VP, Czerwieniec R, Bushuev MB. Near-infrared emitting copper(I) complexes with a pyrazolylpyrimidine ligand: exploring relaxation pathways. Dalton Trans 2022; 51:2898-2911. [DOI: 10.1039/d1dt04325k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mononuclear copper(I) complexes [CuL2]I (1), [CuL2]2[Cu2I4]·2MeCN (2) and [CuL2]PF6 (3) with a new chelating pyrazolylpyrimidine ligand, 2-(3,5-dimethyl-1H-pyrazol-1-yl)-4,6-diphenylpyrimidine (L), were synthesized. In the structures of complex cations [CuL2]+, Cu+ ions coordinate...
Collapse
|
48
|
Mara MW, Phelan BT, Xie ZL, Kim TW, Hsu DJ, Liu X, Valentine AJS, Kim P, Li X, Adachi SI, Katayama T, Mulfort KL, Chen LX. Unveiling ultrafast dynamics in bridged bimetallic complexes using optical and X-ray transient absorption spectroscopies. Chem Sci 2022; 13:1715-1724. [PMID: 35282628 PMCID: PMC8827017 DOI: 10.1039/d1sc05034f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/14/2022] [Indexed: 01/04/2023] Open
Abstract
In photosynthetic systems employing multiple transition metal centers, the properties of charge-transfer states are tuned by the coupling between metal centers. Here, we use ultrafast optical and X-ray spectroscopies to elucidate the effects of metal–metal interactions in a bimetallic tetrapyridophenazine-bridged Os(ii)/Cu(i) complex. Despite having an appropriate driving force for Os-to-Cu hole transfer in the Os(ii) moiety excited state, no such charge transfer was observed. However, excited-state coupling between the metal centers is present, evidenced by variations in the Os MLCT lifetime depending on the identity of the opposite metal center. This coupling results in concerted coherent vibrations appearing in the relaxation kinetics of the MLCT states for both Cu and Os centers. These vibrations are dominated by metal–ligand contraction at the Cu/Os centers, which are in-phase and linked through the conjugated bridging ligand. This study shows how vibronic coupling between transition metal centers affects the ultrafast dynamics in bridged, multi-metallic systems from the earliest times after photoexcitation to excited-state decay, presenting avenues for tuning charge-transfer states through judicious choice of metal/ligand groups. In photosynthetic systems employing multiple transition metal centers, the properties of charge-transfer states are tuned by the coupling between metal centers.![]()
Collapse
Affiliation(s)
- Michael W. Mara
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Brian T. Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
| | - Zhu-Lin Xie
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
| | - Tae Wu Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
| | - Darren J. Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Xiaolin Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | - Pyosang Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Shin-ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Karen L. Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
| | - Lin X. Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
49
|
Xia RQ, Zheng J, Wei RJ, He J, Ye DQ, Li MD, Ning GH, Li D. Strong visible-light-absorbing Bodipy-based Cu(I) cyclic trinuclear sensitizers for photocatalysis. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00353h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploring earth-abundant photosensitizers (PSs) with strong visible-light absorption is a long-standing interest, yet still challenging. Although copper(I) cyclic trinuclear complexes (Cu-CTCs) have exhibited fascinating photoluminescence properties, their potential application as...
Collapse
|
50
|
Argüello Cordero MA, Boden PJ, Rentschler M, Di Martino-Fumo P, Frey W, Yang Y, Gerhards M, Karnahl M, Lochbrunner S, Tschierlei S. Comprehensive Picture of the Excited State Dynamics of Cu(I)- and Ru(II)-Based Photosensitizers with Long-Lived Triplet States. Inorg Chem 2021; 61:214-226. [PMID: 34908410 DOI: 10.1021/acs.inorgchem.1c02771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ru(II)- and Cu(I)-based photosensitizers featuring the recently developed biipo ligand (16H-benzo-[4',5']-isoquinolino-[2',1',:1,2]-imidazo-[4,5-f]-[1,10]-phenanthrolin-16-one) were comprehensively investigated by X-ray crystallography, electrochemistry, and especially several time-resolved spectroscopic methods covering all time scales from femto- to milliseconds. The analysis of the experimental results is supported by density functional theory (DFT) calculations. The biipo ligand consists of a coordinating 1,10-phenanthroline moiety fused with a 1,8-naphthalimide unit, which results in an extended π-system with an incorporated electron acceptor moiety. In a previous study, it was shown that this ligand enabled a Ru(II) complex that is an efficient singlet oxygen producer and of potential use for other light-driven applications due to its long emission lifetime. The goal of our here presented research is to provide a full spectroscopic picture of the processes that follow optical excitation. Interestingly, the Ru(II) and Cu(I) complexes differ in their characteristics even though the lowest electronically excited states involve in both cases the biipo ligand. The combined spectroscopic results indicate that an emissive 3MLCT state and a rather dark 3LC state are populated, each to some extent. For the Cu(I) complex, most of the excited population ends up in the 3LC state with an extraordinary lifetime of 439 μs in the solid state at 20 K, while a significant population of the 3MLCT state causes luminescence for the Ru(II) complex. Hence, there is a balance between these two states, which can be tuned by altering the metal center or even by thermal energy, as suggested by the temperature-dependent experiments.
Collapse
Affiliation(s)
- Miguel A Argüello Cordero
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Pit Jean Boden
- Chemistry Department and Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Martin Rentschler
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.,Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Patrick Di Martino-Fumo
- Chemistry Department and Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Yingya Yang
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Markus Gerhards
- Chemistry Department and Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Michael Karnahl
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.,Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Stefanie Tschierlei
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|