1
|
AlAli A, Alkanad M, Alkanad K, Venkatappa A, Sirawase N, Warad I, Khanum SA. A comprehensive review on anti-inflammatory, antibacterial, anticancer and antifungal properties of several bivalent transition metal complexes. Bioorg Chem 2025; 160:108422. [PMID: 40187028 DOI: 10.1016/j.bioorg.2025.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Transition metal complexes have been recognized as possible therapeutic agents, attributed to their special biological actions, including anti-inflammatory, antibacterial, antifungal, and anticancer. The pharmacological perspective connected with Copper (Cu), Cobalt (Co), Nickel (Ni), Manganese (Mn), Palladium (Pd), Zinc (Zn), and Platinum (Pt) metal(II) complexes is comprehensively explored in-depth in this research. The complexes show unique coordination chemistry and modes of action that help interactions with biological targets, including DNA binding, enzyme inhibition, and the formation of reactive oxygen species. All the metal(II) complexes showed notable potential impact in their perspective activity. Conspicuously, Co(II) and Ni(II) complexes show better antibacterial and antifungal action, while Cu(II) and Zn(II) combinations show higher anti-inflammatory activity. While research is constantly investigating alternative metal-based anticancer drugs like Pd(II), which seem to have lowered side effects, Pt(II) complexes especially cisplatin continue to be the benchmark in cancer treatment. Although the possible pharmacological actions are motivating, problems with toxicity and biocompatibility still provide major difficulties, especially in relation to Cd(II) and Hg(II) complexes. Strategies like ligand modification, nanoparticle-based delivery, and prodrug methods are used to increase selectivity and reduce side effects related to metal complexes. This review compiles the most recent developments and continuous research, thereby shedding light on the potential revolutionary power of metal(II) complexes in medical therapy. Understanding their mechanisms and enhancing their safety profiles will help us open the path to creative ideas for addressing some of the most urgent medical issues of today.
Collapse
Affiliation(s)
- Anas AlAli
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Maged Alkanad
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Khaled Alkanad
- Department of Studies in Physics, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Annegowda Venkatappa
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Nischith Sirawase
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Ismail Warad
- Department of Chemistry, AN-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
2
|
Ali A, Rovito G, Stefàno E, De Castro F, Ciccarella G, Migoni D, Panzarini E, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. Synthesis, structural characterization, and cytotoxic evaluation of monofunctional cis-[Pt(NH 3) 2( N7-guanosine/2'-deoxyguanosine)X] (X = Cl, Br, I) complexes with anticancer potential. Dalton Trans 2025. [PMID: 40326234 DOI: 10.1039/d5dt00616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
A series of new monofunctional platinum(II) complexes of the type cis-[Pt(NH3)2(N7-guanosine/2'-deoxyguanosine)X] (X = Cl, Br, I) were synthesized and characterized using NMR spectroscopy, mass spectrometry, and ICP-atomic emission spectroscopy. These complexes are designed to address the limitations of conventional bifunctional platinum-based drugs, such as cisplatin, which include issues with cytotoxicity and selectivity towards cancer cells. By incorporating guanosine or 2'-deoxyguanosine ligands and varying halido substituents, the study investigated how structural modifications influence the selectivity and cytotoxicity of the different analogues. To evaluate the anticancer potential of the newly synthesized platinum derivatives, various cancer cell lines were tested, including renal (Caki-1), uterine cervix (HeLa), breast (MCF-7), lymphoma (Raji), and mesothelioma (ZL-34). Additionally, selectivity against tumor cells was assessed by comparing their cytotoxic effects to those in the healthy, immortalized HK-2 cell line, a proximal tubular cell line derived from a normal human adult male kidney. Cytotoxicity analysis revealed that bromido-substituted Pt(II) complexes exhibited superior cytotoxicity across several cancer cell lines, particularly in HeLa and Raji cells, compared to their chlorido- and iodido-substituted counterparts. The iodido complexes exhibited higher efficacy against MCF-7 breast cancer cells, suggesting tumor-specific selectivity. Notably, these complexes demonstrated lower cytotoxicity in healthy cells compared to most of the tested cancer cell lines, as reflected by generally favorable selectivity indices (SI) relative to cisplatin.
Collapse
Affiliation(s)
- Asjad Ali
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Gianluca Rovito
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Erika Stefàno
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
3
|
Khan A, Dawar P, De S. Thiourea compounds as multifaceted bioactive agents in medicinal chemistry. Bioorg Chem 2025; 158:108319. [PMID: 40058221 DOI: 10.1016/j.bioorg.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Microbial resistance (MR) and cancer are global healthcare pitfalls that have caused millions of deaths and pose a significant pharmaceutical challenge, with clinical cases increasing. Thioureas are preferred structures in medicinal chemistry, chemosensors, and organic synthesis platforms. In fact, thiourea (TU) moieties serve as a common framework for several medications and bioactive substances, demonstrating a wide range of therapeutic and pharmacological accomplishments. The integration of the thiourea moiety into a diverse range of organic molecules has resulted in very flexible compounds with widespread uses in medicinal chemistry. Moreover, for over a century, TU and its metal complexes have been characterized for their biological activity. Finally, we provide an assessment and future outlook of different organo-thiourea derivatives, from the very beginning to the most recent discoveries in medicinal activity.
Collapse
Affiliation(s)
- Adeeba Khan
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Palak Dawar
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Suranjan De
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
4
|
Nkune NW, Abrahamse H. The Combination of Active-Targeted Photodynamic Therapy and Photoactivated Chemotherapy for Enhanced Cancer Treatment. JOURNAL OF BIOPHOTONICS 2025:e70005. [PMID: 40083278 DOI: 10.1002/jbio.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
Scientists have been actively investigating novel therapies that can effectively eradicate cancer cells with negligible side effects in normal tissues when used alone or in a combinatorial approach. Photodynamic therapy has emerged as a promising non-invasive therapy that integrates photosensitizer, oxygen, and a specific wavelength of light for the treatment of cancer. Despite encouraging outcomes yielded by PDT, conventional PSs are faced with longstanding challenges such as poor water solubility, a short half-life, and off-target toxicity. Development of nanotherapeutics has shown great potential in overcoming this issue. The tumor microenvironment is inherently hypoxic, and this promotes tumor resistance to PDT, as it is oxygen-dependent. Photoactivated chemotherapy, an oxygen-independent light-based therapy, utilizes chemotherapeutic regimens that remain inert until exposed to light, allowing target-specific activation while minimizing off-target toxicity. Integration of these techniques can improve selectivity and yield synergistic cytotoxic effects that could improve cancer treatment.
Collapse
Affiliation(s)
- Nkune Williams Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
5
|
Ma X, Xie Y, Tang J, Xue J, Chen Z. Two novel SNS-donor palladium(II) complexes of benzoxazole and benzothiazole derivatives as potential anticancer agents. Dalton Trans 2025; 54:1677-1688. [PMID: 39670532 DOI: 10.1039/d4dt02684e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Two novel mononuclear palladium(II) complexes, [PdL1Cl]Cl (1) and [PdL2Cl]Cl (2) with SNS-donor ligands [where L1 = N-(4-(benzo[d]oxazol-2-yl)phenyl)-2-(bis(2-ethylthioethyl)amino)acetamide, L2 = N-(4-(benzo[d]thiazol-2-yl)phenyl)-2-(bis(2-ethylthioethyl)amino)acetamide], were synthesized and characterized. In vitro antiproliferative activity tests showed that the two palladium(II) complexes displayed excellent antiproliferative activity against all tested cancer cell lines, especially human colon cancer HCT-116, human liver cancer HepG-2, and human breast cancer MDA-MB-231 cells. Spectacularly, complexes 1 and 2 exhibited approximately 8.49- and 6.88-fold higher antiproliferative activity, as compared with cisplatin, against HCT-116, respectively, but were less toxic to human normal colon fibroblast CCD-18Co cell lines with selectivity index (SI = IC50(CCD-18Co)/IC50(HCT-116)) values of 22.43 and 21.48 for 1 and 2, respectively, compared to that of cisplatin (SI, 1.74). These results suggested that the two palladium complexes have the potential to act as candidates for the treatment of colorectal cancer. The interaction of the complexes with CT-DNA and pUC19 plasmid DNA illustrated that both 1 and 2 could strongly bind to the DNA helix via an intercalative mode and covalent interaction and perturb the tertiary structure of DNA, where the DNA binding affinity of 1 was slightly higher than that of 2. Additionally, investigations of the reaction of the two complexes with 5'-GMP and glutathione (GSH) showed that both 1 and 2 could readily react with 5'-GMP and GSH to form Pd-GMP adducts and Pd-GS adducts, respectively, and when 5'-GMP and GSH coexisted, the coordination binding of the complexes with GSH did not prevent the formation of the Pd-GMP adducts. Moreover, Hoechst 33342 staining and flow cytometry analysis demonstrated that the two palladium(II) complexes arrested HCT-116 cells mainly at the G2/M phase, induced mitochondrial-membrane depolarization, increased ROS generation, and triggered obvious cell apoptosis.
Collapse
Affiliation(s)
- Xiaomeng Ma
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Yuting Xie
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Jiazhen Tang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Jian Xue
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Zhanfen Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| |
Collapse
|
6
|
Rodrigues JAO, Kiran NS, Chatterjee A, Prajapati BG, Dhas N, Dos Santos AO, de Sousa FF, Souto EB. Metallodrugs: Synthesis, mechanism of action and nanoencapsulation for targeted chemotherapy. Biochem Pharmacol 2025; 231:116644. [PMID: 39577705 DOI: 10.1016/j.bcp.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
As a multifactorial and heterogeneous disease, cancer has a high mortality rate, and the search for more effective treatments is an enormous challenge. Metal coordination compounds open a range of possibilities that conventional organic and biological molecules can no longer fulfil due to increasing drug resistance. Metallodrugs still have tremendous potential to help overcome drug resistance and find new cures in medicine, considering that at least 25 metallic elements participate in healthy functioning of the human body. Transition metal ions, such as copper, zinc and iron, are incorporated into catalytic proteins, the so-called metalloenzymes, which participate in various chemical reactions necessary for life. The interaction of metal complexes in different pathways with the structural richness of deoxyribonucleic acid encouraged to seek to understand the mechanisms of action and overcome the obstacles encountered for a promising future of these drugs. The success of platinum-based metallodrugs is one of the great inspirations for the search of new metallodrugs, although the approval of these molecules has been slow in recent years due to the risk of systemic toxicity and insufficient understanding of their mechanisms. To overcome the clinical limitations encountered in some metallodrugs, nanoencapsulation has been proposed as a new approach to improve therapeutic index in chemotherapy. The remarkable selectivity of nanoencapsulated metallodrugs and their enhanced capacity to bypass various biological barriers allow site-specific targeting. In this review, we present the advances in the development and use of the most relevant metallodrugs, and new delivery approaches, in the fight against cancer.
Collapse
Affiliation(s)
- Jessica A O Rodrigues
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil.
| | - Neelakanta S Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Bhupendra G Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Adenilson O Dos Santos
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Francisco F de Sousa
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil; Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), 66075-110, Belem, PA, Brazil
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
7
|
Szmigiel-Bakalarz K, Kłopotowska D, Wietrzyk J, Malik M, Morzyk-Ociepa B. Vibrational and DFT Studies and Anticancer Activity of Novel Pd(II) and Pt(II) Complexes with Chloro Derivatives of 7-Azaindole-3-Carbaldehyde. Molecules 2024; 29:5909. [PMID: 39769997 PMCID: PMC11678368 DOI: 10.3390/molecules29245909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigates the structural, vibrational, and biological properties of novel palladium(II) and platinum(II) complexes with 5-chloro-7-azaindole-3-carbaldehyde (5ClL) and 4-chloro-7-azaindole-3-carbaldehyde (4ClL) ligands. Infrared and Raman spectroscopy, combined with DFT (ωB97X-D) calculations, provided valuable information about metal-ligand interactions, the cis or trans conformation of the aldehyde group in the ligands, and the presence of trans isomers in the metal complexes obtained in the solid state. In vitro tests were used to evaluate the antiproliferative activity of the novel complexes against several cancer cell lines, including ovarian cancer (A2780), cisplatin-resistant ovarian cancer (A2780cis), colon cancer (HT-29), and triple-negative breast cancer (MDA-MB-231), as well as normal mouse fibroblasts (BALB/3T3). The platinum complex, trans-[PtCl2(5ClL)2], exhibited superior activity against A2780cis (IC50 = 4.96 ± 0.49 µM) and MDA-MB-231 (IC50 = 4.83 ± 0.38 µM) compared to cisplatin, while the palladium complexes (trans-[PdCl2(4ClL)2] and trans-[PdCl2(5ClL)2]) demonstrated enhanced selectivity with reduced toxicity to normal fibroblasts (IC50 = 11.29 ± 6.65 µM and 14.98 ± 5.59 µM, respectively).
Collapse
Affiliation(s)
- Ksenia Szmigiel-Bakalarz
- Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
| | - Dagmara Kłopotowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114 Wroclaw, Poland; (D.K.); (J.W.)
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114 Wroclaw, Poland; (D.K.); (J.W.)
| | - Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland;
| | - Barbara Morzyk-Ociepa
- Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
| |
Collapse
|
8
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
9
|
Pavlović S, Petrović B, Ćoćić D, Schreurer A, Sretenović S, Nešić MD, Nišavić M, Maric Z, Stanisavljević I, Ćorović I, Simović Marković B, Maric V, Jovanović I, Radić G, Radisavljević S, Jovanović Stević S. New Pd(II)-pincer type complexes as potential antitumor drugs: synthesis, nucleophilic substitution reactions, DNA/HSA interaction, molecular docking study and cytotoxic activity. Dalton Trans 2024; 53:18560-18574. [PMID: 39470017 DOI: 10.1039/d4dt02549k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Two new complexes of Pd(II), [Pd(L1)Cl]Cl (Pd1) and [Pd(L2)Cl]Cl (Pd2), (where L1 = N2,N6-bis(5-methylthiazol-2-yl)pyridine-2,6-dicarboxamide and L2 = N2,N6-di(benzo[d]thiazol-2-yl)pyridine-2.6-dicarboxamide) were synthesized. Characterization of the complexes was performed using elemental analysis, IR, 1H NMR spectroscopy and MALDI-TOF mass spectrometry. The nucleophilic substitution reactions of complexes with L-Methionine (L-Met), L-Cysteine (L-Cys) and guanosine-5'-monophosphate (5'-GMP) were studied by stopped-flow method at physiological conditions (pH = 7.2 and 37 °C). Complex Pd1 was more reactive than Pd2 in all studied reactions, while the order of reactivity of the selected ligands was: L-Met > L-Cys > 5'-GMP. The interaction of complexes with calf thymus-DNA (CT-DNA) was studied by Uv-Vis absorption and fluorescence emission spectroscopy. Competitive binding studies with intercalative agent ethidium bromide (EB) and minor groove binder Hoechst 33258 were performed as well. Both complexes interacted with DNA through intercalation and minor groove binding, where the latter was preferred. Additionally, the interaction of Pd1 and Pd2 complexes with human serum albumin (HSA) was studied employing fluorescence quenching spectroscopy. The results indicate a moderate binding affinity of complexes, with slightly stronger binding of the Pd1. Fluorescence competition experiments with site-markers (eosin Y and ibuprofen) for HSA were used to locate the binding site of Pd1 to the HSA. Additionally, the interaction with DNA and HSA was studied by molecular docking and the revealed results were in good agreement with the experimentally obtained ones. Pd1 complex exhibited cytotoxicity toward human (HCT116) and mouse cell lines (CT26) of colorectal cancer, mouse (4T1) and human (MDA-MB468) breast cancer lines and non-cancerous mouse mesenchymal stem cells (mMSC). In addition, Pd1 complex demonstrated significant selectivity towards cancer cells over non-cancerous mMSC, indicating a high potential to eliminate malignant cells without affecting normal cells. It induced apoptosis in CT26 cells, effectively arrested the cell cycle in the S phase, and selectively down-regulated cyclin D and cyclin E. Moreover, it can alter the expression of cell cycle regulators by increasing p21 and decreasing p-AKT. These findings confirm its ability to disrupt key tumor cell survival signals and suggest that the Pd1 complex is a potent candidate for effective cancer treatment.
Collapse
Affiliation(s)
- Sladjana Pavlović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Biljana Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Dušan Ćoćić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Andreas Schreurer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Snežana Sretenović
- University of Kragujevac, Faculty of Medicinal Science, Department of Internal Medicine, Kragujevac, Serbia
| | - Maja D Nešić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000, Serbia
| | - Marija Nišavić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000, Serbia
| | - Zorana Maric
- University of East Sarajevo, Faculty of Medicine, Studentska 5, 73300 Foca, BiH
| | - Isidora Stanisavljević
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Irfan Ćorović
- General Hospital of Novi Pazar, Department of Internal Medicine, Generala Živkovića 1, 36300 Novi Pazar, Serbia
| | - Bojana Simović Marković
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Veljko Maric
- University of East Sarajevo, Faculty of Medicine, Studentska 5, 73300 Foca, BiH
| | - Ivan Jovanović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Gordana Radić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia.
| | - Snežana Radisavljević
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Snežana Jovanović Stević
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia.
| |
Collapse
|
10
|
Naithani S, Dubey R, Goswami T, Thetiot F, Kumar S. Optical detection strategies for Ni(II) ion using metal-organic chemosensors: from molecular design to environmental applications. Dalton Trans 2024; 53:17409-17428. [PMID: 39345035 DOI: 10.1039/d4dt02376e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nickel is an important element utilized in various industrial/metallurgical processes, such as surgical and dental prostheses, Ni-Cd batteries, paint pigments, electroplating, ceramics, computer magnetic tapes, catalysis, and alloy manufacturing. However, its extensive use and associated waste production have led to increased nickel pollution in soils and water bodies, which adversely affects human health, animals and plants. This issue has prompted researchers to develop various optical probes, hereafter luminescent/colorimetric sensors, for the facile, sensitive and selective detection of nickel, particularly in biological and environmental contexts. In recent years, numerous functionalized chemosensors have been reported for imaging Ni2+, both in vivo and in vitro. In this context, metal-based receptors offer clear advantages over conventional organic sensors (viz., organic ligands, polymers, and membranes) in terms of cost, durability, stability, water solubility, recyclability, chemical flexibility and scope. This review highlights recent advancements in the design and fabrication of hybrid receptors (i.e., metal complexes and MOFs) for the specific detection of Ni2+ ions in complex environmental and biological mixtures.
Collapse
Affiliation(s)
- Sudhanshu Naithani
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| | - Ritesh Dubey
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| | - Franck Thetiot
- CEMCA, CNRS, UMR 6521, Université de Bretagne Occidentale, Brest 29238, France
| | - Sushil Kumar
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
11
|
Kostić M, Marjanović J, Divac V. Organoselenium transition metal complexes as promising candidates in medicine area. J Biol Inorg Chem 2024; 29:555-571. [PMID: 39123093 DOI: 10.1007/s00775-024-02072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The medicinal properties of transition metal complexes are greatly influenced by the nature and physico-chemical features of the ligand present in the complex structure. Due to the unique biological properties of the organoselenium compounds reflected in the variety of pharmacological activities (such as antioxidative, antiviral, antimicrobial and anticancer), the last years have brought increased interest for their use as a ligands compounds in the design and syntheses of range of transition metal-based coordination compounds that have been explored as antitumor and antimicrobial agents. Our aim in this review is to provide the overview of an recent development of the transition metal complexes bearing organoselenium ligands in the structure that could be promising choice for the treatment of various diseases, particularly cancer and infective diseases. For this purpose, the complexes of Co, Ni, Cu, Zn, Ru, Pd, Pt, Au and Sn as the most explored examples will be included and discussed.
Collapse
Affiliation(s)
- Marina Kostić
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia.
| | - Jovana Marjanović
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Vera Divac
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| |
Collapse
|
12
|
Dietl MC, Maag M, Ber S, Rominger F, Rudolph M, Caligiuri I, Andele PK, Mkhalid IAI, Rizzolio F, Nogara PA, Orian L, Scattolin T, Hashmi ASK. Comparative study of the antiproliferative activity of heterometallic carbene gold(i)-platinum(ii) and gold(i)-palladium(ii) complexes in cancer cell lines. Chem Sci 2024:d4sc04585h. [PMID: 39246355 PMCID: PMC11376197 DOI: 10.1039/d4sc04585h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
The stepwise, one-pot synthesis of heterobimetallic carbene gold(i) platinum(ii) complexes from readily available starting materials is presented. The protecting group free methodology is based on the graduated nucleophilicities of aliphatic and aromatic amines as linkers between both metal centers. This enables the selective, sequential installation of the metal fragments. In addition, the obtained complexes were tested as potential anticancer agents and directly compared to their gold(i) palladium(ii) counterparts.
Collapse
Affiliation(s)
- Martin C Dietl
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Melina Maag
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sophia Ber
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS via Franco Gallini 2 33081 Aviano Italy
| | - Pacome K Andele
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS via Franco Gallini 2 33081 Aviano Italy
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Ibraheem A I Mkhalid
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS via Franco Gallini 2 33081 Aviano Italy
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Pablo A Nogara
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul) Av. Leonel de Moura Brizola, 2501 96418-400 Bagé RS Brazil
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
13
|
Vorobyeva SN, Bautina SA, Shekhovtsov NA, Nikolaenkova EB, Sukhikh TS, Golubeva YA, Klyushova LS, Krivopalov VP, Rakhmanova MI, Gourlaouen C, Bushuev MB. N^N^C-Cyclometalated rhodium(III) complexes with isomeric pyrimidine-based ligands: unveiling the impact of isomerism on structural motifs, luminescence and cytotoxicity. Dalton Trans 2024; 53:8398-8416. [PMID: 38683023 DOI: 10.1039/d4dt00824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The impact of isomerism of pyrimidine-based ligands and their rhodium(III) complexes with regard to their structures and properties was investigated. Two isomeric ligands, 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2,5-diphenylpyrimidine (HL2,5) and 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2,6-diphenylpyrimidine (HL2,6), were synthesized. The ligands differ by the degree of steric bulk: the molecular structure of HL2,5 is more distorted due to presence of pyrazolyl and phenyl groups in the neighbouring positions 4 and 5 of the pyrimidine ring. The complexation of HL2,5 and HL2,6 with RhCl3 leads to the sp2 C-H bond activation, resulting in the isolation of two complexes, [RhL2,5(Solv)Cl2]·nEtOH and [RhL2,6(Solv)Cl2]·nEtOH (Solv = H2O, EtOH), with the deprotonated forms of the pyrazolylpyrimidine molecules which coordinate the Rh3+ ion as N^N^C-tridentate ligands. According to DFT modelling, the mechanism of the deprotonation involves (i) the C-H bond breaking in the 2-phenyl group followed by the coordination of the C atom to the Rh atom, (ii) the protonation of coordinated chlorido ligand, (iii) the ejection of the HCl molecule and (iv) the coordination of the H2O molecule. The ligand isomerism has an impact on emission properties and cytotoxicity of the complexes. Although the excited states of the complexes effectively deactivate through S0/T1 and S0/S1 crossings associated with the cleavage of the weak H2O ligands upon excitation, the [RhL2,5(Solv)Cl2]·nEtOH complex appeared to be emissive in the solid state, while [RhL2,6(Solv)Cl2]·nEtOH is non-emissive at all. The complexes show significant cytotoxic activity against cancerous HepG2 and Hep2 cell lines, with the [RhL2,6(Solv)Cl2]·nEtOH complex being more active than its isomer [RhL2,5(Solv)Cl2]·nEtOH. On the other hand, noticeable cytotoxicity of the latter against HepG2 is supplemented by its non-toxicity against non-cancerous MRC-5 cells.
Collapse
Affiliation(s)
- Sofia N Vorobyeva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Sof'ya A Bautina
- Novosibirsk State University, 1, Pirogova str., Novosibirsk 630090, Russia
| | - Nikita A Shekhovtsov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Elena B Nikolaenkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Yuliya A Golubeva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Centre of Fundamental and Translational Medicine (IMBB FRC FTM), 2/12, Timakova str., 630060, Novosibirsk, Russia
| | - Viktor P Krivopalov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Marianna I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France
| | - Mark B Bushuev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| |
Collapse
|
14
|
Milanović Ž, Marković Z, Kesić A, Jovanović Stević S, Petrović B, Avdović E. Influence of acid-base equilibrium on interactions of some monofunctional coumarin Pd(II) complexes with biologically relevant nucleophiles-comprehensive kinetic study. Dalton Trans 2024; 53:8275-8288. [PMID: 38659318 DOI: 10.1039/d4dt00789a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This aimed to develop a comprehensive theoretical protocol for examining substitution reaction processes. The researchers used a theoretical quantum-mechanical protocol based on the QM-ORSA approach, which estimates the kinetic parameters of thermodynamically favourable reaction pathways. This theoretical protocol was validated by experimentally investigating substitution mechanisms in two previously synthesised Pd(II) complexes: chlorido-[(3-(1-(2-hydroxypropylamino)ethylidene)chroman-2,4-dione)]palladium(II) (C1) and chlorido-[(3-(1-(2-mercaptoethylamino)-ethylidene)-chroman-2,4dione)]palladium(II) (C2), along with biologically relevant nucleophiles, namely L-cysteine (l-Cys), L-methionine (l-Met), and guanosine-5'-monophosphate (5'-GMP). Reactions were investigated under pseudo-first-order conditions, monitoring nucleophile concentration and temperature changes using stopped-flow UV-vis spectrophotometry. All reactions were conducted under physiological conditions (pH = 7.2) at 37 °C. The reactivity of the studied nucleophiles follows the order: l-Cys > l-Met > 5'-GMP, and the reaction mechanism is associative based on the activation parameters. The experimental and theoretical data showed that C2 is more reactive than C1, confirming that the complexes' structural and electronic properties greatly affect their reactivity with selected nucleophiles. The study's findings have confirmed that the primary interaction occurs with the acid-base species L-Cys, mostly through the involvement of the partially negative sulfur atom (87.2%). On the other hand, C2 has a higher propensity for reacting with L-Cys-, primarily through the partially negative oxygen atom (92.6%). The implementation of this theoretical framework will significantly restrict the utilization of chemical substances, hence facilitating cost reduction and environmental protection.
Collapse
Affiliation(s)
- Žiko Milanović
- University of Kragujevac, Institute of Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Zoran Marković
- University of Kragujevac, Institute of Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
- Department of Natural Science and Mathematics, State University of Novi Pazar, Vuka Karadžića bb, 36300, Novi Pazar, Serbia
| | - Ana Kesić
- University of Kragujevac, Institute of Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Snežana Jovanović Stević
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Biljana Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Edina Avdović
- University of Kragujevac, Institute of Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| |
Collapse
|
15
|
O’Dowd PD, Guerrero AS, Alley KR, Pigg HC, O’Neill F, Meiller J, Hobbs C, Rodrigues DA, Twamley B, O’Sullivan F, DeRose VJ, Griffith DM. Click-Capable Phenanthriplatin Derivatives as Tools to Study Pt(II)-Induced Nucleolar Stress. ACS Chem Biol 2024; 19:875-885. [PMID: 38483263 PMCID: PMC11040607 DOI: 10.1021/acschembio.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/20/2024]
Abstract
It is well established that oxaliplatin, one of the three Pt(II) anticancer drugs approved worldwide, and phenanthriplatin, an important preclinical monofunctional Pt(II) anticancer drug, possess a different mode of action from that of cisplatin and carboplatin, namely, the induction of nucleolar stress. The exact mechanisms that lead to Pt-induced nucleolar stress are, however, still poorly understood. As such, studies aimed at better understanding the biological targets of both oxaliplatin and phenanthriplatin are urgently needed to expand our understanding of Pt-induced nucleolar stress and guide the future design of Pt chemotherapeutics. One approach that has seen great success in the past is the use of Pt-click complexes to study the biological targets of Pt drugs. Herein, we report the synthesis and characterization of the first examples of click-capable phenanthriplatin complexes. Furthermore, through monitoring the relocalization of nucleolar proteins, RNA transcription levels, and DNA damage repair biomarker γH2AX, and by investigating their in vitro cytotoxicity, we show that these complexes successfully mimic the cellular responses observed for phenanthriplatin treatment in the same experiments. The click-capable phenanthriplatin derivatives described here expand the existing library of Pt-click complexes. Significantly they are suitable for studying nucleolar stress mechanisms and further elucidating the biological targets of Pt complexes.
Collapse
Affiliation(s)
- Paul D. O’Dowd
- Department
of Chemistry, Royal College of Surgeons
in Ireland, Dublin D02 YN77, Ireland
- SSPC, The Science Foundation Ireland Research
Centre for
Pharmaceuticals, Limerick V94 T9PX, Ireland
| | - Andres S. Guerrero
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - Katelyn R. Alley
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - Hannah C. Pigg
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - Fiona O’Neill
- Life
Science Institute, Dublin City University, Dublin D09 V209, Ireland
| | - Justine Meiller
- Life
Science Institute, Dublin City University, Dublin D09 V209, Ireland
| | - Chloe Hobbs
- Department
of Chemistry, Royal College of Surgeons
in Ireland, Dublin D02 YN77, Ireland
| | - Daniel A. Rodrigues
- Department
of Chemistry, Royal College of Surgeons
in Ireland, Dublin D02 YN77, Ireland
| | - Brendan Twamley
- Department
of Chemistry, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Finbarr O’Sullivan
- Life
Science Institute, Dublin City University, Dublin D09 V209, Ireland
| | - Victoria J. DeRose
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - Darren M. Griffith
- Department
of Chemistry, Royal College of Surgeons
in Ireland, Dublin D02 YN77, Ireland
- SSPC, The Science Foundation Ireland Research
Centre for
Pharmaceuticals, Limerick V94 T9PX, Ireland
| |
Collapse
|
16
|
Shahabadi N, Ghaffari L, Mardani Z, Hadidi S. Analysis of the binding mechanism for a water-soluble Pd(II) complex containing β-amino alcohols with HSA applying experimental and computational methods. J Biomol Struct Dyn 2024; 42:3790-3801. [PMID: 37243704 DOI: 10.1080/07391102.2023.2216281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
In the study ahead, the binding interactions of the [Pd (HEAC) Cl2] complex with human serum albumin (HSA) protein have been assayed in vitro (pH= 7.40) utilizing computational and experimental procedures. The mentioned complex was synthesized as a water-soluble complex from {2-((2-((2-hydroxyethyl)amino)ethyl)amino) cyclohexanol} ligand = HEAC. The results of electronic absorption and circular dichroism investigations illustrated that the hydrophobicity of the Tryptophan microenvironment in HSA undergoes the changes by binding to the Pd(II) complex without substantial perturbations on the protein secondary structure. The fluorescence emission spectroscopy analysis revealed that with rising temperature, the quenching constant (Ksv) in the Stern-Volmer's relation decreases; so, it can be said that the interaction process is along with a static quenching mechanism. The values of 2.88 × 105 M-1, and 1.26 represent the binding constant (Kb) and the number of the binding sites (n), respectively. The Job graph showed the maximum point at χ = 0.5, which means organizing a new set with 1:1 stoichiometry. Thermodynamic profile (ΔH < 0, ΔS < 0, and ΔG < 0) has affirmed that van der Waals forces and hydrogen bonds have a basic function in the Pd(II) complex-albumin bindings. The ligand-competitive displacement studies utilizing warfarin and ibuprofen have represented that Pd(II) complex interacts with albumin by site II (subdomain IIIA). The computational molecular docking theory approved the results of the site-competitive tests; also, it indicated the existence of hydrogen bonds and van der Waals forces in Pd(II) complex-albumin interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Lida Ghaffari
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Zahra Mardani
- Department of Inorganic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
17
|
Rostán S, Porto S, Barbosa CLN, Assis D, Alvarez N, Machado FS, Mahler G, Otero L. A novel palladium complex with a coumarin-thiosemicarbazone hybrid ligand inhibits Trypanosoma cruzi release from host cells and lowers the parasitemia in vivo. J Biol Inorg Chem 2023; 28:711-723. [PMID: 37768364 DOI: 10.1007/s00775-023-02020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
In this work, two analogous coumarin-thio and semicarbazone hybrid compounds were prepared and evaluated as a potential antichagasic agents. Furthermore, palladium and platinum complexes with the thiosemicarbazone derivative as ligand (L1) were obtained in order to establish the effect of metal complexation on the antiparasitic activity. All compounds were fully characterized both in solution and in solid state including the resolution of the crystal structure of the palladium complex by X-ray diffraction methods. Unexpectedly, all experimental and theoretical characterizations in the solid state, demonstrated that the obtained palladium and platinum complexes are structurally different: [PdCl(L1)] and [PtCl2(HL1)]. All the studied compounds lower the proliferation of the amastigote form of Trypanosoma cruzi while some of them also have an effect on the trypomastigote stage. Additionally, the compounds inhibit T. cruzi release from host cells in variable extents. The Pd compound presented a remarkable profile in all the in vitro experiments, and it showed no toxicity for mammalian cells in the assayed concentrations. In this sense, in vivo experiments were performed for this compound using an acute model of Chagas disease. Results showed that the complex significantly lowered the parasite count in the mice blood with no significant toxicity.
Collapse
Affiliation(s)
- Santiago Rostán
- Graduate Program in Chemistry, Facultad de Química, Universidad de La República, Montevideo, Uruguay
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de La República, Montevideo, Uruguay
| | - Samuel Porto
- Laboratorio de Inmunorregulación y Enfermedades Infecciosas (LIDIN), Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Cesar L N Barbosa
- Laboratorio de Inmunorregulación y Enfermedades Infecciosas (LIDIN), Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Diego Assis
- Laboratorio de Inmunorregulación y Enfermedades Infecciosas (LIDIN), Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Natalia Alvarez
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de La República, Montevideo, Uruguay
| | - Fabiana Simão Machado
- Laboratorio de Inmunorregulación y Enfermedades Infecciosas (LIDIN), Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de La República, Montevideo, Uruguay
| | - Lucía Otero
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de La República, Montevideo, Uruguay.
| |
Collapse
|
18
|
Rah B, Farhat NM, Hamad M, Muhammad JS. JAK/STAT signaling and cellular iron metabolism in hepatocellular carcinoma: therapeutic implications. Clin Exp Med 2023; 23:3147-3157. [PMID: 36976378 DOI: 10.1007/s10238-023-01047-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Iron metabolism plays a crucial role in the development and progression of hepatocellular carcinoma (HCC), the most common type of primary liver cancer. Iron is an essential micronutrient that is involved in many physiological processes, including oxygen transport, DNA synthesis, and cellular growth and differentiation. However, excessive iron accumulation in the liver has been linked to oxidative stress, inflammation, and DNA damage, which can increase the risk of HCC. Studies have shown that iron overload is common in patients with HCC and that it is associated with a poor prognosis and reduced survival rates. Various iron metabolism-related proteins and signaling pathways such as the JAK/STAT pathway are dysregulated in HCC. Moreover, reduced hepcidin expression was reported to promote HCC in a JAK/STAT pathway-dependent manner. Therefore, it is important to understand the crosstalk between iron metabolism and the JAK/STAT pathway to prevent or treat iron overload in HCC. Iron chelators can bind to iron and remove it from the body, but its effect on JAK/STAT pathway is unclear. Also, HCC can be targeted by using the JAK/STAT pathway inhibitors, but their effect on hepatic iron metabolism is not known. In this review, for the first time, we focus on the role of the JAK/STAT signaling pathway in regulating cellular iron metabolism and its association with the development of HCC. We also discuss novel pharmacological agents and their therapeutic potential in manipulating iron metabolism and JAK/STAT signaling in HCC.
Collapse
Affiliation(s)
- Bilal Rah
- Iron Biology Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Nada Mazen Farhat
- Iron Biology Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Iron Biology Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Jibran Sualeh Muhammad
- Iron Biology Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
19
|
Bensalah D, Mansour L, Sauthier M, Gurbuz N, Özdemir I, Beji L, Gatri R, Hamdi N. Plausible PEPPSI catalysts for direct C-H functionalization of five-membered heterocyclic bioactive motifs: synthesis, spectral, X-ray crystallographic characterizations and catalytic activity. RSC Adv 2023; 13:31386-31410. [PMID: 37941793 PMCID: PMC10628855 DOI: 10.1039/d3ra06334h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/08/2023] [Indexed: 11/10/2023] Open
Abstract
In this study, a series of benzimidazolium salts were synthesized as asymmetric N-heterocyclic carbene (NHC) precursors. Nine novel palladium complexes with the general formula [PdX2(NHC)(pyridine)] were synthesized using benzimidazolium salts in the PEPPSI (Pyridine Enhanced Precatalyst Preparation, Stabilization and Initiation) theme. All synthesized Pd(ii) complexes are stable. The synthesized compounds were thoroughly characterized by respective spectroscopic techniques, such as 1HNMR, 13C NMR, FTIR spectroscopy, X-ray crystallography and elemental analysis. The geometric structure of the palladium N-heterocyclic carbene has been optimized in the framework of density functional theory (DFT) using the B3LYP-D3 dispersion functional with LANL2DZ as a basis set. The on/off mechanism of pyridine assisted Pd-NHC complexes made them the best C-H functionalized catalysts for regioselective C-5 arylated products. Five membered heterocyclic compounds such as 2-acetyl furan, furfuryl acetate 2-acetylthiophene and N-methylpyrrole-2-carboxaldehyde were treated with numerous aryl bromides and arylchlorides under optimal catalytic reaction conditions. Interestingly, all the prepared catalysts possessed essential structural features that facilitated the formation of desired coupling products in quantitative yield with excellent selectivity. The arylation reaction of bromoacetophenone was highly catalytically active with only 1 mol% catalyst loading at 150 °C for 2 hours. To check the efficiency of the synthesized complexes, three different five member heterocyclic substrates (2-acetylfuran, 2-acetylthiophen, 2-propylthaizole) were tested with a number of aryl bromides bearing both electron-donating and electron-withdrawing groups on para position. The data in Tables 2-4. Indicated that electron-donating groups on the para position of aryl halide decreased the catalytic conversion while electron-withdrawing groups increased the catalytic conversion this was due to the high nucleophilicity of the electron-donating substituents.
Collapse
Affiliation(s)
- Donia Bensalah
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage Hammam-Lif Tunisia +96 6556394839
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mathieu Sauthier
- Ecole Nationale Superieure de Chimie de Lille, Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, USTL BP 90108, Villeneuve d'Ascq 59652 France
| | - Nevin Gurbuz
- Department of Chemistry, Faculty of Science and Art, İnönü University Malatya 44280 Turkey
- İnönü University, Catalysis Research and Application Center Malatya 44280 Turkey
| | - Ismail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University Malatya 44280 Turkey
- İnönü University, Catalysis Research and Application Center Malatya 44280 Turkey
| | - Lotfi Beji
- Department of Physics, College of Sciences and Arts at Arras, Qassim University Saudi Arabia
| | - Rafik Gatri
- Laboratoire de Synthèse Organique Sélective et Hétérocyclique Évaluation Biologique LR17ES01 Faculté des Sciences de Tunis Campus Universitaire, Université de Tunis El Manar 1092 Tunis Tunisia
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage Hammam-Lif Tunisia +96 6556394839
| |
Collapse
|
20
|
Goswami N, Naithani S, Mangalam J, Goswami T, Dubey R, Kumar P, Kumar P, Kumar S. Fluorescent and chromogenic organic probes to detect group 10 metal ions: design strategies and sensing applications. Dalton Trans 2023; 52:14704-14732. [PMID: 37750386 DOI: 10.1039/d3dt01723k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Group 10 metals including Ni, Pd and Pt have been extensively applied in various essential aspects of human social life, material science, industrial manufactures, medicines and biology. The ionic forms of these metals are involved in several biologically important processes due to their strong binding capability towards different biomolecules. However, the mishandling or overuse of such metals has been linked to serious contamination of our ecological system, more specifically in soil and water bodies with acute consequences. Therefore, the detection of group 10 metal ions in biological as well as environmental samples is of huge significance from the human health point of view. Related to this, considerable efforts are underway to develop adequately efficient and facile methods to achieve their selective detection. Optical sensing of metal ions has gained increasing attention of researchers, particularly in the environmental and biological settings. Innovatively designed optical probes (fluorescent or colorimetric) are usually comprised of three basic components: an explicitly tailored receptor unit, a signalling unit and a clearly defined reporter unit. This review deals with the recent progress in the design and fabrication of fluorescent or colorimetric organic sensors for the detection of group 10 metal ions (Ni(II), Pd(II) and Pt(II)), with attention to the general aspects for design of such sensors.
Collapse
Affiliation(s)
- Nidhi Goswami
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Sudhanshu Naithani
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Jimmy Mangalam
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Ritesh Dubey
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Pramod Kumar
- Department of Chemistry, Mahamana Malviya College Khekra (Baghpat), C.C.S. University Meerut, India
| | - Pankaj Kumar
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Sushil Kumar
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
21
|
Faris A, Edder Y, Hdoufane I, Ait Lahcen I, Saadi M, El Ammari L, Berraho M, Cherqaoui D, Boualy B, Karim A. Syntheses, characterization and DFT studies of two new (π-allyl) palladium(II) complexes of β-8,9-dihydrohimachalene. J COORD CHEM 2023. [DOI: 10.1080/00958972.2023.2194013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
22
|
Fernández-Delgado E, Estirado S, Rodríguez AB, Luna-Giles F, Viñuelas-Zahínos E, Espino J, Pariente JA. Cytotoxic Effects of New Palladium(II) Complexes with Thiazine or Thiazoline Derivative Ligands in Tumor Cell Lines. Pharmaceutics 2023; 15:696. [PMID: 36840017 PMCID: PMC9963275 DOI: 10.3390/pharmaceutics15020696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The synthesis of analogs of cisplatin, which is a widely used chemotherapeutic agent, using other metal centers could be an alternative for cancer treatment. Pd(II) could be a substitute for Pt(II) due to its coordination chemistry similarity. For that reason, six squared-planar Pd(II) complexes with thiazine and thiazoline ligands and formula [PdCl2(L)] were synthesized and characterized in this work. The potential anticarcinogenic ability of the compounds was studied via cytotoxicity assay in three different human tumor cell lines, i.e., epithelial cervix carcinoma (HeLa), promyelocytic leukemia (HL-60), and histiocytic lymphoma (U-937). Data obtained showed that complexes with methyl substitutions did not modify cell viability, while no-methyl substituted compounds had a moderate cytotoxic effect on all three cell lines. The complexes with phenyl substitutions displayed the lowest IC50 values, which ranged between 46.39 ± 3.99 μM and 62.74 ± 6.45 μM. Moreover, Pd accumulation inside the cell was observed after incubation with any of the four complexes mentioned, and the two complexes with phenyl rings were found to induce an increase in the percentage of apoptotic cells. These results suggested that the presence of bulky substitutions on the ligands such as phenyl groups may influence the cytotoxicity of the chemotherapeutic agents synthesized.
Collapse
Affiliation(s)
- Elena Fernández-Delgado
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| | - Samuel Estirado
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| | - Ana B. Rodríguez
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| | - Francisco Luna-Giles
- Coordination Chemistry Research Group, Department of Organic and Inorganic Chemistry, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| | - Emilio Viñuelas-Zahínos
- Coordination Chemistry Research Group, Department of Organic and Inorganic Chemistry, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| | - Javier Espino
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| | - José Antonio Pariente
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
23
|
Synthesis, characterization, X-ray crystal structure, antioxidant, antimicrobial, and DNA binding interaction studies of novel Copper (II)-isoxazole binary complexes. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
24
|
Bhaduri R, Pan A, Kumar Tarai S, Mandal S, Bagchi A, Biswas A, Ch. Moi S. In vitro anticancer activity of Pd(II) complexes with pyridine scaffold: Their bioactivity, role in cell cycle arrest, and computational study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Antimicrobial Resistance Challenged with Platinum(II) and Palladium(II) Complexes Containing 1,10-Phenanthroline and 5-Amino-1,3,4-Thiadiazole-2(3H)-Thione in Campylobacter jejuni. Antibiotics (Basel) 2022; 11:antibiotics11111645. [PMID: 36421289 PMCID: PMC9687049 DOI: 10.3390/antibiotics11111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
This work describes the synthesis and characterization of two metal complexes of the type [M(L1)2(phen)], where M = Pt2+ (complex I) or Pd2+ (complex II), L1 = 5-amino-1,3,4-thiadiazole-2(3H)-thiolate and phen = 1,10-phenanthroline. The in vitro antibacterial activity of these complexes was investigated in isolation and synergistically with ciprofloxacin (CIP) and erythromycin (ERY) in three strains of Campylobacter jejuni (MIC = 32 mg/L for CIP and ERY), selected from a bank of 235 strains representative of three poultry exporting states of the country (A, B and C), previously analyzed for epidemiology and resistance to CIP and ERY. A total of 53/235 (22.55%) strains showed co-resistance to CIP and ERY. Isolated resistance to CIP was higher than to ERY. Epidemiological analysis showed that resistance to CIP was more evident in state B (p < 0.0001), as well as a higher susceptibility to ERY in state C (p = 0.0028). Co-resistance was expressive in state A and in the spring and fall seasons. The evaluation of I alone and in synergy with CIP and ERY found values up to 0.25 mg/L not significant for ERY. Complex II did not show an antimicrobial effect on the three strains of tested C. jejuni. The effect provided by complex I represents a promising alternative for control of resistant strains of C. jejuni.
Collapse
|
26
|
Zanetti RD, da Cunha GA, Moreira MB, Farias RL, de Souza RF, de Godoy PR, Brassesco MS, Rocha FV, Lima MA, Mauro AE, Netto AV. Orthopalladated N,N-Dimethyl-1-Phenethylamine Compounds Containing 2,6-Lutidine: Synthesis, Dna Binding Studies and Cytotoxicity Evaluation. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Combination of light and Ru(II) polypyridyl complexes: Recent advances in the development of new anticancer drugs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Bhaduri R, Mandal S, Kumar Tarai S, Pan A, Mukherjee S, Bagchi A, Biswas A, Ch. Moi S. Cytotoxic activity of nitrogen, sulfur, and oxygen chelated Pt(II) complexes; their DNA/BSA binding by in vitro and in silico approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Palladium(II) Complexes of Substituted Salicylaldehydes: Synthesis, Characterization and Investigation of Their Biological Profile. Pharmaceuticals (Basel) 2022; 15:ph15070886. [PMID: 35890184 PMCID: PMC9323974 DOI: 10.3390/ph15070886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Five palladium(II) complexes of substituted salicylaldehydes (X-saloH, X = 4-Et2N (for 1), 3,5-diBr (for 2), 3,5-diCl (for 3), 5-F (for 4) or 4-OMe (for 5)) bearing the general formula [Pd(X-salo)2] were synthesized and structurally characterized. The crystal structure of complex [Pd(4-Et2N-salo)2] was determined by single-crystal X-ray crystallography. The complexes can scavenge 1,1-diphenyl-picrylhydrazyl and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radicals and reduce H2O2. They are active against two Gram-positive (Staphylococcus aureus and Bacillus subtilis) and two Gram-negative (Escherichia coli and Xanthomonas campestris) bacterial strains. The complexes interact strongly with calf-thymus DNA via intercalation, as deduced by diverse techniques and via the determination of their binding constants. Complexes interact reversibly with bovine and human serum albumin. Complementary insights into their possible mechanisms of bioactivity at the molecular level were provided by molecular docking calculations, exploring in silico their ability to bind to calf-thymus DNA, Escherichia coli and Staphylococcus aureus DNA-gyrase, 5-lipoxygenase, and membrane transport lipid protein 5-lipoxygenase-activating protein, contributing to the understanding of the role complexes 1–5 can play both as antioxidant and antibacterial agents. Furthermore, in silico predictive tools have been employed to study the chemical reactivity, molecular properties and drug-likeness of the complexes, and also the drug-induced changes of gene expression profile (as protein- and mRNA-based prediction results), the sites of metabolism, the substrate/metabolite specificity, the cytotoxicity for cancer and non-cancer cell lines, the acute rat toxicity, the rodent organ-specific carcinogenicity, the anti-target interaction profiles, the environmental ecotoxicity, and finally the activity spectra profile of the compounds.
Collapse
|
30
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
|
32
|
Amino acid coordination complex mediates cisplatin entrapment within PEGylated liposome: An implication in colorectal cancer therapy. Int J Pharm 2022; 623:121946. [PMID: 35750277 DOI: 10.1016/j.ijpharm.2022.121946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
Cis-Diaminedichloroplatinum (cisplatin, CDDP) remained among the most widely used anti-cancer agents; however, management of the dose-limiting side effects is still a great hurdle to its therapeutic potential. In the framework of this investigation, novel approach was developed for CDDP encasement within liposome based on the formation of a coordination bond between the platinum (II) atom and a carboxylic group in aspartic acid (AA) and glutamic acid (GA). We have also compared two methods of preparation based on equilibration and conventional lipid film hydration. For this, first FTIR spectra of the conjugates confirmed coordination bond between Pt and the carboxylate moieties. The PEGylated liposomes composed of HSPC, cholesterol and DPPG had a size of 134 to 197 nm and negative zeta potential (-14.20 to -20.90 mv). Cytotoxicity study revealed IC50 values of <7 µg/ml for liposomes. In vivo plasma retention following iv administration indicated the potential of liposome in maintaining cisplatin levels within the circulation, while free cisplatin and cisplatin conjugates were promptly eliminated. Anti-tumor efficacy studies following iv injections at 3 mg/kg cisplatin weekly for three weeks in C26 tumor bearing BALB/c mice demonstrated the potential of the cisplatin liposomes in tumor growth inhibition. Pt-complexes were not as effective as liposomal formulations showing the crucial role of liposomes in maintaining cisplatin levels within blood circulation. Overall, the developed cisplatin liposome seems to be a promising therapeutic approach for targeting solid tumors.
Collapse
|
33
|
Mikolaichuk OV, Sharoyko VV, Popova EA, Protas AV, Fonin AV, Anufrikov YA, Malkova AM, Shmaneva NT, Ostrovskii VA, Molchanov OE, Maistrenko DN, Semenov KN. A new tetrazole-containing 2-amino-4,6-di(aziridin-1-yl)-1,3,5-triazine derivative: synthesis, interaction with DNA, and antitumor activity. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3507-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Schulz E, Mawamba V, Löhr M, Hagemann C, Friedrich A, Schatzschneider U. Structure‐activity relations of Pd(II) and Pt(II) thiosemicarbazone complexes on different human glioblastoma cell lines. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | | | - Ulrich Schatzschneider
- Julius-Maximilians-Universitat Wurzburg Institut für Anorganische Chemie Am Hubland D-97074 Würzburg GERMANY
| |
Collapse
|
35
|
Dorairaj DP, Haribabu J, Shashankh PV, Chang YL, Echeverria C, Hsu SC, Karvembu R. Bidentate acylthiourea ligand anchored Pd-PPh3 complexes with biomolecular binding, cytotoxic, antioxidant and antihemolytic properties. J Inorg Biochem 2022; 233:111843. [DOI: 10.1016/j.jinorgbio.2022.111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
|
36
|
Gao Z, Qiu S, Yan M, Lu S, Liu H, Lian H, Zhang P, Zhu J, Jin M. A highly selective turn-on fluorescence probe with large Stokes shift for detection of palladium and its applications in environment water and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120500. [PMID: 34689092 DOI: 10.1016/j.saa.2021.120500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/19/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, palladium has been widely used in many fields, which facilitates all aspects of our life. However, it may cause water and soil pollution and bring irreversible damage to the environment and organisms. Developing a fluorescence probe for rapid, highly sensitive and selective detection of palladium is still a poser. In this work, we designed and synthesized a novel fluorescence probe (RHS) for specific detection of palladium. Based on Pd0-mediated Tsuji-Trost reaction, the fluorescence probe was constructed by a rhodol derivative as thefluorophore and an allyl carbonate moiety as the specific palladium reactive site. The probe displayed excellent properties for detecting palladium, such as high selectivity and sensitivity, rapid response (20 min) and large Stokes shift (155 nm). The detection limit was determined to be as low as 0.140 μM with a linear range from 20 to 80 μM. After addition of palladium in RHS solution, the color of the solution turned from yellow to blue, indicating palladium could be monitored by the naked eyes. Moreover, probe RHS was successfully applied to palladium detection in environmental water samples. Importantly, with low cytotoxicity and good biocompatibility, the probe could monitor palladium in living cells.
Collapse
Affiliation(s)
- Zhigang Gao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, PR China
| | - Siyan Qiu
- Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xialin Dadao, 210023, PR China
| | - Minchuan Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, PR China
| | - Shaohui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, PR China
| | - Haibo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, PR China
| | - Huihui Lian
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, PR China
| | - Peng Zhang
- Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xialin Dadao, 210023, PR China
| | - Jing Zhu
- Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xialin Dadao, 210023, PR China.
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, PR China.
| |
Collapse
|
37
|
Dimitrijević Stojanović MN, Franich AA, Jurišević MM, Gajović NM, Arsenijević NN, Jovanović IP, Stojanović BS, Mitrović SL, Kljun J, Rajković S, Živković MD. Platinum(II) complexes with malonic acids: Synthesis, characterization, in vitro and in vivo antitumor activity and interactions with biomolecules. J Inorg Biochem 2022; 231:111773. [DOI: 10.1016/j.jinorgbio.2022.111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 10/19/2022]
|
38
|
de la Cueva-Alique I, de la Torre-Rubio E, Muñoz L, Calvo-Jareño A, Perez-Redondo A, Gude L, Cuenca T, Royo E. Stereoselective synthesis of oxime containing Pd(II) compounds: Highly effective, selective and stereo-regulated cytotoxicity against carcinogenic PC-3 cells. Dalton Trans 2022; 51:12812-12828. [DOI: 10.1039/d2dt01403c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New palladium compounds [Pd{(1S,4R)-NOH^NH(R)}Cl2] (R = Ph 1a or Bn 1b), [Pd{(1S,4R)-NOH^NH(R)}{(1S,4R)-NO^NH(R)}][Cl] (R = Ph 2a or Bn 2b) and corresponding [Pd{(1R,4S)-NOH^NH(R)}Cl2] (R = Ph 1a’ or Bn 1b’) and...
Collapse
|
39
|
Bera B, Mondal S, Gharami S, Naskar R, Das Saha K, Mondal TK. Palladium( ii) and platinum( ii) complexes with ONN donor pincer ligand: synthesis, characterization and in vitro cytotoxicity study. NEW J CHEM 2022. [DOI: 10.1039/d2nj01894b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New Pd(ii) and Pt(ii) complexes with ONN donor pincer ligand are synthesized. Antiproliferative activity of the complexes is explored towards HCT116, HepG2, MCF-7 and A549 cell lines.
Collapse
Affiliation(s)
- Biswajit Bera
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | - Sanchaita Mondal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Tapan K. Mondal
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
40
|
Goudarzi A, Ghassemzadeh M, Saeidifar M, Aghapoor K, Mohsenzadeh F, Neumüller B. In vitro cytotoxicity and antibacterial activity of [Pd(AMTTO)(PPh 3) 2]: a novel promising palladium( ii) complex. NEW J CHEM 2022. [DOI: 10.1039/d1nj05545c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and characterization of a novel palladium complex based on a bioactive 3-mercapto-1,2,4-triazine derivative have been investigated. The Pd(ii) complex showed excellent anticancer and antibacterial activity.
Collapse
Affiliation(s)
- Atousa Goudarzi
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Mitra Ghassemzadeh
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Kioumars Aghapoor
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Farshid Mohsenzadeh
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Bernhard Neumüller
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
41
|
Al-Noaimi M, Awwadi FF, Hendal A, Aljammal A, Talib WH, Mahmod AI. Effect of chalcogen bonding interactions on molecular structures; theoretical and crystallographic studies on two palladium( ii) acetate complexes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01995g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New palladium complexes, [Pd(L)(OAc))], have been synthesized. The complexes and their ligand have been characterized by X-ray crystal structure analysis. Interestingly, the molecular structures of the two complexes are stabilized by S⋯O chalcogen bonds.
Collapse
Affiliation(s)
- Mousa Al-Noaimi
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
- Department of Chemistry, Faculty of science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Firas F. Awwadi
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Abdellah Hendal
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Azzam Aljammal
- Department of Chemistry, Faculty of science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, 11931, Amman, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, 11931, Amman, Jordan
| |
Collapse
|
42
|
Orthopalladated tetralone oxime compounds bearing tertiary phosphines: Synthesis, structure, biological and in silico studies. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Jovanović‐Stević S, Ćoćić D, Puchta R, Bogojeski J, Jurišević M, Gajović N, Jakovljević S, Arsenijević N, Jovanović I, Petrović B. Assessment of biological activity of the caffeine‐derived Pt (II) and Pd (II) complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Snežana Jovanović‐Stević
- Institute for Information Technologies Kragujevac, Department of Science University of Kragujevac Kragujevac Serbia
| | - Dušan Ćoćić
- Faculty of Science University of Kragujevac Kragujevac Serbia
| | - Ralph Puchta
- Inorganic Chemistry, Department of Chemistry and Pharmacy University of Erlangen‐Nürnberg Erlangen Germany
- Computer Chemistry Center, Department of Chemistry and Pharmacy University of Erlangen‐Nürnberg Erlangen Germany
- ZISC (Zentralinstitut für Scientific Computing) Universität Erlangen‐Nürnberg Erlangen Germany
| | | | - Milena Jurišević
- Faculty of Medical Sciences, Department of Clinical Pharmacy University of Kragujevac Kragujevac Serbia
| | - Nevena Gajović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research University of Kragujevac Kragujevac Serbia
| | | | - Nebojša Arsenijević
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research University of Kragujevac Kragujevac Serbia
| | - Ivan Jovanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research University of Kragujevac Kragujevac Serbia
| | | |
Collapse
|
44
|
Biegański P, Godel M, Riganti C, Kawano DF, Kopecka J, Kowalski K. Click ferrocenyl-erlotinib conjugates active against erlotinib-resistant non-small cell lung cancer cells in vitro. Bioorg Chem 2021; 119:105514. [PMID: 34864281 DOI: 10.1016/j.bioorg.2021.105514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/21/2021] [Indexed: 01/22/2023]
Abstract
Thanks to development of erlotinib and other target therapy drugs the lung cancer treatment have improved a lot in recent years. However, erlotinib-resistant lung cancer remains an unsolved clinical problem which demands for new therapeutics to be developed. Herein we report the synthesis of a library of 1,4- and 1,5-triazole ferrocenyl derivatives of erlotinib together with their anticancer activity studies against erlotinib-sensitive A549 and H1395 as well as erlotinib-resistant H1650 and H1975 cells. Studies showed that extend of anticancer activity is mainly related to the length of the spacer between the triazole and the ferrocenyl entity. Among the series of investigated compounds two isomers commonly bearing C(O)CH2CH2 spacer have shown superior to erlotinib activity against erlotinib-resistant H1650 and H1975 cells whereas compound with short methylene spacer devoid of any activity. In-depth biological studies for the most active compound showed differences in its mechanism of action in compare to erlotinib. The latter is known EGFR inhibitor whereas their ferrocenyl congener exerts anticancer activity mainly as ROS-inducer which activates mitochondrial pathway of apoptosis in cancer cells. However, docking studies suggested that the most active compound can also binds to the active site of EGFR TK in a similar way as erlotinib.
Collapse
Affiliation(s)
- Przemysław Biegański
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Martina Godel
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy.
| | - Daniel Fábio Kawano
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, 200 Cândido Portinari Street, Campinas, SP 13083-871, Brazil.
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy.
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| |
Collapse
|
45
|
Lara R, Millán G, Moreno MT, Lalinde E, Alfaro‐Arnedo E, López IP, Larráyoz IM, Pichel JG. Investigation on Optical and Biological Properties of 2-(4-Dimethylaminophenyl)benzothiazole Based Cycloplatinated Complexes. Chemistry 2021; 27:15757-15772. [PMID: 34379830 PMCID: PMC9293083 DOI: 10.1002/chem.202102737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/08/2022]
Abstract
The optical and biological properties of 2-(4-dimethylaminophenyl)benzothiazole cycloplatinated complexes featuring bioactive ligands ([{Pt(Me2 N-pbt)(C6 F5 )}L] [L=Me2 N-pbtH 1, p-dpbH (4-(diphenylphosphino)benzoic acid) 2, o-dpbH (2-(diphenylphosphino)benzoic acid) 3), [Pt(Me2 N-pbt)(o-dpb)] 4, [{Pt(Me2 N-pbt)(C6 F5 )}2 (μ-PRn P)] [PR4 P=O(CH2 CH2 OC(O)C6 H4 PPh2 )2 5, PR12 P=O{(CH2 CH2 O)3 C(O)C6 H4 PPh2 }2 6] are presented. Complexes 1-6 display 1 ILCT and metal-perturbed 3 ILCT dual emissions. The ratio between both bands is excitation dependent, accomplishing warm-white emissions for 2, 5 and 6. The phosphorescent emission is lost in aerated solutions owing to photoinduced electron transfer to 3 O2 and the formation of 1 O2 , as confirmed in complexes 2 and 4. They also exhibit photoinduced phosphorescence enhancement in non-degassed DMSO due to local oxidation of DMSO by sensitized 1 O2 , which causes a local degassing. Me2 N-pbtH and the complexes specifically accumulate in the Golgi apparatus, although only 2, 3 and 6 were active against A549 and HeLa cancer cell lines, 6 being highly selective in respect to nontumoral cells. The potential photodynamic property of these complexes was demonstrated with complex 4.
Collapse
Affiliation(s)
- Rebeca Lara
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Gonzalo Millán
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - M. Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Elvira Alfaro‐Arnedo
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - Icíar P. López
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - Ignacio M. Larráyoz
- Biomarkers and Molecular Signaling Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - José G. Pichel
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES)ISCIII Av. Monforte de Lemos, 3-5. Pab. 11.28029 MadridSpain
| |
Collapse
|
46
|
Zalevskaya O, Gur'eva Y, Kutchin A, Aleksandrova Y, Yandulova E, Nikolaeva N, Neganova M. Palladium complexes with terpene derivatives of ethylenediamine and benzylamine: Synthesis and study of antitumor properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Svoboda J, Zolal A, Králík F, Eigner V, Ruml T, Zelenka J, Syslová K. Trans-palladium complexes with 1-adamantanamine and various halide ions: Synthesis, characterization, DNA and protein binding and in vitro cytotoxicity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
de Almeida CA, Pinto LPNM, Dos Santos HF, Paschoal DFS. Vibrational frequencies and intramolecular force constants for cisplatin: assessing the role of the platinum basis set and relativistic effects. J Mol Model 2021; 27:322. [PMID: 34636999 DOI: 10.1007/s00894-021-04937-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
The role of platinum basis set (PTBS) and relativistic effects for predicting the vibrational frequencies and intramolecular force constants for cisplatin are discussed. Nonrelativistic and relativistic computational protocols were built at B3LYP/PTBS/jorge-DZP/C-PCM and B3LYP-DKH2/PTBS/jorge-DZP-DKH/C-PCM levels, respectively, where 19 distinct PTBS were tested. As expected, the structural parameters were not very sensitive to the PTBS, however, the inclusion of relativistic effects improves the description of the cisplatin structure. When it comes to the vibrational frequencies, the results show that the PTBS, and mainly the relativistic effects, are both important. Moreover, the PBE0 functional led to better results than B3LYP in the protocols PBE0/LANL2TZ(f)/jorge-DZP/C-PCM (P20) and PBE0-DKH2/Sapporo-DKH3-DZP-2012/jorge-DZP-DKH/C-PCM (P22), which provided a mean absolute deviation (MAD) of only 10.8 cm-1 and 9.5 cm-1, respectively, for vibrational frequencies, which are excellent choices to study Pt complexes. Finally, a discussion of the intramolecular force constants for cisplatin is carried out, with the calculated bond and angles force constants with P20 and P22 protocols being recommended for the parameterization of the force field of cisplatin.
Collapse
Affiliation(s)
- Caroline A de Almeida
- NQTCM: Núcleo de Química Teórica E Computacional de Macaé, Polo Ajuda, Instituto Multidisciplinar de Química, Centro Multidisciplinar UFRJ-Macaé, Universidade Federal Do Rio de Janeiro, 27.973-545, Macaé, RJ, Brazil
| | - Larissa P N M Pinto
- NQTCM: Núcleo de Química Teórica E Computacional de Macaé, Polo Ajuda, Instituto Multidisciplinar de Química, Centro Multidisciplinar UFRJ-Macaé, Universidade Federal Do Rio de Janeiro, 27.973-545, Macaé, RJ, Brazil
| | - Hélio F Dos Santos
- NEQC: Núcleo de Estudos Em Química Computacional, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36.036-900, Juiz de Fora, MG, Brazil
| | - Diego F S Paschoal
- NQTCM: Núcleo de Química Teórica E Computacional de Macaé, Polo Ajuda, Instituto Multidisciplinar de Química, Centro Multidisciplinar UFRJ-Macaé, Universidade Federal Do Rio de Janeiro, 27.973-545, Macaé, RJ, Brazil.
| |
Collapse
|
49
|
Selected polyoxopalladates as promising and selective antitumor drug candidates. J Biol Inorg Chem 2021; 26:957-971. [PMID: 34549367 DOI: 10.1007/s00775-021-01905-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 01/01/2023]
Abstract
Polyoxo-noble-metalates (PONMs), a class of molecular noble metal-oxo nanoclusters that combine features of both polyoxometalates and noble metals, are a promising platform for the development of next-generation antitumor metallodrugs. This study aimed to evaluate the antitumor potential against human neuroblastoma cells (SH-SY5Y), as well as toxicity towards healthy human peripheral blood cells (HPBCs), of five polyoxopalladates(II): (Na8[Pd13As8O34(OH)6]·42H2O (Pd13), Na4[SrPd12O6(OH)3(PhAsO3)6(OAc)3]·2NaOAc·32H2O (SrPd12), Na6[Pd13(AsPh)8O32]·23H2O (Pd13L), Na12[SnO8Pd12(PO4)8]·43H2O (SnPd12), and Na12[PbO8Pd12(PO4)8]·38H2O (PbPd12)), as the largest subset of PONMs. A pure inorganic, Pd13, was found as the most potent and selective antineuroblastoma agent with IC50 values (µM) of 7.2 ± 2.2 and 4.4 ± 1.2 for 24 and 48 h treatment, respectively, even lower than cisplatin (28.4 ± 7.4 and 11.6 ± 0.8). The obtained IC50 values (µM) for 24/48 h treatment with SrPd12 and Pd13L were 75.8 ± 6.7/76.7 ± 22.9 and 63.8 ± 3.6/21.4 ± 10.8, respectively, whereas SnPd12 and PbPd12 did not remarkably affect the SH-SY5Y viability (IC50 > > 100 µM). Pd13 caused depolarisation of inner mitochondrial membrane prior to superoxide ion hyperproduction, followed by caspase activation, DNA fragmentation and cell cycle arrest, all hallmarks of apoptotic cell death, and accompanied by an increase in acidic vesicles content, suggestive of autophagy induction. Importantly, Pd13 demonstrated the antitumor effect at concentrations not cytogenotoxic for normal HPBCs. On the contrary, SrPd12 and Pd13L at concentrations ≥ 1/3 IC50 (24 h) decreased HPBC viability and increased % tail DNA up to 42% and 3.05 times, respectively, related to control. SnPd12 and PbPd12, previously confirmed promising antileukemic agents, did not exhibit cytogenotoxicity to HPBCs, and thus could be regarded as tumor cell specific and selective drug candidates.
Collapse
|
50
|
Chen Y, Bai L, Zhang P, Zhao H, Zhou Q. The Development of Ru(II)-Based Photoactivated Chemotherapy Agents. Molecules 2021; 26:5679. [PMID: 34577150 PMCID: PMC8465985 DOI: 10.3390/molecules26185679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023] Open
Abstract
Photoactivated chemotherapy (PACT) is a novel cancer treatment method that has drawn increasing attention due to its high selectivity and low side effects by spatio-temporal control of irradiation. Compared with photodynamic therapy (PDT), oxygen-independent PACT is more suitable for treating hypoxic tumors. By finely tuning ligand structures and coordination configurations, many Ru(II) complexes can undergo photoinduced ligand dissociation, and the resulting Ru(II) aqua species and/or free ligands may have anticancer activity, showing their potential as PACT agents. In this mini-review, we summarized the progress in Ru(II)-based PACT agents, as well as challenges that researchers in this field still face.
Collapse
Affiliation(s)
- Yongjie Chen
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.B.); (P.Z.); (H.Z.)
| | - Lijuan Bai
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.B.); (P.Z.); (H.Z.)
| | - Pu Zhang
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.B.); (P.Z.); (H.Z.)
| | - Hua Zhao
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (L.B.); (P.Z.); (H.Z.)
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|