1
|
Kaszuba A, Sitkowski J, Muzioł T, Pokrzywka K, Kaźmierski Ł, Maj M, Steppeler F, Wojaczyńska E, Hoffmann M, Łakomska I. Unveiling the promising in vitro anticancer activity of lipophilic platinum(II) complexes containing (1 S,4 R,5 R)-4-(4-phenyl-1 H-1,2,3-triazol-1-yl)-2-(( S)-1-phenylethyl)-2-azabicyclo[3.2.1]octane: a spectroscopic characterization and DFT calculation. Dalton Trans 2025; 54:5334-5354. [PMID: 40013443 DOI: 10.1039/d4dt03021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The main goal of our research was to examine (1S,4R,5R)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)-2-((S)-1-phenylethyl)-2-azabicyclo[3.2.1]octane (L) and its complex-forming abilities with platinum(II) ions. Herein, we present three new square planar platinum(II) complexes of the general formulas trans-[PtCl2L2] (1), cis-[PtCl2(DMSO)(L)] (2) and [Pt(DMSO)(L)(mal)] (3), where DMSO: dimethyl sulfoxide; mal: malonate. Based on the experimental spectroscopic results (1H, 13C, 15N, 195Pt NMR, IR, X-ray analyses) and density functional theoretical calculation (DFT), a square planar geometry was proposed with one or two monodentate bound N3' heterocyclic ligands (L). Surrounding the central atom, there are monodentate chloride (1) and (2) or chelated O,O-donor malonate ligands (3). The coordination spheres in (2) and (3) were completed by the S-donor monodentate dimethyl sulfoxide molecule. Theoretical investigations into the heterocyclic ligand coordination site and geometry around the central ion were performed by DFT calculation, and the results were consistent with the experimental data. The DFT calculations elucidate the thermodynamic preferences for cis versus trans arrangements of the ligands in the isolated platinum(II) complexes (1) and (2), suggesting that the trans arrangement of chloride anions observed in the crystals of (2a) probably results from the crystal packing. The obtained platinum(II) complexes were examined with regard to their therapeutic anticancer potential. In comparison to cisplatin, lipophilic complexes (1) and (3) exhibit lower affinity toward glutathione. According to observations, (1) presents the most satisfactory in vitro activity with the mechanism of its cytotoxic effect on cancer cells different from that of cisplatin.
Collapse
Affiliation(s)
- Adriana Kaszuba
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Jerzy Sitkowski
- National Institutes of Medicines, Chełmska 30/34, 00-725 Warszawa, Poland.
- Institutes of Organic Chemistry, Polish Academic of Science, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Tadeusz Muzioł
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Karolina Pokrzywka
- Faculty of Medicine, Tissue Engineering Department, Collegium Medicum, Nicolaus Copernicus University, Karłowicza 24, 85-092 Bydgoszcz, Poland.
| | - Łukasz Kaźmierski
- Faculty of Medicine, Tissue Engineering Department, Collegium Medicum, Nicolaus Copernicus University, Karłowicza 24, 85-092 Bydgoszcz, Poland.
| | - Małgorzata Maj
- Faculty of Medicine, Tissue Engineering Department, Collegium Medicum, Nicolaus Copernicus University, Karłowicza 24, 85-092 Bydgoszcz, Poland.
| | - Franz Steppeler
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland.
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland.
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Iwona Łakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| |
Collapse
|
2
|
Alagarsamy V, Narendhar B, Chitra K, Sriram D, Sarvanan G, Solomon VR. Design, Synthesis, and Structure–Activity Relationships of Novel N-Substituted-5-phenyl-[1,2,4]triazolo[1,5-c]quinazolin-2-amine for Their Anti-HIV and Antibacterial Activities. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s106816202206005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Fandzloch M, Jędrzejewski T, Wiśniewska J, Sitkowski J, Dobrzańska L, Brożyna AA, Wrotek S. Sawhorse-type ruthenium complexes with triazolopyrimidine ligands - what do they represent in terms of cytotoxic and CORM compounds? Dalton Trans 2022; 51:8804-8820. [PMID: 35616922 DOI: 10.1039/d1dt04294g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three sawhorse-type ruthenium(I) complexes containing purine analogs such as triazolopyrimidines of the general formula [Ru2(CO)4(μ-OOCCH3)2(L)2], where L is 1,2,4-triazolo[1,5-a]pyrimidine (tp for 1), 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp for 2) and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine (dptp for 3), have been synthesized and characterized by elemental analysis, infrared analysis, multinuclear magnetic resonance spectroscopic techniques (1H, 13C, 15N), and single-crystal X-ray diffraction (for 1 and 2). By assay with myoglobin, the photo-activated CO-releasing molecule (PhotoCORM) character of (1-3) has been confirmed, thus indicating the possibility of use in CO-based therapies. The importance of UV-induced modification has been investigated in the context of anticancer properties. Complexes (1) and (2) have been thoroughly screened for their in vitro cytotoxicity against various cancer cell lines: MCF-7 (breast cancer), HeLa (cervical cancer) and C32 (melanoma), as well as L929 normal fibroblasts in the dark and presence of UV-A light (365 nm). The results were compared with those for cisplatin and two reference ruthenium complexes, namely NAMI-A and KP1019. The most hydrophilic [Ru2(CO)4(μ-OOCCH3)2(tp)2] (1) (log P = -1.12) was found to be more cytotoxic than (2), despite the lower cellular uptake measured by ICP-MS toward HeLa cells. Importantly, photo-induced stimulation of cells with (1) resulted in a lower decrease in the viability of L929 normal cells (IC50 = 154.7 ± 6.5 μM) in comparison with HeLa cancer cells (IC50 = 66.7 ± 3.4 μM). The photo-induced stimulation of (1) and (2) increases ROS generation, and their anticancer activity may be a partially ROS-dependent phenomenon.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Joanna Wiśniewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Jerzy Sitkowski
- National Institutes of Medicines, Chełmska 30/34, 00-725 Warszawa, Poland.,Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Liliana Dobrzańska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Anna A Brożyna
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Gul Z, Khan S, Ullah S, Ullah H, Khan MU, Ullah M, Altaf AA. Recent Development in Coordination Compounds as a Sensor for Cyanide Ions in Biological and Environmental Segments. Crit Rev Anal Chem 2022; 54:508-528. [PMID: 35671238 DOI: 10.1080/10408347.2022.2085027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rapid detection of toxic ions has taken great attention in the last few decades due to its importance in maintaining a greener environment for human beings. The extreme toxicity of cyanide (CN-) ions is a great environmental concern as its continued industrial use generates interest in facile and sensitive methods for CN- ions detection. Since CN- ions act as a ligand in coordination chemistry which rapidly coordinates with suitable metals and forms complexes, this ability was mainly explored in its detection. It also attacks the central metal in coordination compounds and gives a fluorimetric response. Coordination compounds behave as a sensor for the detection of important ions like CN- ions and have gained great attention due to their facile synthesis, multianalyte detection, clear detection and low detection limit. Recently, considerable efforts have been devoted to the detection and quantification of hazardous multianalyte using a single probe. Cu2+ complexes are the main complexes used for CN- ions detection; however, the complexes of many other metals are also used as sensors. Four basic types of interaction have been discussed in coordination compound sensors for CN- detection. The performances of different sensors are compared with one another and the sensors which have the lowest detection limit are highlighted. This review comprises the progress made by coordination compounds as sensors for the detection of CN- ions in the last six years (2015-2021). To the best of our knowledge, there is no review on coordination compounds as a sensor for CN- ions during this period. [Figure: see text].
Collapse
Affiliation(s)
- Zarif Gul
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| | - Shaheed Ullah
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Misbah Ullah Khan
- Center for Nano-Science, University of Okara, Okara, Punjab, Pakistan
| | - Munzer Ullah
- Department of Biochemistry, University of Okara, Okara, Punjab, Pakistan
| | - Ataf Ali Altaf
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| |
Collapse
|
5
|
Insights into Structure and Biological Activity of Copper(II) and Zinc(II) Complexes with Triazolopyrimidine Ligands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030765. [PMID: 35164029 PMCID: PMC8838430 DOI: 10.3390/molecules27030765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 01/18/2023]
Abstract
In an attempt to increase the biological activity of the 1,2,4-triazolo[1,5-a]pyrimidine scaffold through complexation with essential metal ions, the complexes trans-[Cu(mptp)2Cl2] (1), [Zn(mptp)Cl2(DMSO)] (2) (mptp: 5-methyl-7-phenyl-1,2,4-triazolo[1,5-a]pyrimidine), [Cu2(dmtp)4Cl4]·2H2O (3) and [Zn(dmtp)2Cl2] (4) (dmtp: 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine), were synthesized and characterized as new antiproliferative and antimicrobial species. Both complexes (1) and (2) crystallize in the P21/n monoclinic space group, with the tetrahedral surroundings generating a square-planar stereochemistry in the Cu(II) complex and a tetrahedral stereochemistry in the Zn(II) species. The mononuclear units are interconnected in a supramolecular network through π–π interactions between the pyrimidine moiety and the phenyl ring in (1) while supramolecular chains resulting from C-H∙∙∙π interactions were observed in (2). All complexes exhibit an antiproliferative effect against B16 tumor cells and improved antibacterial and antifungal activities compared to the free ligands. Complex (3) displays the best antimicrobial activity against all four tested strains, both in the planktonic and biofilm-embedded states, which can be correlated to its stronger DNA-binding and nuclease-activity traits.
Collapse
|
6
|
Geng Y, Chen L, Wan Q, Lian C, Han Y, Wang Y, Zhang C, Huang L, Zhao H, Sun X, He H. A novel [1,2,4]triazolo[1,5-a]pyrimidine derivative as a fluorescence probe for specific detection of Fe 3+ ions and application in cell imaging. Anal Chim Acta 2021; 1187:339168. [PMID: 34753578 DOI: 10.1016/j.aca.2021.339168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/10/2023]
Abstract
The detection of metal ions is of particular importance for monitoring environmental pollution and life metabolic activities. However, it is still a challenge to achieve Fe3+ detection with specific sensitivity and rapid response, especially in the presence of chelating agents for Fe3+ ions. Herein, a novel fluorescence probe for Fe3+, i.e., amide derivative of [1,2,4]triazolo[1,5-a] pyrimidine (TP, Id), was synthesized, featuring specific Fe3+ selectivity, rapid quenching (5 s), low limit of detection (0.82 μM), good permeability and low cytotoxicity. More importantly, Id can be used to identify and detect Fe3+ in the presence of existing strong chelating agents (e.g., EDTA) for Fe3+ ions. The results show that the as-synthesized fluorescence probe is particularly suitable as a bioimaging reagent to monitor intracellular Fe3+ in living HeLa cells. Furthermore, we proposed the binding mode for Id with Fe3+ ions and the light-emitting mechanism through high-resolution mass spectra and density function theory calculations, respectively. An Id-based test paper can be used to rapidly identify Fe3+. These results are expected to improve the development of new sensitive and specific fluorescent sensors for Fe3+.
Collapse
Affiliation(s)
- Yanru Geng
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Liping Chen
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qinglan Wan
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chengxi Lian
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yu Han
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yan Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chaoying Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Longjiang Huang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Han Zhao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xingshen Sun
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, PR China
| | - Hongwei He
- Qingdao University, Qingdao, 266042, PR China
| |
Collapse
|
7
|
Méndez-Arriaga JM, Rubio-Mirallas E, Quirós M, Sánchez-Moreno M. Zinc 1,2,4-triazolo[1,5-a]pyrimidine complexes: synthesis, structural characterization and their effect against Chagas disease. Med Chem 2021; 18:444-451. [PMID: 34387166 DOI: 10.2174/1573406417666210812162500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The World Health Organization catalogues illnesses such as Chagas disease as neglected diseases, due the low investment in new drugs to fight them. The search for novel and non-side effects anti-parasitic compounds is one of the urgent needs of the Third World. The use of triazolopyrimidines and their metal complexes have demonstrated hopeful results in this field. OBJECTIVE This work studies the antiparasitic efficacy against Trypanosoma cruzi strains of a series of zinc triazolopyrimidine complexes. METHOD A series of Zn complexes has been synthesized by the reaction between the triazolopyrimidine derivatives 7-amino-1,2,4-triazolo[1,5-a]pyrimidine (7atp) and 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) with Zn(SO4) • 7H2O, ZnCl2, and Zn(NO3)2 • 6H2O salts. The complexes have been analyzed by spectroscopic and thermal assays and X-ray diffraction methods have been used to dilucidate the crystalline structure of one of them. The antiparasitic efficacy was tested in vitro against Trypanosoma cruzi to compare the trypanocidal effect of different ligands and counteranions to fight Chagas disease. RESULTS The efficacy of these compounds against Trypanosoma cruzi has also been tested to compare the influence of different ligands and counteranions on the trypanocidal effect against Chagas disease. CONCLUSION Antiproliferative tests corroborate the synergistic trypanocidal effect of the triazolopyrimidine coordination complexes.
Collapse
Affiliation(s)
- José M Méndez-Arriaga
- Departamento de Biología y Geología, Física y Química Inorganica, Universidad Rey Juan Carlos, c/Tulipán s/n 28933, Móstoles, Madrid. Spain
| | - Erika Rubio-Mirallas
- Departamento de Química Inorgánica, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada. Spain
| | - Miguel Quirós
- Departamento de Química Inorgánica, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada. Spain
| | - Manuel Sánchez-Moreno
- Departamento de Parasitología, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada. Spain
| |
Collapse
|
8
|
Fandzloch M, Jędrzejewski T, Dobrzańska L, Esteban-Parra GM, Wiśniewska J, Paneth A, Paneth P, Sitkowski J. New organometallic ruthenium(ii) complexes with purine analogs - a wide perspective on their biological application. Dalton Trans 2021; 50:5557-5573. [PMID: 33908935 DOI: 10.1039/d0dt03974h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three half-sandwich organometallic ruthenium(ii) complexes containing purine analogs such as triazolopyrimidines of general formula [(η6-p-cym)Ru(L)Cl2], where p-cym represents p-cymene and L is 5,6,7-trimethyl-1,2,4-triazolo[1,5-a]pyrimidine (tmtp for 1), 5,7-diethyl-1,2,4-triazolo[1,5-a]pyrimidine (detp for 2) and 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one (HmtpO for 3), have been synthesized and characterized by elemental analysis, infrared, multinuclear magnetic resonance spectroscopic techniques (1H, 13C, 15N), and single-crystal X-ray diffraction (for 1 and 2). All these complexes have been thoroughly screened for their in vitro cytotoxicity against MCF-7 and HeLa cell lines as well as L929 murine fibroblast cells, indicating [(η6-p-cym)Ru(HmtpO)Cl2] (3) as the most active representative against the HeLa cell line and simultaneously being 64-fold less toxic to normal L929 murine fibroblast cells than cisplatin. At the same time, 3 has shown antimetastatic activity comparable to NAMI-A against HeLa cells both after 24 and 48 h of treatment in a wound healing assay. In order to better understand the mechanism of anticancer action and differences in the cytotoxic activity of 1-3, the studies were expanded to determining their lipophilicity, the kinetic stability at pH 6.5-8, the effect on reactive oxygen species (ROS) production in HeLa cells and interactions with significant biomolecules (DNA and albumin) by using molecular docking and circular dichroism (CD) experiments. Furthermore, antiparasitic studies against L. braziliensis, L. infantum and T. cruzi reveal that the newly synthesized complexes 1-3 are very promising candidates which can compete with commercial antiparasitic drugs. Complex 3 in particular, on top of exhibiting a high antiparasitic effect (IC50 < 1 μM against two strains), reaches a selectivity index >1000.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chatterjee HS, Dutta B, Pal K, Jana K, Mahapatra PK, Sinha C. Synthesis, crystal structure and biological application of a Cu(II) coordination compound of 2-hydroxy-5-methyl-3-(pyridin-3-yliminomethyl)-benzaldehyde. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Ramadan M, Abd El-Aziz M, Elshaier YA, Youssif BG, Brown AB, Fathy HM, Aly AA. Design and synthesis of new pyranoquinolinone heteroannulated to triazolopyrimidine of potential apoptotic antiproliferative activity. Bioorg Chem 2020; 105:104392. [DOI: 10.1016/j.bioorg.2020.104392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 01/07/2023]
|
11
|
Synthesis, characterization, coordination chemistry and biological activity of some pyrimidine complexes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Copper(II) Complexes with Mixed Heterocycle Ligands as Promising Antibacterial and Antitumor Species. Molecules 2020; 25:molecules25173777. [PMID: 32825156 PMCID: PMC7504215 DOI: 10.3390/molecules25173777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
Complexes with mixed ligands [Cu(N-N)2(pmtp)](ClO4)2 ((1) N-N: 2,2′-bipyridine; (2) L: 1,10-phenanthroline and pmpt: 5-phenyl-7-methyl-1,2,4-triazolo[1,5-a]pyrimidine) were synthesized and structurally and biologically characterized. Compound (1) crystallizes into space group Pa and (2) in P-1. Both complexes display an intermediate stereochemistry between the two five-coordinated ones. The biological tests indicated that the two compounds exhibited superoxide scavenging capacity, intercalative DNA properties, and metallonuclease activity. Tests on various cell systems indicated that the two complexes neither interfere with the proliferation of Saccharomyces cerevisiae or BJ healthy skin cells, nor cause hemolysis in the active concentration range. Nevertheless, the compounds showed antibacterial potential, with complex (2) being significantly more active than complex (1) against all tested bacterial strains, both in planktonic and biofilm growth state. Both complexes exhibited a very good activity against B16 melanoma cells, with a higher specificity being displayed by compound (1). Taken together, the results indicate that complexes (1) and (2) have specific biological relevance, with potential for the development of antitumor or antimicrobial drugs.
Collapse
|
13
|
Pinheiro S, Pinheiro EMC, Muri EMF, Pessôa JC, Cadorini MA, Greco SJ. Biological activities of [1,2,4]triazolo[1,5-a]pyrimidines and analogs. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02609-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Kamal R, Kumar R, Kumar V, Bhardwaj JK, Saraf P, Kumar A, Pandit K, Kaur S, Chetti P, Beura S. Diacetoxy iodobenzene mediated regioselective synthesis and characterization of novel [1,2,4]triazolo[4,3-a]pyrimidines: apoptosis inducer, antiproliferative activities and molecular docking studies. J Biomol Struct Dyn 2020; 39:4398-4414. [PMID: 32552396 DOI: 10.1080/07391102.2020.1777900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Prompt and regioselective synthesis of eleven novel [1,2,4]triazolo[4,3-a]pyrimidines 2a-2k, via intramolecular oxidative-cyclization of 2-(2-arylidenehydrazinyl)-4-methyl-6-phenylpyrimidine derivatives 1a-1k has been demonstrated here using diacetoxy iodobenzene (DIB) as inexpensive and ecofriendly hypervalent iodine(III) reagent in CH2Cl2 at room temperature. Regiochemistry of final product has been established by developing single crystal and studied X-ray crystallographic data for two derivatives 2c and 2h without any ambiguity. These prominent [1,2,4]triazolo[4,3-a]pyrimidines were evaluated for human osteosarcoma bone cancer (MG-63) and breast cancer (MCF-7) cell lines using MTT assay to find potent antiproliferative agent and also on testicular germ cells to find potent apoptotic inducing activities. All compounds show significant cytotoxicity, particularly 3-(2,4-dichlorophenyl)-5-methyl-7-phenyl-[1,2,4]triazolo[4,3-a]pyrimidine (2g) was found significant apoptotic inducing molecule, as well as the most potent cytotoxic agent against bone cancer (MG-63) and breast cancer (MCF-7) cell lines with GI50 value 148.96 µM and 114.3 µM respectively. Molecular docking studies has been carried out to see the molecular interactions of synthesized compounds with the protein thymidylate synthase (PBD ID: 2G8D).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ravinder Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Vipan Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | | | - Priyanka Saraf
- Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ajay Kumar
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kritika Pandit
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhakar Chetti
- Department of Chemistry, National Institute of Technology (NIT), Kurukshetra, Haryana, India
| | - Satyajit Beura
- Department of Chemistry, National Institute of Technology (NIT), Kurukshetra, Haryana, India
| |
Collapse
|
15
|
Chkirate K, Fettach S, El Hafi M, Karrouchi K, Elotmani B, Mague JT, Radi S, Faouzi MEA, Adarsh NN, Essassi EM, Garcia Y. Solvent induced supramolecular polymorphism in Cu(II) coordination complex built from 1,2,4-triazolo[1,5-a]pyrimidine: Crystal structures and anti-oxidant activity. J Inorg Biochem 2020; 208:111092. [PMID: 32461023 DOI: 10.1016/j.jinorgbio.2020.111092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/27/2022]
Abstract
Two Cu(II) coordination complexes, C1 and C2 of the formula [Cu(4)2(H2O)2], have been prepared by reaction between CuCl2·2H2O and 7-ethoxycarbonylmethyl-5-methyl-1,2,4[1,5-a]pyrimidine (L) in a 1:2 M:L molar ratio. The L molecule decomposes during the reaction process into 7-carboxy-5-methyl-[1,2,4]-triazolo[1,5-a]pyrimidine (4) through an intermediate, ethyl 2,2-dihydroxy-2-(5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)acetate (5), which has been isolated and its crystal structure determined by X-ray diffraction. The X-ray analysis of the single crystals of [Cu(4)2(H2O)2] obtained from the slow evaporation of EtOH and MeOH, separately, revealed the formation of "solvent induced" polymorphs C1 and C2, respectively. The primary supramolecular synthon for C1 and C2 are six membered ring, and square shaped hydrogen bonded architecture, respectively. The self-assembly of such synthons resulted in a two dimensional hydrogen bonded sheet supported by OH⋯O interactions. In addition, the antioxidant properties of the ligands and its complexes were evaluated in vitro using 1,1-diphenyl-2-picrylhydrazyl acid, 2,2'-azino-bis (3-ethylbenzothiazoline-6 sulfonic acid radical scavenging methods and ferric reducing antioxidant power.
Collapse
Affiliation(s)
- Karim Chkirate
- LCOH, Département de Chimie, Faculté des Sciences, Université Mohamed V, BP1014, Rabat 10100, Morocco
| | - Saad Fettach
- Biopharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Pharmacokinetic Research Team, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Morocco
| | - Mohamed El Hafi
- LCOH, Département de Chimie, Faculté des Sciences, Université Mohamed V, BP1014, Rabat 10100, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohamed V University, Rabat, Morocco
| | - Bouchaib Elotmani
- LCOH, Département de Chimie, Faculté des Sciences, Université Mohamed V, BP1014, Rabat 10100, Morocco
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Smaail Radi
- LCAE, Département de Chimie, Faculté des Sciences, Université Mohamed I, BP 524, 60 000 Oujda, Morocco
| | - My El Abbes Faouzi
- Biopharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Pharmacokinetic Research Team, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Morocco
| | - N N Adarsh
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - El Mokhtar Essassi
- LCOH, Département de Chimie, Faculté des Sciences, Université Mohamed V, BP1014, Rabat 10100, Morocco
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
16
|
Fandzloch M, Augustyniak AW, Dobrzańska L, Jędrzejewski T, Sitkowski J, Wypij M, Golińska P. First dinuclear rhodium(II) complexes with triazolopyrimidines and the prospect of their potential biological use. J Inorg Biochem 2020; 210:111072. [PMID: 32563102 DOI: 10.1016/j.jinorgbio.2020.111072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
Abstract
Five novel rhodium(II) complexes of general formula [Rh2(μ-OOCCH3)4L2], where L is a triazolopyrimidine derivative, in particular dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) for (1), 5,7-diethyl-1,2,4-triazolo[1,5-a]pyrimidine (detp) for (2), 7-isobutyl-5-methyl-1,2,4-triazolo[1,5-a]pyrimidine (ibmtp) for (3), 7-hydroxy-5-methyl-1,2,4-triazolo[1,5-a]pyrimidine (HmtpO) for (4) and 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp) for (5) are reported. These first representatives of paddle-wheel dirhodium complexes with triazolopyrimidines have been characterized by IR and NMR spectroscopy as well as by single-crystal X-ray diffraction studies. Three of the new complexes (1), (2) and (5) were thoroughly screened in vitro for their cytotoxicity against human breast cancer cell line MCF-7 and L929 murine fibroblast cells. Favorably, they show significantly less effective inhibition on the cell growth of L929 than cisplatin under identical conditions. Complexes (1) and (5) display moderate cytotoxic activity (IC50 = 16.3-21.5 μM) against MCF-7 cells which is induced via reactive oxygen species-independent pathways. Extensive studies of rhodium complexes (1), (2) and (5) against microorganisms have shown that the tested compounds exhibit antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) while (5) significantly inhibited the growth of Malassezia furfur. The highest antibacterial, and antifungal activity, was observed for (5).
Collapse
Affiliation(s)
- Marzena Fandzloch
- Institute of Low Temperature and Structure Research, PAS, Okólna 2, 50-422 Wrocław, Poland.
| | - Adam W Augustyniak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Liliana Dobrzańska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Jerzy Sitkowski
- National Institutes of Medicines, Chełmska 30/34, 00-725 Warszawa, Poland; Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Magdalena Wypij
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
17
|
Attanzio A, D’Agostino S, Busà R, Frazzitta A, Rubino S, Girasolo MA, Sabatino P, Tesoriere L. Cytotoxic Activity of Organotin(IV) Derivatives with Triazolopyrimidine Containing Exocyclic Oxygen Atoms. Molecules 2020; 25:E859. [PMID: 32075253 PMCID: PMC7070731 DOI: 10.3390/molecules25040859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
In this study cytotoxicity of organotin(IV) compounds with 1,2,4-triazolo[1,5-a]pyrimidines, Me3Sn(5tpO) (1), n-Bu3Sn(5tpO) (2), Me3Sn(mtpO) (3), n-Bu3Sn(mtpO) (4), n-Bu3Sn(HtpO2) (5), Ph3Sn(HtpO2) (6) where 5HtpO = 4,5-dihydro-5-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, HmtpO = 4,7-dihydro-5-methyl-7-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, and H2tpO2 = 4,5,6,7-tetrahydro-5,7- dioxo-[1,2,4]triazolo-[1,5-a]-pyrimidine, was assessed on three different human tumor cell lines: HCT-116 (colorectal carcinoma), HepG2 (hepatocarcinoma) and MCF-7 (breast cancer). While 1 and 3 were inactive, compounds 2, 4, 5 and 6 inhibited the growth of the three tumor cell lines with IC50 values in the submicromolar range and showed high selectivity indexes towards the tumor cells (SI > 90). The mechanism of cell death triggered by the organotin(IV) derivatives, investigated on HCT-116 cells, was apoptotic, as evident from the externalization of phosphatidylserine to the cell surface, and occurred via the intrinsic pathway with fall of mitochondrial inner membrane potential and production of reactive oxygen species. While compound 6 arrested the cell progression in the G2/M cell cycle phase and increased p53 and p21 levels, compounds 2, 4 and 5 blocked cell duplication in the G1 phase without affecting the expression of either of the two tumor suppressor proteins. Compounds 1 and 2 were also investigated using single crystal X-ray diffraction and found to be, in both cases, coordination polymers forming 1 D chains based on metal-ligand interactions. Interestingly, for n-Bu3Sn(5tpO)(2) H-bonding interactions between 5tpO- ligands belonging to adjacent chains were also detected that resemble the "base-pairing" assembly and could be responsible for the higher biological activity compared to compound 1. In addition, they are the first example of bidentate N(3), O coordination for the 5HtpO ligand on two adjacent metal atoms.
Collapse
Affiliation(s)
- Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Parco d’Orleans II, Viale delle Scienze-Pad., 16-90128 Palermo, Italy; (A.A.); (R.B.); (A.F.); (S.R.); (M.A.G.)
| | - Simone D’Agostino
- Department of Chemistry “G. Ciamician”, University of Bologna, via F. Selmi 2, 40126 Bologna, Italy;
| | - Rosalia Busà
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Parco d’Orleans II, Viale delle Scienze-Pad., 16-90128 Palermo, Italy; (A.A.); (R.B.); (A.F.); (S.R.); (M.A.G.)
| | - Anna Frazzitta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Parco d’Orleans II, Viale delle Scienze-Pad., 16-90128 Palermo, Italy; (A.A.); (R.B.); (A.F.); (S.R.); (M.A.G.)
| | - Simona Rubino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Parco d’Orleans II, Viale delle Scienze-Pad., 16-90128 Palermo, Italy; (A.A.); (R.B.); (A.F.); (S.R.); (M.A.G.)
| | - Maria Assunta Girasolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Parco d’Orleans II, Viale delle Scienze-Pad., 16-90128 Palermo, Italy; (A.A.); (R.B.); (A.F.); (S.R.); (M.A.G.)
| | - Piera Sabatino
- Department of Chemistry “G. Ciamician”, University of Bologna, via F. Selmi 2, 40126 Bologna, Italy;
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Parco d’Orleans II, Viale delle Scienze-Pad., 16-90128 Palermo, Italy; (A.A.); (R.B.); (A.F.); (S.R.); (M.A.G.)
| |
Collapse
|
18
|
Triazolopyrimidinium salts: discovery of a new class of agents for cancer therapy. Future Med Chem 2020; 12:387-402. [PMID: 32028797 DOI: 10.4155/fmc-2019-0317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: The [1,2,4]triazolo[1,5-a]pyrimidine core is highly privileged in medicinal chemistry due to its versatile pharmacological activity profile. Recently, the search for novel anticancer agents has focused on [1,2,4]triazolo[1,5-a]pyrimidine derivatives. Results: Our hit functionalization has led to the discovery of new [1,2,4]triazolo[1,5-a]pyrimidinium salts with potential anticancer activity. Among a small library of molecules, compound 9 significantly inhibits cancer cell growth in a panel of in vitro models. Molecular docking studies and preliminary binding assay have displayed that 9 could directly bind the Src homology 2 (SH2) domain of STAT3 protein. Conclusion: Compound 9 is a novel promising lead compound that motivates additional evaluation of [1,2,4]triazolo[1,5-a]pyrimidinium salts as novel potential chemotherapeutics.
Collapse
|
19
|
Esteban‐Parra GM, Moscoso I, Cepeda J, García JA, Sánchez‐Moreno M, Rodríguez‐Diéguez A, Quirós M. Lanthanide(III) Based Complexes Containing 5,7‐Dimethyl‐1,2,4‐triazolo[1,5‐
a
]pyrimidine as Long‐Lived Photoluminescent Antiparasitic Agents. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ginés M. Esteban‐Parra
- Departamento de Química Inorgánica Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Inmaculada Moscoso
- Departamento de Química Inorgánica Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Javier Cepeda
- Departamento de Química Aplicada Facultad de Química Universidad del Pais Vasco (UPV/EHU) 20018 Donostia Spain
| | - Jose A. García
- Departamento de Física Aplicada II Facultad de Ciencia y Tecnología Universidad del Pais Vasco (UPV/EHU) 48940 Leioa Spain
| | - Manuel Sánchez‐Moreno
- Departamento de Parasitología Facultad de Ciencias University of Granada 18071 Granada Spain
| | | | - Miguel Quirós
- Departamento de Química Inorgánica Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| |
Collapse
|
20
|
Ding Y, Ma R, Hider RC, Ma Y. Acid‐Catalyzed Pseudo Five‐Component Annulation for a General One‐Pot Synthesis of 2,4,6‐Triaryl Pyrimidines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuxin Ding
- School of Pharmaceutical and Chemical EngineeringTaizhou University Taizhou 318000 P. R. China
- School of Pharmaceutical ScienceZhejiang Chinese Medical University Hangzhou 310053 P R China
| | - Renchao Ma
- School of Pharmaceutical and Chemical EngineeringTaizhou University Taizhou 318000 P. R. China
| | - Robert C. Hider
- Institute of Pharmaceutical ScienceKing's College London Franklin-Wilkins Building Stamford Street London SE1 9NH UK
| | - Yongmin Ma
- School of Pharmaceutical and Chemical EngineeringTaizhou University Taizhou 318000 P. R. China
- School of Pharmaceutical ScienceZhejiang Chinese Medical University Hangzhou 310053 P R China
| |
Collapse
|
21
|
Fandzloch M, Jaromin A, Zaremba-Czogalla M, Wojtczak A, Lewińska A, Sitkowski J, Wiśniewska J, Łakomska I, Gubernator J. Nanoencapsulation of a ruthenium(ii) complex with triazolopyrimidine in liposomes as a tool for improving its anticancer activity against melanoma cell lines. Dalton Trans 2020; 49:1207-1219. [PMID: 31903475 DOI: 10.1039/c9dt03464a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two types of ruthenium(ii) complexes containing 1,2,4-triazolo[1,5-a]pyrimidines of the general formulas [RuCl2(dmso)3(L)] ((1)-(3)) and [RuCl2(dmso)2(L)2] ((4)-(6)), where L represents 1,2,4-triazolo[1,5-a]pyrimidine (tp for (1)), 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp for (2)), 7-isobutyl-5-methyl-1,2,4-trizolo[1,5-a]pyrimidine (ibmtp for (3)), 5,7-diethyl-1,2,4-triazolo[1,5-a]pyrimidine (detp for (4)), 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp for (5)) and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine (dptp for (6)), have been synthesized and characterized by elemental analysis, infrared, multinuclear magnetic resonance spectroscopic techniques (1H, 13C, and 15N), and X-ray (for (3), (4), and (5)). All these complexes have been thoroughly screened for their in vitro cytotoxicity against melanoma cell lines A375 and Hs294T, indicating cis,cis,cis-[RuCl2(dbtp)2(dmso)2] (5) as the most active representative, in addition to being non-toxic to normal human fibroblasts (NHDF) and not inducing hemolysis of human erythrocytes. In order to develop an intravenous formulation for (5), liposomes composed of soybean phosphatidylcholine (SPC), cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) were prepared and subsequently characterized. (5)-Loaded liposomes, with spherical morphology, assessed by transmission electron microscope (TEM), exhibited satisfactory encapsulation efficiency and stability. In in vitro experiments, PEG-modified (5)-loaded liposomes were more effective (10-fold) than free (5) for growth inhibition of both human melanoma cell lines. Furthermore, such an approach resulted in the reduction of cancer cell viability that was even 10-fold greater than that observed for free cisplatin.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland and Institute of Low Temperature and Structure Research, PAS, Okólna 2, 50-422 Wrocław, Poland.
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Jerzy Sitkowski
- National Institutes of Medicines, Chełmska 30/34, 00-725 Warszawa, Poland and Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Joanna Wiśniewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Iwona Łakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
22
|
Méndez-Arriaga JM, Rodríguez-Diéguez A, Sánchez-Moreno M. In vitro leishmanicidal activity of copper (II) 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine complex and analogous transition metal series. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Esteban-Parra GM, Méndez-Arriaga JM, Rodríguez-Diéguez A, Quirós M, Salas JM, Sánchez-Moreno M. High antiparasitic activity of silver complexes of 5,7-dimethyl-1,2,4-triazolo[1,5 a]pyrimidine. J Inorg Biochem 2019; 201:110810. [DOI: 10.1016/j.jinorgbio.2019.110810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022]
|
24
|
Pogaku V, Gangarapu K, Basavoju S, Tatapudi KK, Katragadda SB. Design, synthesis, molecular modelling, ADME prediction and anti-hyperglycemic evaluation of new pyrazole-triazolopyrimidine hybrids as potent α-glucosidase inhibitors. Bioorg Chem 2019; 93:103307. [DOI: 10.1016/j.bioorg.2019.103307] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
|
25
|
Synthesis, structure and biological evaluation of ruthenium(III) complexes of triazolopyrimidines with anticancer properties. J Biol Inorg Chem 2019; 25:109-124. [PMID: 31741123 DOI: 10.1007/s00775-019-01743-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
Six novel ruthenium(III) complexes of general formula [RuCl3(L)3] (1,3,5) and [RuCl3(H2O)(L)2] (2,4,6), where L stands for three different triazolopyrimidine-derived ligands, are reported. The compounds have been structurally characterized (IR, EPR, SCXRD), and their magnetic moments have been determined. The single-crystal X-ray diffraction study revealed a slightly distorted octahedral geometry of the Ru(III) complexes with mer configuration in 1 and 5, and fac configuration in 3. In 2 and 4, three chloride ions are in mer configuration and the two triazolopyrimidines are oriented trans mutually with the water molecule playing the role of the sixth ligand. All complexes have been thoroughly screened for their in vitro cytotoxicity against human breast cancer cell line MCF-7, human cervical cancer cell line HeLa, and L929 murine fibroblast cells, uncovering among others that the most lipophilic complexes 5 and 6, containing the bulky ligand dptp (5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine), display high cytotoxic activity against MCF-7, and HeLa cells. Moreover, it was also revealed that during the interaction of the complexes 1-6 with the cancer MCF-7 cell line, reactive oxygen species are released intracellularly, which could indicate that they are involved in cell apoptosis. Furthermore, extensive studies have been carried out to reveal the mechanism by which complexes 1-6 interact with DNA, albumin, and apotransferrin. The biological studies were complemented by detailed kinetic studies of the hydrolysis of the complexes in the pH range 5-8, to determine the stability of the complexes in solution. Six novel ruthenium(III) complexes with triazolopyrimidine derivatives demonstrated the potential for use as anticancer agents by maintaining the toxic effect on MCF-7 and HeLa cells.
Collapse
|
26
|
Tkachenko IG, Komykhov SA, Musatov VI, Shishkina SV, Dyakonenko VV, Shvets VN, Diachkov MV, Chebanov VA, Desenko SM. In water multicomponent synthesis of low-molecular-mass 4,7-dihydrotetrazolo[1,5- a]pyrimidines. Beilstein J Org Chem 2019; 15:2390-2397. [PMID: 31666873 PMCID: PMC6808202 DOI: 10.3762/bjoc.15.231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/13/2019] [Indexed: 11/23/2022] Open
Abstract
The three-component reaction of 5-aminotetrazole with aliphatic aldehydes (formaldehyde, acetaldehyde) and acetoacetic ester derivatives in water under microwave irradiation leads to the selective formation of 4,7-dihydrotetrazolo[1,5-a]pyrimidine derivatives. Under similar conditions using 4,4,4-trifluoroacetoacetic ester 5-hydroxy-4,5,6,7-tetrahydrotetrazolo[1,5-a]pyrimidines are obtained. The analogous reaction with acetylacetone requires scandium(III) triflate as catalyst. The antioxidant activity of selected compounds was assayed with 1,1-diphenyl-2-picrylhydrazyl.
Collapse
Affiliation(s)
- Irina G Tkachenko
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine.,Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine.,Kharkiv Scientific Research Forensic Center, Ministry of Internal Affairs of Ukraine, 32 Kovtuna Str., Kharkiv 61036, Ukraine
| | - Sergey A Komykhov
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine.,Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine
| | - Vladimir I Musatov
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine
| | - Svitlana V Shishkina
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine.,Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine
| | - Viktoriya V Dyakonenko
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine
| | - Vladimir N Shvets
- Zaporizhzhia State Medical University, Mayakovsky Ave 26, Zaporizhzhia 69035, Ukraine
| | | | - Valentyn A Chebanov
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine.,Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine
| | - Sergey M Desenko
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky Ave 60, Kharkiv 61072, Ukraine.,Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine
| |
Collapse
|
27
|
Méndez-Arriaga JM, Oyarzabal I, Martín-Montes Á, García-Rodríguez J, Quirós M, Sánchez-Moreno M. First Example of Antiparasitic Activity Influenced by Thermochromism: Leishmanicidal Evaluation of 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine Metal Complexes. Med Chem 2019; 16:422-430. [PMID: 30931864 DOI: 10.2174/1573406415666190401120607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/31/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The World Health Organization catalogues illnesses such as Leishmaniasis as neglected diseases, due to low investment in new drugs to fight them. The search of novel and non-side effects anti-parasitic compounds is one of the urgent needs for the Third World. The use of triazolopyrimidines and their metallic complexes has demonstrated hopeful results in this field. OBJECTIVE This work studies the antiparasitic efficacy of a series of 5,7-dimethyl-1,2,4- triazolo[1,5-a]pyrimidine first row transition metal complexes against three leishmania spp. strains. METHODS The in vitro antiproliferation of promastigote forms of different strains of leishmania spp. (L. infantum, L. braziliensis and L donovani) and the cytotoxicity in macrophage host cells are reported here. The antiparasitic assays have been complemented with enzymatic tests to elucidate the mechanisms of action. New crystal structure description, thermal analysis, magnetic susceptibility and magnetization experiments have also been carried out in order to present a whole characterization of the studied compounds and interesting physical properties besides the biological tests. RESULTS The results of antiproliferation screening and cytotoxicity show great antiparasitic efficacy in the studied complexes. The superoxide dismutase enzymatic assays exhibit a different behaviour according to the thermochromic triazolopyrimidine form tested. CONCLUSION Antiproliferative assays and enzymatic tests corroborate the synergetic leishmanicidal effect present in coordination triazolopyrimidine complexes. The changes in coordination sphere derived from thermochromism affect the physical properties as well as the biological efficacy.
Collapse
Affiliation(s)
- José M Méndez-Arriaga
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva, 18071 Granada, Spain.,Department of Parasitology, Faculty of Sciences, University of Granada Avda. Fuentenueva, 18071 Granada, Spain
| | - Itziar Oyarzabal
- CNRS, CRPP, UMR 5031, 33600 Pessac, France.,University of Bordeaux, CRPP, UMR 5031, 33600 Pessac, France
| | - Álvaro Martín-Montes
- Department of Parasitology, Faculty of Sciences, University of Granada Avda. Fuentenueva, 18071 Granada, Spain
| | - Judith García-Rodríguez
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - Miguel Quirós
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Faculty of Sciences, University of Granada Avda. Fuentenueva, 18071 Granada, Spain
| |
Collapse
|
28
|
Sabatino P, D'Agostino S, Isopi J, Rubino S, Marcaccio M, Girasolo MA. Nanowire iron(III) coordination polymer based on 1,2,4-triazolo[1,5-a]pyrimidine and chloride ligands. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.01.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Łakomska I, Jakubowski M, Barwiołek M, Muzioł T. Different bonding of triazolopyrimidine to platinum(IV). Structural and in vitro cytotoxicity studies. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Tripathi M, Giri CG, Das D, Pande R, Sarkar S, Giri S, Roymahapatra G, Sarkar A. Synthesis, characterization and nucleic acid binding studies of mononuclear copper(II) complexes derived from azo containing O, O donor ligands. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:563-584. [PMID: 30422758 DOI: 10.1080/15257770.2018.1508694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 10/27/2022]
Abstract
Azo linked salicyldehyde and a new 2-hydroxy acetophenone based ligands (HL1 and HL2) with their copper(II) complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) were synthesized and characterized by spectroscopic methods such as 1H, 13C NMR, UV-Vis spectroscopy and elemental analyses. Calculation based on Density Functional Theory (DFT), have been performed to obtain optimized structures. Binding studies of these copper (II) complexes with calf thymus DNA (ct-DNA) and torula yeast RNA (t-RNA) were analyzed by absorption spectra, emission spectra and Viscosity studies and Molecular Docking techniques. The absorption spectral study indicated that the copper(II) complexes of 1 and 2 had intrinsic binding constants with DNA or RNA in the range of 7.6 ± 0.2 × 103 M-1 or 6.5 ± 0.3 × 103M-1 and 5.7 ± 0.4 × 104 M-1 or 1.8 ± 0.5 × 103 M-1 respectively. The synthesized compounds and nucleic acids were simulated by molecular docking to explore more details mode of interaction of the complexes and their orientations in the active site of the receptor.
Collapse
Affiliation(s)
- Mamta Tripathi
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| | | | - Devashish Das
- c DNA Skew Analytics Pvt. Ltd , Bengaluru , Karnataka , India
| | - Rama Pande
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| | - Sougata Sarkar
- d Department of Chemistry , Ramakrishna Mission Vivekananda Centenary College , Kolkata , India
| | - Santanab Giri
- e Department of Chemistry , National Institute of Technology Rourkela , Rourkela , India
| | | | - Avijit Sarkar
- b Department of Chemistry , Bhairab Ganguly College , Kolkata , India
| |
Collapse
|
31
|
Liu X, Song X, Liu Y, Xie M, Yu W, Yan S, Lin J, Jin Y. Novel 5H-[1,2,4]oxadiazolo[4,5-a]pyrimidin-5-one derivatives as antibacterial and anticancer agents: Synthesis and biological evaluation. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Astakhov AV, Suponitsky KY, Chernyshev VM. Chlorotrimethylsilane-promoted synthesis of 1,2,4-triazolopyrimidines from 3,5-diamino-1,2,4-triazoles and pentane-2,4-diones. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.07.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
In vitro leishmanicidal and trypanocidal evaluation and magnetic properties of 7-amino-1,2,4-triazolo[1,5-a]pyrimidine Cu(II) complexes. J Inorg Biochem 2018; 180:26-32. [DOI: 10.1016/j.jinorgbio.2017.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/16/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022]
|
34
|
Fandzloch M, Dobrzańska L, Jezierska J, Filip-Psurska B, Wiśniewska J, Wietrzyk J, Salas JM, Łakomska I. In search of new anticancer drug – Dimethylsulfoxide ruthenium(III) complex with bulky triazolopyrimidine derivative and preliminary studies towards understanding the mode of action. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.11.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Kamal R, Kumar V, Kumar R, Bhardwaj JK, Saraf P, Kumari P, Bhardwaj V. Design, Synthesis, and Screening of Triazolopyrimidine-Pyrazole Hybrids as Potent Apoptotic Inducers. Arch Pharm (Weinheim) 2017; 350. [PMID: 29034498 DOI: 10.1002/ardp.201700137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 01/06/2025]
Abstract
An efficient synthesis of novel 3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-5,7-dimethyl-[1,2,4]triazolo[4,3-a]-pyrimidines was accomplished by the oxidation of pyrimidinylhydrazones by using organoiodine(III) reagent. All new triazolopyrimidine derivatives bearing the pyrazole scaffold were screened to evaluate them as a reproductive toxicant in the testicular germ cells of goat (Capra hircus). This study aimed at assessing the cytological and biochemical changes in testicular germ cells after the exposure to triazolopyrimidines in a dose- and time-dependent manner. Histomorphological analysis, fluorescence assays, apoptosis quantification, and terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling (TUNEL) assays were performed to determine cytological changes, whereas thiobarbituric acid-reactive substance (TBARS) and ferric reducing antioxidant power (FRAP) assays were carried out to measure the oxidative stress in triazolopyrimidines treated germ cells. The parallel use of these methods enabled us to determine the role of triazolopyrimidines in inducing apoptosis as a consequence of cytogenetic damage and oxidative stress generated in testicular germ cells of goat.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Vipan Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ravinder Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Jitender K Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Priya Kumari
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Vikas Bhardwaj
- Seth Jai Prakash Mukand Lal Institute of Engineering & Technology, Radaur, Yamuna Nagar, Haryana, India
| |
Collapse
|
36
|
Fandzloch M, Arriaga JMM, Sánchez-Moreno M, Wojtczak A, Jezierska J, Sitkowski J, Wiśniewska J, Salas JM, Łakomska I. Strategies for overcoming tropical disease by ruthenium complexes with purine analog: Application against Leishmania spp. and Trypanosoma cruzi. J Inorg Biochem 2017; 176:144-155. [PMID: 28910663 DOI: 10.1016/j.jinorgbio.2017.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/01/2017] [Accepted: 08/23/2017] [Indexed: 12/29/2022]
Abstract
Tropical diseases currently constitute a major health problem and thus a challenge in the field of drug discovery. The current treatments show serious disadvantages due to cost, toxicity, long therapy duration and resistance, and the use of metal complexes as chemotherapeutic agents against these ailments appears to be a very attractive alternative. Herein, we describe three newly synthesized ruthenium complexes with a bioactive molecule, the purine analogue 5,6,7-trimethyl-1,2,4-triazolo[1,5-a]pyrimidine (tmtp): cis,fac-[RuCl2(dmso)3(tmtp)] (1), mer-[RuCl3(dmso)(H2O)(tmtp)]·2H2O (2) and fac,cis-[RuCl3(H2O)(tmtp)2] (3). Their structures were characterized using X-ray and spectroscopic methods (IR, NMR or EPR). The stability of the synthesized complexes 1-3 in various buffered solutions (pH=3-7.4) was monitored using conventional and stopped-flow techniques. The in vitro antiproliferative activity of all ruthenium complexes against promastigote forms of Leishmania spp. (L. infantum, L. braziliensis, and L. donovani) and epimastigote forms of Trypanosoma cruzi was investigated. Notably, the results showed that the activity of 1 against L. brasiliensis was more than three-fold higher than that of glucantime, and 1 showed no appreciable toxicity towards J774.2 macrophages. Additionally, 2 displayed even 141-fold lower toxicity against host cells than glucantime, demonstrating significantly higher selectivity than the reference drug. Therefore, 1 and 2 appear to be excellent candidates for further development as potential drugs for the effective treatment of leishmaniasis and Chagas disease. All novel complexes were also shown to be potent inhibitors of Fe-SOD in the studied species, while their effects on human CuZn-SOD were very low.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | | | - Manuel Sánchez-Moreno
- Department of Parasitology, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Julia Jezierska
- Faculty of Chemistry, Wrocław University, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Jerzy Sitkowski
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland; Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Joanna Wiśniewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Juan Manuel Salas
- Department of Inorganic Chemistry, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Iwona Łakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| |
Collapse
|
37
|
Méndez-Arriaga JM, Esteban-Parra GM, Juárez MJ, Rodríguez-Diéguez A, Sánchez-Moreno M, Isac-García J, Salas JM. Antiparasitic activity against trypanosomatid diseases and novel metal complexes derived from the first time characterized 5-phenyl-1,2,4-triazolo[1,5-a]pyrimidi-7(4H)-one. J Inorg Biochem 2017; 175:217-224. [PMID: 28780409 DOI: 10.1016/j.jinorgbio.2017.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
Abstract
A serie of isostructural complexes with general formula [M(ftpO)2(H2O)4] have been obtained from reaction between the first time characterized triazolopyrimidine derivative 5-phenyl-1,2,4-triazolo[1,5-a]pyrimidi-7(4H)-one (HftpO) (1) and first row transition nitrates (M=Cu (2), Co (3), Ni (4) and Zn (5)). A copper complex with formula [Cu(HftpO)2(NO3)2(H2O)2]·H2O (6) was also isolated. HftpO and their metal complexes have been characterized by spectroscopic and thermal analysis and their crystal structures have been solved by X-ray diffraction methods. The isostructural compounds are mononuclear complexes where the triazolopyrimidine ligand acts as monodentate ligand through N3 nitrogen position. The crystal structure of these novel bis-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one-tetraaquo metal complexes offers an excellent opportunity at these complexes to acts as potential building blocks. Also, the antiparasitic activity of HftpO ligand against different leishmania and trypanosome strains has been studied.
Collapse
Affiliation(s)
- J M Méndez-Arriaga
- Departamento de Química Inorgánica, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - G M Esteban-Parra
- Departamento de Química Inorgánica, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - M J Juárez
- Inst. Reconoc. Molec. y Desarr. Tecnol. (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - A Rodríguez-Diéguez
- Departamento de Química Inorgánica, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - M Sánchez-Moreno
- Departamento de Parasitología, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - J Isac-García
- Grupo de Modelización y Diseño Molecular, Departamento de Química Orgánica, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - J M Salas
- Departamento de Química Inorgánica, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain.
| |
Collapse
|
38
|
Măruţescu L, Calu L, Chifiriuc MC, Bleotu C, Daniliuc CG, Fălcescu D, Kamerzan CM, Badea M, Olar R. Synthesis, Physico-chemical Characterization, Crystal Structure and Influence on Microbial and Tumor Cells of Some Co(II) Complexes with 5,7-Dimethyl-1,2,4-triazolo[1,5-a]pyrimidine. MOLECULES (BASEL, SWITZERLAND) 2017; 22:molecules22071233. [PMID: 28737690 PMCID: PMC6152184 DOI: 10.3390/molecules22071233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 01/07/2023]
Abstract
Three complexes, namely [Co(dmtp)₂(OH₂)₄][CoCl₄] (1), [Co(dmtp)₂Cl₂] (2) and [Co(dmtp)₂(OH₂)₄]Cl₂∙2H₂O (3) (dmtp: 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine), were synthesized and characterized by spectral (IR, UV-Vis-NIR), and magnetic measurements at room temperature, as well as single crystal X-ray diffraction. Complex (1) crystallizes in monoclinic system (space group C2/c), complex (2) adopts an orthorhombic system (space group Pbca), and complex (3) crystallizes in triclinic system (space group P1). Various types of extended hydrogen bonds and π-π interactions provide a supramolecular architecture for all complexes. All species were evaluated for antimicrobial activity towards planktonic and biofilm-embedded microbial cells and influence on HEp-2 cell viability, cellular cycle and gene expression.
Collapse
Affiliation(s)
- Luminiţa Măruţescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., 60101 Bucharest, Romania.
- Environment and Earth Sciences Department, Research Institute of the University of Bucharest-ICUB, Life, Spl. Independentei 91-95, 010271 Bucharest, Romania.
| | - Larisa Calu
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania.
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., 60101 Bucharest, Romania.
- Environment and Earth Sciences Department, Research Institute of the University of Bucharest-ICUB, Life, Spl. Independentei 91-95, 010271 Bucharest, Romania.
| | - Coralia Bleotu
- Stefan S Nicolau Institute of Virology, 285 Mihai Bravu Ave., 030304 Bucharest, Romania.
| | - Constantin-Gabriel Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany.
| | - Denisa Fălcescu
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania.
| | - Crina Maria Kamerzan
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., 60101 Bucharest, Romania.
- Environment and Earth Sciences Department, Research Institute of the University of Bucharest-ICUB, Life, Spl. Independentei 91-95, 010271 Bucharest, Romania.
| | - Mihaela Badea
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania.
| | - Rodica Olar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania.
| |
Collapse
|
39
|
Łakomska I, Babinska M, Wojtczak A, Kozakiewicz A, Sitkowski J, Jarzęcki AA. Experimental and theoretical investigation of the complexation of 5-methyl-7-isobutyl-1,2,4-triazolo[1,5-a]pyrimidine with platinum(ii) ions. NEW J CHEM 2017. [DOI: 10.1039/c7nj01112a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dichlorido platinum(ii) complexes with 5-methyl-7-isobutyl-1,2,4-triazolo[1,5-a]pyrimidine (ibmtp) were synthesized and characterized by various tools: IR, 1H, 13C, 15N, 195Pt NMR and DFT calculations.
Collapse
Affiliation(s)
- Iwona Łakomska
- Bioinorganic Chemistry Research Group
- Faculty of Chemistry
- Nicolaus Copernicus University in Toruń
- 87-100 Toruń
- Poland
| | - Magdalena Babinska
- Bioinorganic Chemistry Research Group
- Faculty of Chemistry
- Nicolaus Copernicus University in Toruń
- 87-100 Toruń
- Poland
| | - Andrzej Wojtczak
- Department of Crystallochemistry and Biocrystallography
- Faculty of Chemistry
- Nicolaus Copernicus University in Toruń
- 87-100 Toruń
- Poland
| | - Anna Kozakiewicz
- Department of Crystallochemistry and Biocrystallography
- Faculty of Chemistry
- Nicolaus Copernicus University in Toruń
- 87-100 Toruń
- Poland
| | - Jerzy Sitkowski
- National Institutes of Medicines
- 00-725 Warszawa
- Poland
- Institute of Organic Chemistry
- Polish Academy of Sciences
| | | |
Collapse
|
40
|
Massari S, Desantis J, Nannetti G, Sabatini S, Tortorella S, Goracci L, Cecchetti V, Loregian A, Tabarrini O. Efficient and regioselective one-step synthesis of 7-aryl-5-methyl- and 5-aryl-7-methyl-2-amino-[1,2,4]triazolo[1,5-a]pyrimidine derivatives. Org Biomol Chem 2017; 15:7944-7955. [DOI: 10.1039/c7ob02085f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two facile and efficient one-step procedures for the regioselective synthesis of 7-aryl-5-methyl- and 5-aryl-7-methyl-2-amino-[1,2,4]triazolo[1,5-a]pyrimidines.
Collapse
Affiliation(s)
- Serena Massari
- Department of Pharmaceutical Sciences
- University of Perugia
- 06123 Perugia
- Italy
| | - Jenny Desantis
- Department of Pharmaceutical Sciences
- University of Perugia
- 06123 Perugia
- Italy
| | - Giulio Nannetti
- Department of Molecular Medicine
- University of Padua
- 35121 Padua
- Italy
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences
- University of Perugia
- 06123 Perugia
- Italy
| | - Sara Tortorella
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
- 06123 Perugia
- Italy
| | - Laura Goracci
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
- 06123 Perugia
- Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences
- University of Perugia
- 06123 Perugia
- Italy
| | - Arianna Loregian
- Department of Molecular Medicine
- University of Padua
- 35121 Padua
- Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences
- University of Perugia
- 06123 Perugia
- Italy
| |
Collapse
|