1
|
Lu W, Mu T, Zhang Y, Chen B, Guo H, Zhao L, Wang P, Bian Y. A Photocontrolled Molecular Rotor Based on Azobenzene-Strapped Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Triple-Decker. Molecules 2025; 30:326. [PMID: 39860196 PMCID: PMC11767808 DOI: 10.3390/molecules30020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex Azo-1 is reported. Electronic absorption and 1H NMR spectra manifested the reversible isomerization of the rotor Azo-1 between the trans configuration and the cis configuration. The rotational behavior of phthalocyanine rotator in two configurations were investigated by VT-1H NMR experiments, and the results indicated that the phthalocyanine rotator possessed a smaller rotational energy barrier in the cis isomer than in the trans isomer, which was also supported by DFT calculations. This result demonstrates that the rotation of phthalocyanine rotator in (phthalocyaninato)(porphyrinato) rare earth triple-decker complex can be successfully modulated by photo-isomerization via altering irradiation.
Collapse
Affiliation(s)
- Wenxin Lu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (W.L.); (T.M.); (B.C.); (H.G.)
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tiantian Mu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (W.L.); (T.M.); (B.C.); (H.G.)
| | - Yuehong Zhang
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 522000, China;
| | - Bo Chen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (W.L.); (T.M.); (B.C.); (H.G.)
| | - Huantao Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (W.L.); (T.M.); (B.C.); (H.G.)
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Peng Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (W.L.); (T.M.); (B.C.); (H.G.)
| | - Yongzhong Bian
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Aundhia C, Parmar G, Talele C, Talele D, Seth AK. Light Sensitive Liposomes: A Novel Strategy for Targeted Drug Delivery. Pharm Nanotechnol 2025; 13:41-54. [PMID: 38279711 DOI: 10.2174/0122117385271651231228073850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Light-sensitive liposomes have emerged as a promising platform for drug delivery, offering the potential for precise control over drug release and targeted therapy. These lipid-based nanoparticles possess photoresponsive properties, allowing them to undergo structural changes or release therapeutic payloads upon exposure to specific wavelengths of light. This review presents an overview of the design principles, fabrication methods, and applications of light-sensitive liposomes in drug delivery. Further, this article also discusses the incorporation of light-sensitive moieties, such as azobenzene, spiropyran, and diarylethene, into liposomal structures, enabling spatiotemporal control over drug release. The utilization of photosensitizers and imaging agents to enhance the functionality and versatility of light-sensitive liposomes is also highlighted. Finally, the recent advances, challenges, and future directions in the field, emphasizing the potential for these innovative nanocarriers to revolutionize targeted therapeutics, are also discussed.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Dipali Talele
- Faculty of Pharmacy, Vishwakarma University, Survey No. 2,3,4 Laxmi Nagar, Kondhwa Budruk, Pune, India
| | - Avinsh Kumar Seth
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| |
Collapse
|
3
|
Sun J, Chen F, Liu J, Zhang Y, He D, Dodonov VA, Zhao Y. Reactions of an Anionic Gallylene with Azobenzene or Azide Compounds Through C(sp 2)-H and C(sp 3)-H Activation. Molecules 2024; 29:5021. [PMID: 39519661 PMCID: PMC11547653 DOI: 10.3390/molecules29215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The activation of inert C-H bonds remains a challenge in current chemistry. Here, we report the excellent reactivity of the anionic gallylene species [LGa:][Na(THF)3] (L = [(2,6-iPr2C6H3)NC(CH3)]22-, 1) that allows the selective activation one ortho sp2 C-H bond of several azobenzene and azide derivatives at ambient temperature, with the transfer of the hydrogen atom to one of the nitrogen atoms. The process leads to the formation of the aryl amido products [LGa-κ2N,C-PhNN(H)(p-R-C6H3)][Na(solvent)3] (2, R = H solvent = DME (1,2-Dimethoxyethane); 3, R = -OMe, solvent = DME; 4, R = -NMe2 solvent = THF), [LGa-κ2N,C-(m-CH3-C6H4)NN(H)(m-CH3-C6H3)][Na(15-C-5)2] (5) with new Ga-C and Ga-N bonds. Moreover, 1 is also effective for the C-H activation of two azides RN3 (R = 2,4,6-Me3C6H2 or 2,6-iPr2C6H3), resulting in the formation of gallium amides [LGa(NH-2-(CH2)-4,6-Me2C6H2)][Na(15-C-5)2] (6) and [LGa(NH-2,6-iPr2C6H3)2][Na(THF)5] (7) through intra- or intermolecular sp3 C-H amination. Significantly, these reactions occur for the highly challenging activation of inert C(sp2)-H and C(sp3)-H bonds, thus demonstrating the excellent reactivity of the Ga(I) species 1. The products 2-7 were characterized by X-ray crystallography, 1H and 13C NMR, UV-vis spectroscopy, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Jinfeng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Fangfeng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Juan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Yihu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Dongyu He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Vladimir A. Dodonov
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
- Grigory Alekseevich Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russia
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
4
|
Sharma S, Chakraborty M, Yadav D, Dhullap A, Singh R, Verma RK, Bhattacharya S, Singh S. Strategic Developments in Polymer-Functionalized Liposomes for Targeted Colon Cancer Therapy: An Updated Review of Clinical Trial Data and Future Horizons. Biomacromolecules 2024; 25:5650-5669. [PMID: 39162323 DOI: 10.1021/acs.biomac.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Liposomes, made up of phospholipid bilayers, are efficient nanocarriers for drug delivery because they can encapsulate both hydrophilic and lipophilic drugs. Conventional cancer treatments sometimes involve considerable toxicities and adverse drug reactions (ADRs), which limits their clinical value. Despite liposomes' promise in addressing these concerns, clinical trials have revealed significant limitations, including stability, targeted distribution, and scaling challenges. Recent clinical trials have focused on enhancing liposome formulations to increase therapeutic efficacy while minimizing negative effects. Notably, the approval of liposomal medications like Doxil demonstrates their potential in cancer treatment. However, the intricacy of liposome preparation and the requirement for comprehensive regulatory approval remain substantial impediments. Current clinical trial updates show continued efforts to improve liposome stability, targeting mechanisms, and payload capacity in order to address these issues. The future of liposomal drug delivery in cancer therapy depends on addressing these challenges in order to provide patients with more effective and safer treatment alternatives.
Collapse
Affiliation(s)
- Satyam Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Moitrai Chakraborty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Dharmendra Yadav
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Aniket Dhullap
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Sankha Bhattacharya
- SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur, Dist. Dhule, Maharashtra 425405, India
| | - Sanjiv Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| |
Collapse
|
5
|
Zhang P, Zhang X, Kreuzer LP, Schwaiger DM, Lu M, Cubitt R, Zhong Q, Müller-Buschbaum P. Kinetics of UV Radiation-Induced Fast Collapse and Recovery in Thermally Cycled and Rehydrated Light- and Thermo- Double-Responsive Copolymer Films Probed by In Situ Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10464-10474. [PMID: 37458993 DOI: 10.1021/acs.langmuir.3c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The kinetics of UV radiation-induced fast collapse and recovery in thermally cycled and rehydrated light- and thermo- double-responsive copolymer films of poly(oligo(ethylene glycol) methyl ether methacrylate-co-6-(4-phenylazophenoxy)hexyl acrylate), abbreviated as P(OEGMA300-co-PAHA), are probed by in situ neutron reflectivity (NR). The copolymer film is exposed to a thermal treatment starting at a temperature of 60 °C, which is well above its transition temperature (TT = 53 °C) before the temperature is rapidly decreased from 60 to 23 °C. Based on the applied protocol, the initially collapsed P(OEGMA300-co-PAHA) film is rehydrated due to the switching of polymer chains from a more hydrophobic to a more hydrophilic state when the temperature falls below its TT. The whole rehydration process can be divided into 3 stages: D2O absorption, chain rearrangement, and film reswelling. After rehydration, the thermally cycled P(OEGMA300-co-PAHA) film is switched by UV irradiation via setting the UV radiation on and off. Considering the UV-induced collapse and recovery, both processes are slower than those observed in freshly hydrated films without any thermal stimulus history. Therefore, the experienced thermal history of the film should be considered in the design of sensors and detectors based on double-responsive copolymer films.
Collapse
Affiliation(s)
- Panpan Zhang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province; Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Xuan Zhang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province; Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Lucas P Kreuzer
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Dominik M Schwaiger
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| | - Min Lu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province; Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Robert Cubitt
- Institut Laue-Langevin, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | - Qi Zhong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province; Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstraße 1, 85748 Garching, Germany
| |
Collapse
|
6
|
Kommidi SSR, Smith BD. Supramolecular Complexation of Azobenzene Dyes by Cucurbit[7]uril. J Org Chem 2023; 88:8431-8440. [PMID: 37256736 PMCID: PMC10843849 DOI: 10.1021/acs.joc.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This report describes cucurbit[7]uril (CB7) complexation of azobenzene dyes that have a 4-(N,N'-dimethylamino) or 4-amino substituent. Absorption and NMR data show that CB7 encapsulates the protonated form of the azobenzene and that the complexed dye exists as its azonium tautomer with a trans azo conformation and substantial quinoid resonance character. Because CB7 complexation stabilizes the dye conjugate acid, there is an upward shift in its pKa, and in one specific case, the pKa of the protonated azobenzene is increased from 3.09 to 4.47. Molecular modeling indicates that the CB7/azobenzene complex is stabilized by three major noncovalent factors: (i) ion-dipole interactions between the partially cationic 4-(N,N'-dimethylamino) or 4-amino group on the encapsulated protonated azobenzene and the electronegative carbonyl oxygens on CB7, (ii) inclusion of the upper aryl ring of the azobenzene within the hydrophobic CB7 cavity, and (iii) a hydrogen bond between the proton on the azo nitrogen and CB7 carbonyls. CB7 complexation enhances azobenzene stability and increases azobenzene hydrophilicity; thus, it is a promising way to improve azobenzene performance as a pigment or prodrug. In addition, the striking yellow/pink color change that accompanies CB7 complexation can be exploited to create azobenzene dye displacement assays with naked eye detection.
Collapse
Affiliation(s)
- Sai Shradha Reddy Kommidi
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
7
|
Shamsipur M, Ghavidast A, Pashabadi A. Phototriggered structures: Latest advances in biomedical applications. Acta Pharm Sin B 2023; 13:2844-2876. [PMID: 37521863 PMCID: PMC10372844 DOI: 10.1016/j.apsb.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 04/11/2023] [Indexed: 08/01/2023] Open
Abstract
Non-invasive control of the drug molecules accessibility is a key issue in improving diagnostic and therapeutic procedures. Some studies have explored the spatiotemporal control by light as a peripheral stimulus. Phototriggered drug delivery systems (PTDDSs) have received interest in the past decade among biological researchers due to their capability the control drug release. To this end, a wide range of phototrigger molecular structures participated in the DDSs to serve additional efficiency and a high-conversion release of active fragments under light irradiation. Up to now, several categories of PTDDSs have been extended to upgrade the performance of controlled delivery of therapeutic agents based on well-known phototrigger molecular structures like o-nitrobenzyl, coumarinyl, anthracenyl, quinolinyl, o-hydroxycinnamate and hydroxyphenacyl, where either of one endows an exclusive feature and distinct mechanistic approach. This review conveys the design, photochemical properties and essential mechanism of the most important phototriggered structures for the release of single and dual (similar or different) active molecules that have the ability to quickly reason of the large variety of dynamic biological phenomena for biomedical applications like photo-regulated drug release, synergistic outcomes, real-time monitoring, and biocompatibility potential.
Collapse
|
8
|
Khariushin IV, Ovsyannikov AS, Islamov DR, Samigullina AI, Solovieva SE, Zakrzewski JJ, Chorazy S, Ferlay S. Tuning Crystal Packing and Magnetic Properties in a Series of [Dy 12] Metallocubanes Based on Azobenzene Derivatives of Salicylic Acid. Inorg Chem 2023. [PMID: 37377140 DOI: 10.1021/acs.inorgchem.3c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
A series of four new Dy12 dodecanuclear clusters based on azobenzene derivative ligands of salicylic acid (L1-L4) has been synthesized and characterized in the crystalline phase using X-ray diffraction on single crystal and powder, IR spectroscopy, elemental analysis, and DSC-TGA methods. It was revealed that all obtained clusters exhibit the formation of the similar metallic cluster nodes, as vertex-sharing heterocubanes, obtained from four Dy3+ cations, three bridging hydroxyl groups, and O atoms from the salicylic ligands. The coordination geometry around the Dy(III) centers has been carefully analyzed. Whereas Dy12-L1 and Dy12-L2 with L1 and L2 containing Me and OMe groups in para positions of the phenyl rings, respectively, form similar porous 3D diamond-like molecular networks due to CH-π interactions, for Dy12-L3 with L3 bearing NO2-electron-withdrawing group, the generation of 2D molecular grids assembled by π-π staking is observed, and for Dy12-L4 with L4 bearing phenyl substituent, 3D hexagonal channels have been generated. The complexes Dy12-L1, Dy12-L2, and Dy12-L3 exhibit a zero-field slow magnetic relaxation effect. After UV irradiation of Dy12-L1, a decrease of the magnetic anisotropy energy barrier displaying the possibility of control over magnetic properties by the external stimulus has been observed.
Collapse
Affiliation(s)
- Ivan V Khariushin
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| | - Alexander S Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Daut R Islamov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Aida I Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Svetlana E Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| |
Collapse
|
9
|
Guo Z, Mao K, Ma G, Li G, Wu Q, Chen J, Bao SS, Yu G, Li S, Zhang J, Wu X. Light-Induced Tunable Ferroelectric Polarization in Dipole-Embedded Metal-Organic Framework. NANO LETTERS 2022; 22:10018-10024. [PMID: 36475866 DOI: 10.1021/acs.nanolett.2c03678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reversible regulation of ferroelectric polarization possesses great potentials recently in bionic neural networks. Photoinduced cis-trans isomers have changeable dipole moments, but they cannot be directed to some specific orientation. Here, we construct a host-guest composite structure which consists of a porous ferroelectric metal (Ni)-organic framework [Ni(DPA)2] as host and photoisomer, azobenzene (AZB), as guest molecules. When AZB molecules are embedded in the nanopores of Ni(DPA)2 in the form of a single molecule, polarization strength tunable regulation is realized after ultraviolet irradiation of 365 and 405 nm via cis-trans isomerism transformation of AZB. An intrinsic built-in field originating from the distorted {NiN2O4} octahedra in Ni(DPA)2 directs the dipole moments of AZB to the applied electric field. As a result, the overlapped ferroelectric polarization strength changes with content of cis-AZB after ultraviolet and visible irradiation. Such a connection of ferroelectric Ni(DPA)2 structure with cis-trans isomers provides an important strategy for regulating the ferroelectric polarization strength.
Collapse
Affiliation(s)
- Zijing Guo
- National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Kaihui Mao
- National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Guodong Ma
- National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Guoao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qifan Wu
- National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Jian Chen
- National Laboratory of Solid States Microstructures and Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, P. R. China
| | - Song Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Geliang Yu
- National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jinlei Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Xinglong Wu
- National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
10
|
Saura-Sanmartin A. Photoresponsive Metal-Organic Frameworks as Adjustable Scaffolds in Reticular Chemistry. Int J Mol Sci 2022; 23:7121. [PMID: 35806126 PMCID: PMC9266399 DOI: 10.3390/ijms23137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
The easy and remote switching of light makes this stimulus an ideal candidate for a large number of applications, among which the preparation of photoresponsive materials stands out. The interest of several scientists in this area in order to achieve improved functionalities has increase parallel to the growth of the structural complexity of these materials. Thus, metal-organic frameworks (MOFs) turned out to be ideal scaffolds for light-responsive ligands. This review is focused on the integration of photoresponsive organic ligands inside MOF crystalline arrays to prepare enhanced functional materials. Besides the summary of the preparation, properties and applications of these materials, an overview of the future outlook of this research area is provided.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Campus de Espinardo, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
11
|
Tomar R, Suwasia S, Choudhury AR, Venkataramani S, Babu SA. Azobenzene-based unnatural amino acid scaffolds via a Pd( ii)-catalyzed C(sp 3)–H arylation strategy. Chem Commun (Camb) 2022; 58:12967-12970. [DOI: 10.1039/d2cc04870a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azobenzene-based unnatural amino acid motifs were constructed via the Pd(ii)-catalyzed diastereoselective β-C(sp3)–H arylation and Mills azo coupling tactics.
Collapse
Affiliation(s)
- Radha Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli P.O. 140306, Mohali, Punjab, India
| | - Sonam Suwasia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli P.O. 140306, Mohali, Punjab, India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli P.O. 140306, Mohali, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli P.O. 140306, Mohali, Punjab, India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli P.O. 140306, Mohali, Punjab, India
| |
Collapse
|
12
|
Verma I, Mukhopadhyay N, Sengupta A, Mukherjee R. Arylamination via ortho-fusion on an azo-appended pyridine carboxamide complex of copper(II). J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Tethering smartness to the metal containing polymers - recent trends in the stimuli-responsive metal containing polymers. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Łukasik N, Hemine K, Anusiewicz I, Skurski P, Paluszkiewicz E. Photoresponsive Amide-Based Derivatives of Azobenzene-4,4'-Dicarboxylic Acid-Experimental and Theoretical Studies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3995. [PMID: 34300906 PMCID: PMC8306546 DOI: 10.3390/ma14143995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Azobenzene derivatives are one of the most important molecular switches for biological and material science applications. Although these systems represent a well-known group of compounds, there remains a need to identify the factors influencing their photochemical properties in order to design azobenzene-based technologies in a rational way. In this contribution, we describe the synthesis and characterization of two novel amides (L1 and L2) containing photoresponsive azobenzene units. The photochemical properties of the obtained compounds were investigated in DMSO by UV-Vis spectrophotometry, as well as 1H NMR spectroscopy, and the obtained results were rationalized via Density Functional Theory (DFT) methods. After irradiation with UV light, both amides underwent trans to cis isomerization, yielding 40% and 22% of the cis isomer of L1 and L2 amides, respectively. Quantum yields of this process were determined as 6.19% and 2.79% for L1 and L2, respectively. The reverse reaction (i.e., cis to trans isomerization) could be achieved after thermal or visible light activation. The analysis of the theoretically determined equilibrium structure of the transition-state connecting cis and trans isomers on the reaction path indicated that the trans-cis interconversion is pursued via the flipping of the substituent, rather than its rotation around the N=N bond. The kinetics of thermal back-reaction and the effect of the presence of the selected ions on the half-life of the cis form were also investigated and discussed. In the case of L1, the presence of fluoride ions sped the thermal relaxation up, whereas the half-life time of cis-L2 was extended in the presence of tested ions.
Collapse
Affiliation(s)
- Natalia Łukasik
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Koleta Hemine
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Iwona Anusiewicz
- Laboratory of Quantum Chemistry, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland; (I.A.); (P.S.)
| | - Piotr Skurski
- Laboratory of Quantum Chemistry, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland; (I.A.); (P.S.)
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland;
| |
Collapse
|
15
|
Electrochemical Switching of First-Generation Donor-Acceptor Stenhouse Adducts (DASAs): An Alternative Stimulus for Triene Cyclisation. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are a photo-switch class that undergoes triene cyclisation in response to visible light. Herein, electrochemical oxidation is demonstrated as an effective alternative stimulus for the triene cyclisation commonly associated with photo-switching.
Collapse
|
16
|
Wang LL, Zhang QL, Wang Y, Liu Y, Lin J, Xie F, Xu L. Controllable DNA strand displacement by independent metal-ligand complexation. Chem Sci 2021; 12:8698-8705. [PMID: 34257868 PMCID: PMC8246113 DOI: 10.1039/d1sc01041g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction of artificial metal-ligand base pairs can enrich the structural diversity and functional controllability of nucleic acids. In this work, we revealed a novel approach by placing a ligand-type nucleoside as an independent toehold to control DNA strand-displacement reactions based on metal-ligand complexation. This metal-mediated artificial base pair could initiate strand invasion similar to the natural toehold DNA, but exhibited flexible controllability to manipulate the dynamics of strand displacement that was only governed by its intrinsic coordination properties. External factors that influence the intrinsic properties of metal-ligand complexation, including metal species, metal concentrations and pH conditions, could be utilized to regulate the strand dynamics. Reversible control of DNA strand-displacement reactions was also achieved through combination of the metal-mediated artificial base pair with the conventional toehold-mediated strand exchange by cyclical treatments of the metal ion and the chelating reagent. Unlike previous studies of embedded metal-mediated base pairs within natural base pairs, this metal-ligand complexation is not integrated into the nucleic acid structure, but functions as an independent toehold to regulate strand displacement, which would open a new door for the development of versatile dynamic DNA nanotechnologies.
Collapse
Affiliation(s)
- Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Qiu-Long Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Fan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
17
|
Cazorla C, Casimiro L, Arif T, Deo C, Goual N, Retailleau P, Métivier R, Xie J, Voituriez A, Marinetti A, Bogliotti N. Synthesis and properties of photoswitchable diphosphines and gold(I) complexes derived from azobenzenes. Dalton Trans 2021; 50:7284-7292. [PMID: 33955431 DOI: 10.1039/d1dt01080h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diphosphines displaying azobenzene scaffolds and the corresponding bis-gold chloride complexes have been prepared and fully characterized by photophysical, spectroscopic and X-ray diffraction studies. DFT calculations provide complementary information on their electronic, structural and spectroscopic properties. Comparative investigations have been carried out on compounds featuring phosphorus functions in the meta- and para-positions, respectively, with respect to the azo functions, as well as on diphosphines with an ortho-tetrafluoro substituted azobenzene core. The effects of the substitution patterns on structural and spectroscopic properties are discussed.
Collapse
Affiliation(s)
- Clément Cazorla
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France. and Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| | - Lorenzo Casimiro
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| | - Tanzeel Arif
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France. and Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| | - Claire Deo
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| | - Nawel Goual
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | - Rémi Métivier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| | - Juan Xie
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | - Angela Marinetti
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | - Nicolas Bogliotti
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Karisma VW, Wu W, Lei M, Liu H, Nisar MF, Lloyd MD, Pourzand C, Zhong JL. UVA-Triggered Drug Release and Photo-Protection of Skin. Front Cell Dev Biol 2021; 9:598717. [PMID: 33644041 PMCID: PMC7905215 DOI: 10.3389/fcell.2021.598717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Light has attracted special attention as a stimulus for triggered drug delivery systems (DDS) due to its intrinsic features of being spatially and temporally tunable. Ultraviolet A (UVA) radiation has recently been used as a source of external light stimuli to control the release of drugs using a "switch on- switch off" procedure. This review discusses the promising potential of UVA radiation as the light source of choice for photo-controlled drug release from a range of photo-responsive and photolabile nanostructures via photo-isomerization, photo-cleavage, photo-crosslinking, and photo-induced rearrangement. In addition to its clinical use, we will also provide here an overview of the recent UVA-responsive drug release approaches that are developed for phototherapy and skin photoprotection.
Collapse
Affiliation(s)
- Vega Widya Karisma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Huawen Liu
- Three Gorges Central Hospital, Chongqing, China
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, Pakistan
| | - Matthew D. Lloyd
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Charareh Pourzand
- Medicines Design, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
- Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Julia Li Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
19
|
Bjelopetrović A, Barišić D, Duvnjak Z, Džajić I, Juribašić Kulcsár M, Halasz I, Martínez M, Budimir A, Babić D, Ćurić M. A Detailed Kinetico-Mechanistic Investigation on the Palladium C–H Bond Activation in Azobenzenes and Their Monopalladated Derivatives. Inorg Chem 2020; 59:17123-17133. [DOI: 10.1021/acs.inorgchem.0c02418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Alen Bjelopetrović
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Dajana Barišić
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Zrinka Duvnjak
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ivan Džajić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Marina Juribašić Kulcsár
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Ivan Halasz
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Ana Budimir
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Darko Babić
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Manda Ćurić
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
20
|
Electron Transfer via Helical Oligopeptide to Laccase Including Chiral Schiff Base Copper Mediators. Symmetry (Basel) 2020. [DOI: 10.3390/sym12050808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The oxygen reduction efficiency of a laccase-modified electrode was found to depend on the chirality of the oligopeptide linker used to bind the enzyme to the surface. At the same time, the electron transfer between the cathode electrode and the enzyme is improved by using a copper(II) complex with amino-acid derivative Schiff base ligand with/without azobenzene moiety as a mediator. The increased electrochemical current under both O2 and N2 proves that both the mediators are active towards the enzyme.
Collapse
|
21
|
Photo-Tunable Azobenzene-Anthraquinone Schiff Base Copper Complexes as Mediators for Laccase in Biofuel Cell Cathode. Symmetry (Basel) 2020. [DOI: 10.3390/sym12050797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Induced chirality (achiral target in chiral matrix such as proteins) sometimes play a useful role in evaluating supramolecular systems involving biomolecules. Enzymatic fuel cells, which generate electricity via enzymatic redox reactions at electrodes hold a significant potential for sustainable power. Bacterial laccase, a multi-copper oxidase, was used in the cathodic compartment of the enzymatic biofuel cells because of its low redox potential. Three new salen Cu(II) complexes were designed and investigated as mediators. The Schiff base ligands consisted of both a redox-active (anthraquinone) and a photochromic (azobenzene) moiety. The interaction between laccase and a mediator was examined with induced circular dichroism (CD) and the docking tool to observe in which of the laccase domains the mediators bind as well as study the photo-induced tuning of both the cis-trans photoisomerization and orientation by the Weigert effect. Both the electrochemical and photochromic properties are also discussed and compared using density functional theory (DFT), time-dependent (TD)-DFT, and docking simulations.
Collapse
|
22
|
Tecilla P, Bonifazi D. Configurational Selection in Azobenzene-Based Supramolecular Systems Through Dual-Stimuli Processes. ChemistryOpen 2020; 9:529-544. [PMID: 32373423 PMCID: PMC7197086 DOI: 10.1002/open.202000045] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
Azobenzene is one of the most studied light-controlled molecular switches and it has been incorporated in a large variety of supramolecular systems to control their structural and functional properties. Given the peculiar isomeric distribution at the photoexcited state (PSS), azobenzene derivatives have been used as photoactive framework to build metastable supramolecular systems that are out of the thermodynamic equilibrium. This could be achieved exploiting the peculiar E/Z photoisomerization process that can lead to isomeric ratios that are unreachable in thermal equilibrium conditions. The challenge in the field is to find molecular architectures that, under given external circumstances, lead to a given isomeric ratio in a reversible and predictable manner, ensuring an ultimate control of the configurational distribution and system composition. By reviewing early and recent works in the field, this review aims at describing photoswitchable systems that, containing an azobenzene dye, display a controlled configurational equilibrium by means of a molecular recognition event. Specifically, examples include programmed photoactive molecular architectures binding cations, anions and H-bonded neutral guests. In these systems the non-covalent molecular recognition adds onto the thermal and light stimuli, equipping the supramolecular architecture with an additional external trigger to select the desired configuration composition.
Collapse
Affiliation(s)
- Paolo Tecilla
- Dipartimento di Matematica e GeoscienzeUniversità degli Studi di TriesteVia Weiss 2 134127TriesteItaly
| | - Davide Bonifazi
- School of ChemistryCardiff University Main BuildingPark PlaceCF10 3ATCardiff, WalesUK
| |
Collapse
|
23
|
Nath I, Chakraborty J, Zhang G, Chen C, Chaemchuen S, Park J, Zhuiykov S, Han T, Verpoort F. Understanding the roles of variable Pd(II)/Pd(0) ratio supported on conjugated poly-azobenzene network: From characteristic alteration in properties to their cooperation towards visible-light-induced selective hydrogenation. J Catal 2020. [DOI: 10.1016/j.jcat.2020.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Light-responsive and self-healing behavior of azobenzene-based supramolecular hydrogels. J Colloid Interface Sci 2020; 568:16-24. [DOI: 10.1016/j.jcis.2020.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/28/2022]
|
25
|
Lazareva NF, Gostevskii BA. Synthesis of 2,2′-Bis(silyl)azobenzenes by Oxidation of 2-(Silyl)anilines. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Oloyede HO, Woods JAO, Görls H, Plass W, Eseola AO. New cobalt( ii) coordination designs and the influence of varying chelate characters, ligand charges and incorporated group I metal ions on enzyme-like oxidative coupling activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj02347g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In transition-metal-mediated catalysis, design of new, well defined coordination architectures and subjecting them to catalysis testing under the same reaction conditions is a necessity tool for improved understanding of desirable active site geometries and characteristics.
Collapse
Affiliation(s)
| | | | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Abiodun Omokehinde Eseola
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
- Materials Chemistry Group
| |
Collapse
|
27
|
Qin B, Yang W, Xu J, Wang X, Li X, Li C, Gao Y, Wang QE. Photo-Actuation of Liquid Crystalline Elastomer Materials Doped with Visible Absorber Dyes under Quasi-Daylight. Polymers (Basel) 2019; 12:polym12010054. [PMID: 31906200 PMCID: PMC7023533 DOI: 10.3390/polym12010054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 11/26/2022] Open
Abstract
We studied the effect of visible absorber dyes on the photo-actuation performances of liquid crystalline elastomer (LCE) materials under quasi-daylight irradiation. The dye-doped LCE materials were prepared through infiltrating visible absorber dyes into a polysiloxane-based LCE matrix based on its solvent-swollen characteristic. They demonstrated well absorption properties in visible spectrum range and performed strong actuation upon the irradiation from quasi-daylight source, thus indicating that the presence of visible absorber dyes effectively sensitized the LCE materials to light irradiation since the light energy was absorbed by the dyes and then converted into heat to trigger the phase change of LCE matrix. The photo-actuation properties of dye-doped LCE materials with different visible absorber dyes, varied dye contents, and irradiation intensities were investigated. It was shown that the visible absorber dyes with different absorption bands created different photo-actuation performances of LCE materials, the one whose absorption band is near the intensity peak position of quasi-daylight spectrum created the optimum photo-actuation performance. The result disclosed a valuable light utilization way for photo-controlled LCE materials since it revealed that a light-absorbing dye, whose absorption band is in the high intensity region of light spectrum, is capable of effectively utilizing light energy to drive the actuation of LCE materials.
Collapse
Affiliation(s)
- Ban Qin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China; (B.Q.); (J.X.); (X.W.)
| | - Wenlong Yang
- Department of Applied Science, Harbin University of Science and Technology, Harbin 150080, China;
| | - Jiaojiao Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China; (B.Q.); (J.X.); (X.W.)
| | - Xiuxiu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China; (B.Q.); (J.X.); (X.W.)
| | - Xiangman Li
- Women and Children Health Centre of Xiangfang District, Harbin 150040, China;
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China; (B.Q.); (J.X.); (X.W.)
- Correspondence: (C.L.); (Q.-eW.); Tel.: +86-451-8660-8610 (C.L.); +86-10-6898-7110 (Q.-eW.)
| | - Yachen Gao
- Key Laboratory of Electronics Engineering, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China;
| | - Qiao-e Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (C.L.); (Q.-eW.); Tel.: +86-451-8660-8610 (C.L.); +86-10-6898-7110 (Q.-eW.)
| |
Collapse
|
28
|
Liu H, Liu Y, Shang Y, Liu H. Molecular dynamics simulation for drug delivery in azobenzene-containing membranes. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1699655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hengjiang Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yu Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Yazhuo Shang
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| |
Collapse
|
29
|
Photo-triggered capsules based on lanthanide-doped upconverting nanoparticles for medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Synthesis, characterization, structure and redox property of azo-amido and orthometallated azo-imine platinum(II) complexes. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Nath I, Chakraborty J, Khan A, Arshad MN, Azum N, Rab MA, Asiri AM, Alamry KA, Verpoort F. Conjugated mesoporous polyazobenzene–Pd(II) composite: A potential catalyst for visible-light-induced Sonogashira coupling. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Pirone D, Marturano V, Del Pezzo R, Fernández Prieto S, Underiner T, Giamberini M, Tylkowski B. Molecular Design of Microcapsule Shells for Visible Light-Triggered Release. Polymers (Basel) 2019; 11:E904. [PMID: 31108926 PMCID: PMC6572248 DOI: 10.3390/polym11050904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
The development of photo-responsive capsules to tune and control the sustained-release of encapsulated actives is a fascinating and challenging route to improve the performances and effectiveness of a wide range of delivery applications. In this work, we report the preparation of visible light-responsive capsules obtained via oil-in-water interfacial polycondensation between modified diacyl-chloride azobenzene moiety and diamine flexible spacer in the presence of cross-linkers with different structures and functionalities. The effect on the release profile of the encapsulated perfume oil was investigated using three flexible spacers with different lengths (1,8-diaminooctane; 1,6-diaminohexane and 1,4-diaminobutane) and two types of cross-linkers (1,3,5-benzenetricarbonyl trichloride and melamine). We analyzed how the properties of microcapsules can be tailored changing the design of the shell structure. Fine tuning of the perfume release profiles was obtained. The changes in capsules size and morphology due to visible light irradiation were monitored via light scattering, optical microscopy and atomic force microscopy. Perfume release was 50% faster in the systems prepared with melamine as the cross-linker. Modelling studies were carried out to support the discussion of the experimental results.
Collapse
Affiliation(s)
- Domenico Pirone
- Department of Chemical Engineering, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain.
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007 Tarragona, Spain.
- Procter & Gamble Services Company n.v., Temselaan 100, 1853 Strombeek-Bever, Belgium.
| | - Valentina Marturano
- Department of Chemical, Materials, and Production Engineering (DICMAPI), University of Naples "Federico II", P. le Tecchio, 80, 80125 Napoli, Italy.
| | - Rita Del Pezzo
- Department of Chemical Engineering, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain.
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007 Tarragona, Spain.
- Procter & Gamble Services Company n.v., Temselaan 100, 1853 Strombeek-Bever, Belgium.
| | | | - Todd Underiner
- The Procter and Gamble Company, 6210 Center Hill Avenue, Cincinnati, OH 45224, USA.
| | - Marta Giamberini
- Department of Chemical Engineering, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain.
| | - Bartosz Tylkowski
- Department of Chemical Engineering, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain.
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007 Tarragona, Spain.
- The Procter and Gamble Company, 6210 Center Hill Avenue, Cincinnati, OH 45224, USA.
| |
Collapse
|
33
|
Chen W, Lu W, Xie J, Song L, Sa R, Song J. Thermochromic Behavior of Azobenzene‐based Coordination Polymer with Reversible Breathing Process. ChemistrySelect 2019. [DOI: 10.1002/slct.201900360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Weijun Chen
- Department International Joint Research Center for Photoresponsive Molecules and MaterialsSchool of Chemical and Material EngineeringJiangnan University Wuxi 214122 (P.R. China
| | - Wenxiu Lu
- Department International Joint Research Center for Photoresponsive Molecules and MaterialsSchool of Chemical and Material EngineeringJiangnan University Wuxi 214122 (P.R. China
| | - Jieling Xie
- Department International Joint Research Center for Photoresponsive Molecules and MaterialsSchool of Chemical and Material EngineeringJiangnan University Wuxi 214122 (P.R. China
| | - Lijun Song
- Xiamen Institute of Rare-Earth MaterialsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Xiamen 350002 (P.R. China
| | - Rongjian Sa
- Institute of OceanographyMinjiang University Fuzhou Fujian 350108 (P.R. China
| | - Jun‐Ling Song
- Department International Joint Research Center for Photoresponsive Molecules and MaterialsSchool of Chemical and Material EngineeringJiangnan University Wuxi 214122 (P.R. China
| |
Collapse
|
34
|
Marturano V, Bizzarro V, Ambrogi V, Cutignano A, Tommonaro G, Abbamondi GR, Giamberini M, Tylkowski B, Carfagna C, Cerruti P. Light-Responsive Nanocapsule-Coated Polymer Films for Antimicrobial Active Packaging. Polymers (Basel) 2019; 11:E68. [PMID: 30960052 PMCID: PMC6402017 DOI: 10.3390/polym11010068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 01/09/2023] Open
Abstract
The development of antimicrobial active packaging constitutes a powerful tool to reduce waste and increase quality standards of perishable goods. Among numerous available antimicrobial agents, essential oils stand out for their renowned efficiency, and their use is beneficial due to their sustainability compared to other oil-based antimicrobials. In this work, we report on the use of photo-responsive nanocapsules containing thyme essential oil as functional coatings for polyethylene and polylactic acid films to obtain antimicrobial active packaging. Polymer surface activation treatment enhanced compatibility with nanocapsules solution. The films were analyzed to assess the structural and functional properties of the coating, evaluate morphological changes due to their photo-responsive behavior, and monitor the light-induced release of volatile thyme oil. It was found that 24 h after a 15-min UV exposure of the coated films, the concentration of thyme oil in the headspace was eight times higher with respect to un-irradiated films, thus confirming the efficiency of the light-triggered release system. Therefore, the manufactured films are proposed as on-demand release devices for application in non-contact antimicrobial active packaging.
Collapse
Affiliation(s)
- Valentina Marturano
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR) Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy.
| | - Valentina Bizzarro
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR) Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy.
| | - Veronica Ambrogi
- Department of Chemical, Materials and Production Engineering (DICMAPI) University of Naples "Federico II", P. le Tecchio, 80, 80125 Napoli, Italy.
| | - Adele Cutignano
- Institute of Biomolecular Chemistry (ICB-CNR) Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy.
| | - Giuseppina Tommonaro
- Institute of Biomolecular Chemistry (ICB-CNR) Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy.
| | | | - Marta Giamberini
- Department of Chemical Engineering (DEQ), Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain.
| | - Bartosz Tylkowski
- Chemistry Technology Centre of Catalonia (CTQC), C/Marcel·lí Domingo, 43007 Tarragona, Spain.
| | - Cosimo Carfagna
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR) Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy.
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR) Via Previati 1/C, 23900 Lecco, Italy.
| |
Collapse
|
35
|
Benmensour MA, Ayadi A, Akdas-Kilig H, Boucekkine A, Fillaut JL, El-Ghayoury A. Azobased iminopyridine ligands and their rhenium metal complexes: Syntheses, spectroscopic, trans-cis photoisomerization and theoretical studies. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Del Pezzo R, Bandeira NA, Trojanowska A, Fernandez Prieto S, Underiner T, Giamberini M, Tylkowski B. Ortho-substituted azobenzene: shedding light on new benefits. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2018-0719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Novel functional polymeric microcapsules, based on modified azobenzene moieties, are exhaustively investigated, both from a theoretical and experimental points of view. Theoretical calculations and several measurements demonstrate that visible light can act as a trigger for release of encapsulated material, as a consequence of trans-cis isomerization which modifies microcapsule surface topography and can induce a “squeezing” release mechanism. Interfacial polymerization of an oil-in-water emulsion is performed and leads to core-shell microcapsules which are characterized by means of atomic force microscopy (AFM), optical microscopy (OM), scanning electron microscopy (SEM) and light scattering. These analyses put into evidence that microcapsules’ size and surface morphology are strongly affected by irradiation under visible light: moreover, these changes can be reverted by sample exposure to temperatures around 50°C. This last evidence is also confirmed by NMR kinetic analyses on modified azobenzene moiety. Finally, it is shown that these smart microcapsules can be successfully used to get a controlled release of actives such as fragrancies, as a consequence of visible light irradiation, as confirmed by an olfactive panel.
Collapse
Affiliation(s)
- Rita Del Pezzo
- Department of Chemical Engineering , Rovira i Virgili University , Av. Països Catalans 26 , Tarragona 43007 , Spain
- The Procter and Gamble Company , Temselaan 100 , Strombeek-Bever 1853 , Belgium
| | - Nuno A.G. Bandeira
- Biosystems and Integrative Sciences Institute, Faculty of Sciences , University of Lisbon , Campo Grande-C8 , Lisboa 1749-016 , Portugal
- Centro de Química Estrutural – Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais , Lisboa 1049-001 , Portugal
- Institute of Chemical Research of Catalonia (ICIQ) – Avda. Països Catalans , Tarragona 16-43007 , Spain
| | - Anna Trojanowska
- Department of Chemical Engineering , Rovira i Virgili University , Av. Països Catalans 26 , Tarragona 43007 , Spain
- Centre Tecnològic de la Química de Catalunya , Carrer Marcelli Domingo s/n , Tarragona 43007 , Spain
| | | | - Todd Underiner
- The Procter and Gamble Company , 6210 Center Hill Avenue , Cincinnati, OH 45224 , USA
| | - Marta Giamberini
- Department of Chemical Engineering , Rovira i Virgili University , Av. Països Catalans 26 , Tarragona 43007 , Spain
- Centre Tecnològic de la Química de Catalunya , Carrer Marcelli Domingo s/n , Tarragona 43007 , Spain
| | - Bartosz Tylkowski
- Department of Chemical Engineering , Rovira i Virgili University , Av. Països Catalans 26 , Tarragona 43007 , Spain
- Centre Tecnològic de la Química de Catalunya , Carrer Marcelli Domingo s/n , Tarragona 43007 , Spain
- The Procter and Gamble Company , 6210 Center Hill Avenue , Cincinnati, OH 45224 , USA
| |
Collapse
|
37
|
Oldknow S, Martir DR, Pritchard VE, Blitz MA, Fishwick CWG, Zysman-Colman E, Hardie MJ. Structure-switching M 3L 2 Ir(iii) coordination cages with photo-isomerising azo-aromatic linkers. Chem Sci 2018; 9:8150-8159. [PMID: 30542566 PMCID: PMC6238882 DOI: 10.1039/c8sc03499k] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/29/2018] [Indexed: 01/25/2023] Open
Abstract
Cyclotriguaiacylene has been functionalised with 3- or 4-pyridyl-azo-phenyl groups to form a series of molecular hosts with three azobenzene-type groups that exhibit reversible photo-isomerisation. Reaction of the host molecules with [Ir(C^N)2(NCMe)2]+ where C^N is the cyclometallating 2-phenylpyridinato, 2-(4-methylphenyl)pyridinato or 2-(4,5,6-trifluorophenyl)pyridinato results in the self-assembly of a family of five different [{Ir(C^N)2}3(L)2]3+ coordination cages. Photo-irradiation of each of the cages with a high energy laser results in E → Z photo-isomerisation of the pyridyl-azo-phenyl groups with up to 40% of groups isomerising. Isomerisation can be reversed by exposure to blue light. Thus, the cages show reversible structure-switching while maintaining their compositional integrity. This represents the largest photo-induced structural change yet reported for a structurally-integral component of a coordination cage. Energy minimised molecular models indicate a switched cage has a smaller internal space than the initial all-E isomer. The [Ir(C^N)2(NCMe)2]+ cages are weakly emissive, each with a deep blue luminescence at ca. 450 nm.
Collapse
Affiliation(s)
- Samuel Oldknow
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK .
| | - Diego Rota Martir
- Organic Semiconductor Centre , EaStCHEM School of Chemistry , University of St Andrews , St Andrews , Fife KY16 9ST , UK
| | - Victoria E Pritchard
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK .
| | - Mark A Blitz
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK .
| | - Colin W G Fishwick
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK .
| | - Eli Zysman-Colman
- Organic Semiconductor Centre , EaStCHEM School of Chemistry , University of St Andrews , St Andrews , Fife KY16 9ST , UK
| | - Michaele J Hardie
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK .
| |
Collapse
|
38
|
Yao H, Wang J, Zhou Q, Guan XW, Fan YQ, Zhang YM, Wei TB, Lin Q. Acylhydrazone functionalized benzimidazole-based metallogel for the efficient detection and separation of Cr 3. SOFT MATTER 2018; 14:8390-8394. [PMID: 30310908 DOI: 10.1039/c8sm01789a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chromium(iii) is a kind of microelement and can be converted to the more toxic chromium(vi), which is a carcinogen, by redox cycling. Thus, the development of novel materials for the detection and removal of Cr3+ is a very important issue. A novel metallogel chemosensor (BMG-Fe) based on functionalized benzimidazole (BM) and Fe3+ was constructed, which could fluorescently detect and separate Cr3+. The detection limit of BMG-Fe for Cr3+ is 2.62 × 10-8 M, and it exhibited high sensitivity and selectivity for Cr3+. Meanwhile, the absorbing percentage of BMG-Fe for Cr3+ is 96.36%, indicating a high separation rate. Interestingly, the sensitivity and ingestion capacity of BMG-Fe for Cr3+ are better than that of the simple organogel (BMG). So, the metallogel BMG-Fe could be utilized for the efficient removal of heavy metal ions from waste water.
Collapse
Affiliation(s)
- Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Jiao Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qi Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Xiao-Wen Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Yan-Qing Fan
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| |
Collapse
|
39
|
Metal-Containing Polymers as Light-Emitting and Light-Responsive Materials and Beyond. Chemistry 2017; 23:17626-17636. [DOI: 10.1002/chem.201702936] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 12/24/2022]
|