1
|
Deng S, Huang ZW, Fu X, Zhou ZH, Guo ZR, Mei L, Yu JP, Zhu YQ, Wang NN, Hu KQ, Shi WQ. A uranyl-based metal-organic framework featuring an eight-connected U 4L 2 cage for guest capture. Dalton Trans 2025; 54:6239-6245. [PMID: 40126503 DOI: 10.1039/d5dt00307e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A novel (3,6)-connected uranyl-based MOF (IHEP-50) was synthesized by a judicious combination of UO22+ and polycarboxylic acid, 4,4',4'',4''',4'''',4'''''-(((1,3,5-triazine-2,4,6-triyl)tris(azanetriyl))hexakis(methylene))hexabenzoic acid (H6DTPCA). Two DTPCA6- ligands are connected together via four uranyl cations to form a lantern-shaped cage U4L2, which is further connected with other eight equivalent ones to form a 3D porous framework with two kinds of 1D channels. These large pore structures give it certain potential for guest molecule capture. Adsorption experiments indicate that IHEP-50 can selectively remove positively charged dyes over negatively charged and neutral ones. In addition, IHEP-50 demonstrates notable adsorption performance for gaseous iodine, achieving a maximum adsorption capacity of 253.5 mg g-1.
Collapse
Affiliation(s)
- Shuang Deng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuan Fu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Heng Zhou
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Ren Guo
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Yan-Qiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Nan-Nan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
- School of Nuclear Science and Engineering, and Key Laboratory of Nuclear Power Systems and Equipment/Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Yu Y, Xiao B, Eichel R, Alekseev EV. Insights into Structural Diversity and Morphotropic Evolution in A 4Th(WO 4) 4 (A=Li, Na, K, Rb and Cs) Family. Chemistry 2025; 31:e202403343. [PMID: 39618302 PMCID: PMC11729619 DOI: 10.1002/chem.202403343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/02/2024] [Indexed: 12/11/2024]
Abstract
A series of four new thorium tungstates, A4Th(WO4)4 (A=Li, K, Rb, Cs), were synthesized using high-temperature solid-state method. Structural studies of the materials reveal distinct structural changes with underlying similarities influenced by the nature of A-site cations. Li4Th(WO4)4 exhibits a two-dimensional corrugated sheet structure stabilized by Li+ cations, crystallizing in P1 ‾ ${\bar{1}\ }$ space group. K4Th(WO4)4 crystallizes in I41/a space group and exhibits a three-dimensional framework consisting of ThO8 antiprisms and WO4 tetrahedra. Rb4Th(WO4)4 forms in C2/c space group, showcasing a framework with two-dimensional sheet structure. Cs4Th(WO4)4 is isostructural to Rb4Th(WO4)4 but displays increased interlayer spacing due to the larger ionic radius of Cs. Raman spectroscopy confirms the structural data, revealing distinct vibrational modes that correlate with tungsten coordination changes from WO6 in Li4Th(WO4)4 to WO4 in the Cs4Th(WO4)4. This study demonstrates how variation of alkali metals affects the structural properties of thorium tungstates series, showing a morphotropic evolution as a factor of the ionic radii of the alkali metals.
Collapse
Affiliation(s)
- Yi Yu
- School of Physics and Electronics InformationGannan Normal UniversityGanzhou341000PR China
| | - Bin Xiao
- Institute of Energy and Climate Research (IEK-6)Forschungszentrum JülichD-52428JülichGermany
| | - Rüdiger‐A. Eichel
- Institute of Energy Technologies (IET-1)Forschungszentrum Jülich GmbHJülichGermany
| | - Evgeny V. Alekseev
- Institute of Energy Technologies (IET-1)Forschungszentrum Jülich GmbHJülichGermany
| |
Collapse
|
3
|
Qamar Z, Aslam AA, Fatima F, Hassan SU, Nazir MS, Ali Z, Awad SA, Khan AA. Recent development towards the novel applications and future prospects for cellulose-metal organic framework hybrid materials: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63501-63523. [PMID: 39500790 DOI: 10.1007/s11356-024-35449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
The hybrid material created by combining cellulose and MOF is highly promising and possesses a wide range of useful properties. Cellulose-based metal-organic frameworks (CelloMOFs) combine the inherent biocompatibility and sustainability of cellulose with the tunable porosity and diverse metal coordination chemistry of MOFs. Cellulose-MOF hybrids have countless applications in various fields, such as energy storage, water treatment, air filtration, gas adsorption, catalysis, and biomedicine. They are particularly remarkable as adsorbents that can eliminate pollutants from wastewater, including metals, oils, dyes, antibiotics, and drugs, and act as catalysts for oxidation and reduction reactions. Furthermore, they are highly efficient air filters, able to remove carbon dioxide, particulate matter, and volatile organic compounds. When it comes to energy storage, these hybrids have demonstrated exceptional results. They are also highly versatile in the realm of biomedicine, with applications such as antibacterial and drug delivery. This article provides an in-depth look at the fabrication methods, advanced applications of cellulose-MOF hybrids, and existing and future challenges.
Collapse
Affiliation(s)
- Zeenat Qamar
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Awais Ali Aslam
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
- Chemistry Department, University of Education Lahore, Vehari Campus, Vehari, Punjab, Pakistan
| | - Farheen Fatima
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Muhammad Shahid Nazir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan.
| | - Zulfiqar Ali
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Sameer Ahmed Awad
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Ramadi, 31001, Al-Anbar Governorate, Iraq
- Department of Chemistry, School of Science and Technology, University of New England, Armidale, 2351, NSW, Australia
| | - Aqeel Ahmad Khan
- Department of Chemical Engineering, Brunel University London, London, Uxbridge Middlesex, UB8 3PH, UK
| |
Collapse
|
4
|
Wang X, Li J, Wei X, Song J, Xie J, Li Z, Yuan M, Jiang L, Wang Y, Liang C, Liu W. Photocatalytic Hydrogen Peroxide Production by a Mixed Ligand-Functionalized Uranyl-Organic Framework. ACS OMEGA 2024; 9:33671-33678. [PMID: 39130595 PMCID: PMC11307301 DOI: 10.1021/acsomega.4c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 08/13/2024]
Abstract
Hydrogen peroxide (H2O2) production driven by solar energy has received enormous attention due to its high efficiency, low cost, and environmental friendliness characteristics. Searching for new photocatalytic materials for H2O2 production is one of the most important targets. In this work, a new three-dimensional (3D) uranyl-organic framework material was constructed with mixed ligands via a solvothermal reaction and used for photocatalytic H2O2 production. The mixed ligand strategy not only benefits the construction of a 3D uranyl-organic framework but also introduces strong photon absorption groups into the framework. The thiophene and pyridine rings in the framework enhance photon absorption and carrier transfer. In addition, with the assistance of the hydrogen abstraction reaction of uranyl centers, the H2O2 production rate reaches 345 μmol h-1 g-1. This study provides a new blueprint for exploring the artificial photosynthesis of H2O2 through uranium-based metal-organic frameworks.
Collapse
Affiliation(s)
- Xuemin Wang
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Jinlu Li
- Shandong
Nuclear and Radiation Safety Monitoring Center, No. 145 Jingshi West Road, Jinan 250117, Shandong, China
| | - Xiaoyu Wei
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Jianxin Song
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Jian Xie
- School
of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Zhenyu Li
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Mengnan Yuan
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Lisha Jiang
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Yanlong Wang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and interdisciplinary Sciences (RAD-X) and Collaborative Innovation
Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chao Liang
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Wei Liu
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| |
Collapse
|
5
|
Zhou D, Yang Y, Weng Z, Wang J, Yan Y, Cheng L, Fan Y, Chen L, Zhang H, Chen L, Wang Y, Wang S. Thorium Cluster Synthesized by a Solvent-Free Flux Approach: The Richest Coordination Diversity and Application Exploration. Inorg Chem 2024; 63:14278-14283. [PMID: 39046370 DOI: 10.1021/acs.inorgchem.4c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The renaissance of research interests in actinide oxo clusters in the past decade arises from both the concerns of radioactive contamination and their potential utility as nanoscale materials. Compared to the uranium cluster, the thorium (Th) cluster shows less coordination variation. Herein, we presented a unique Th cluster (ThC-1) that exhibits the most diverse coordination chemistry found within a single Th cluster via a solvent-free flux synthesis approach. The melt triazole not only offers a unique solvation environment that may be responsible for the coordination diversity in ThC-1 but also represents the first nitrogen-donor capping ligand in Th clusters. The potential utility of ThC-1 as a heterogeneous catalyst was also explored for a classical CO2 cycloaddition reaction. This work offers a novel approach in synthesizing Th clusters, broadening the realm of the structural diversity of Th.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yang Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhehui Weng
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, China
| | - Jueqiong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yizhou Yan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yingtong Fan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lixi Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Long Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Niu Q, Yu TY, Shi JW, Huang Q, Dong LZ, Yu F, Li SL, Liu J, Lan YQ. Constructing Functional Radiation-Resistant Thorium Clusters for Catalytic Redox Reactions. J Am Chem Soc 2024. [PMID: 39018421 DOI: 10.1021/jacs.4c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
When catalytic reactions are interfered with by radiation sources, thorium clusters are promising as potential catalysts due to their superior radiation resistance. However, there is currently very little research on the design synthesis and catalytic application of radiation-stable thorium clusters. In this work, we have elaborately engineered and fabricated three high-nuclear thorium cluster catalysts denoted as Th12L3-MA12, Th12L3-MA6-BF6, and Th12L3-Fcc12, which did not undergo any significant alterations in their molecular structures and compositions after irradiation with 690 kGy γ-rays. We systematically investigated the photocatalytic/thermocatalytic properties of these radiation-resistant thorium clusters for the first time and found that γ-rays could not alter their catalytic activities. In addition, it was found that ligand engineering could modulate the catalytic activity of thorium clusters, thus expanding the range of catalytic applications of thorium clusters, including reduction reactions (nitroarene reduction) and some oxidation reactions (N-heterocyclic oxidative dehydrogenation and diphenylmethane oxidation). Meanwhile, all of these organic transformation reactions achieved a >80% conversion and nearly 100% product selectivity. Radiation experiments combined with DFT calculations showed that the synergistic catalysis of thorium-oxo core and ligands led to the generation of specific active species (H+, O2•-, or tBuO/tBuOO•) and activation of substrate molecules, thus achieving superior catalytic performance. This work is not only the first to develop radiation-resistant thorium cluster catalysts to perform efficient redox reactions but also provides design ideas for the construction of high-nuclearity thorium clusters under mild conditions.
Collapse
Affiliation(s)
- Qian Niu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Tao-Yuan Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jing-Wen Shi
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Qing Huang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Long-Zhang Dong
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Fei Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Shun-Li Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
7
|
Park KC, Lim J, Thaggard GC, Shustova NB. Mining for Metal-Organic Systems: Chemistry Frontiers of Th-, U-, and Zr-Materials. J Am Chem Soc 2024; 146:18189-18204. [PMID: 38943655 DOI: 10.1021/jacs.4c06088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
The conceptual framework presented in this Perspective overviews the design principles of innovative thorium-based materials that could address urgent needs of the medicinal, nuclear energy, and waste remediation sectors from the lens of zirconium and uranium analogs. We survey the intersections of Zr, Th, and U chemistry with a focus on how the intrinsic behavior of each metal translates to broader material properties, including, but not limited to, structural and topological diversity, preferential metal-ligand binding, and reactivity. On the example of several classes of materials, including organometallic complexes, polyoxometalates, and the primary focus of this Perspective, metal-organic frameworks (MOFs), the design principles that govern the preparation of Zr-, Th-, and U-compounds, including oxophilicity, variation in oxidation states, and stable coordination environments have been considered. Further, we highlight how the impact of the mentioned variables may shift throughout the progression from discrete molecular systems to extended structures. We discuss the common assumption that zirconium-organic materials are typically considered a close analog of thorium-based congeners in areas such as material design and preparation. Through consideration of fundamental chemistry principles, we shed light on the relationships between Zr-, Th-, and U-based materials and highlight how a critical analysis of their distinct properties can be used to target a desired material performance. As a result, we provide a detailed understanding of Th-based materials chemistry by anchoring their fundamental properties between two well-studied reference points, zirconium- and uranium-containing analogs.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
8
|
Majumder R, Sokolov AY. Consistent Second-Order Treatment of Spin-Orbit Coupling and Dynamic Correlation in Quasidegenerate N-Electron Valence Perturbation Theory. J Chem Theory Comput 2024; 20:4676-4688. [PMID: 38795071 DOI: 10.1021/acs.jctc.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
We present a formulation and implementation of second-order quasidegenerate N-electron valence perturbation theory (QDNEVPT2) that provides a balanced and accurate description of spin-orbit coupling and dynamic correlation effects in multiconfigurational electronic states. In our approach, the energies and wave functions of electronic states are computed by treating electron repulsion and spin-orbit coupling operators as equal perturbations to the nonrelativistic complete active-space wave functions, and their contributions are incorporated fully up to the second order. The spin-orbit effects are described using the Breit-Pauli (BP) or exact two-component Douglas-Kroll-Hess (DKH) Hamiltonians within spin-orbit mean-field approximation. The resulting second-order methods (BP2- and DKH2-QDNEVPT2) are capable of treating spin-orbit coupling effects in nearly degenerate electronic states by diagonalizing an effective Hamiltonian expanded in a compact non-relativistic basis. For a variety of atoms and small molecules across the entire periodic table, we demonstrate that DKH2-QDNEVPT2 is competitive in accuracy with variational two-component relativistic theories. BP2-QDNEVPT2 shows high accuracy for the second- and third-period elements, but its performance deteriorates for heavier atoms and molecules. We also consider the first-order spin-orbit QDNEVPT2 approximations (BP1- and DKH1-QDNEVPT2), among which DKH1-QDNEVPT2 is reliable but less accurate than DKH2-QDNEVPT2. Both DKH1- and DKH2-QDNEVPT2 hold promise as efficient and accurate electronic structure methods for treating electron correlation and spin-orbit coupling in a variety of applications.
Collapse
Affiliation(s)
- Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Hamarawf RF. Antibacterial, antibiofilm, and antioxidant activities of two novel metal-organic frameworks (MOFs) based on 4,6-diamino-2-pyrimidinethiol with Zn and Co metal ions as coordination polymers. RSC Adv 2024; 14:9080-9098. [PMID: 38500614 PMCID: PMC10945374 DOI: 10.1039/d4ra00545g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
In the present era, the increase in free radical species (FRs) and multidrug-resistant (MDR) bacteria represents a major worldwide concern for public health. Biofilm development and the overuse and misuse of antibiotics could lead to the adaptation of bacteria to antimicrobial agents. Consequently, finding novel multifunctional species with antibacterial, antioxidant, and antibiofilm properties has become crucial in the fight against challenging bacterial infections and chronic inflammatory conditions. Metal-organic frameworks (MOFs) with zinc and cobalt metal centers are widely utilized in biological and environmental remediation owing to their versatility. In this study, multifunctional Zn-MOFs and Co-MOFs were successfully synthesized with zinc and cobalt as metal centers and 4,6-diamino-2-pyrimidinethiol as an organic linker using a hydrothermal technique. Numerous characterization techniques were used to fully examine the MOF structure, functionality, chemical makeup, crystalline structure, surface appearance, thermal behavior, and magnetic characteristics; the techniques included XPS, PXRD, FTIR, FESEM, EDX, UV-visible, BET, BJH, TGA/DTG, DSC, and magnetic susceptibility measurement. The antioxidant, antibacterial, and antibiofilm activities of the MOFs were examined, and they demonstrated potent activity in each of these aspects. The proposed mechanisms of antibacterial activity suggest that bacterial cell death results from multiple toxic effects, including electrostatic interaction and lipid peroxidation, when MOFs are attached to bacteria, leading to the formation of reactive oxygen species (ROSs). Zn-MOFs exhibit high antibacterial and antibiofilm efficacy owing to their large surface-to-volume ratio and porous nature, while Co-MOFs exhibit high antioxidant capacity owing to their redox properties.
Collapse
Affiliation(s)
- Rebaz F Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Kirkuk Road Sulaymaniyah City 46001 Kurdistan Region Iraq
- Department of Medical Laboratory Science, Komar University of Science and Technology (KUST) Qliasan St Sulaymaniyah City 46002 Kurdistan Region Iraq
| |
Collapse
|
10
|
Li K, Rajeshkumar T, Zhao Y, Wang T, Maron L, Zhu C. Temperature induced single-crystal to single-crystal transformation of uranium azide complexes. Chem Commun (Camb) 2024; 60:2966-2969. [PMID: 38376444 DOI: 10.1039/d4cc00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The monomeric and dimeric uranium azide complexes {[(CH3)2NCH2CH2NPiPr2]2U(N3)2} (2) and {[(CH3)2NCH2CH2NPiPr2]2U(N3)2}2 (3) were synthesized by treating complex 1 with NaN3 at 60 and -20 °C, respectively. A temperature-induced single-crystal to single-crystal transformation of 3 to 2 was observed. The reduction of either 2 or 3 with KC8 yields a uranium nitride complex {[(CH3)2NCH2CH2NPiPr2]4U2(μ-N)2} (4).
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Tianwei Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
11
|
Lu H, Zheng Z, Hou H, Bai Y, Qiu J, Wang J, Lin J. Fine-Tuning X-Ray Sensitivity in Organic-Inorganic Hybrids via an Unprecedented Mixed-Ligand Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305378. [PMID: 37939314 PMCID: PMC10767407 DOI: 10.1002/advs.202305378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Crystalline organic-inorganic hybrids, which exhibit colorimetric responses to ionizing radiation, have recently been recognized as promising alternatives to conventional X-ray dosimeters. However, X-ray-responsive organic-inorganic hybrids are scarce and the strategy to fine-tune their detection sensitivity remains elusive. Herein, an unprecedented mixed-ligand strategy is reported to modulate the X-ray detection efficacy of organic-inorganic hybrids. Deliberately blending the stimuli-responsive terpyridine carboxylate ligand (tpc- ) and the auxiliary pba- group with different ratios gives rise to two OD thorium-bearing clusters (Th-102 and Th-103) and a 1D coordination polymer (Th-104). Notably, distinct X-ray sensitivity is evident as a function of molar ratio of the tpc- ligand, following the trend of Th-102 > Th-103 > Th-104. Moreover, Th-102, which is exclusively built from the tpc- ligands with the highest degree of π-π interactions, exhibits the most sensitive radiochromic and fluorochromic responses toward X-ray with the lowest detection limit of 1.5 mGy. The study anticipates that this mixed-ligand strategy will be a versatile approach to tune the X-ray sensing efficacy of organic-inorganic hybrids.
Collapse
Affiliation(s)
- Huangjie Lu
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Zhaofa Zheng
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Huiliang Hou
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Yaoyao Bai
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| | - Jie Qiu
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| | - Jian‐Qiang Wang
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Jian Lin
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| |
Collapse
|
12
|
Arteaga A, Nicholas AD, Sinnwell MA, McNamara BK, Buck EC, Surbella RG. Expanding the Transuranic Metal-Organic Framework Portfolio: The Optical Properties of Americium(III) MOF-76. Inorg Chem 2023; 62:21036-21043. [PMID: 38038352 DOI: 10.1021/acs.inorgchem.3c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Reported is the synthesis, crystal structure, and solid-state characterization of a new americium containing metal-organic framework (MOF), [Am(C9H3O6)(H2O)], MOF-76(Am). This material is constructed from Am3+ metal centers and 1,3,5-tricarboxylic acid (BTC) ligands, forming a porous three-dimensional framework that is isostructural with several known trivalent lanthanide (Ln) analogs (e.g., Ce, Nd, and Sm-Lu). The Am3+ ions have seven coordinates and assume a distorted, capped trigonal prismatic geometry with C1 symmetry. The Am3+-O bonds were studied via infrared spectroscopy and compared to several MOF-76(Ln) analogs, where Ln = Nd3+, Eu3+, Tb3+, and Ho3+. The results show that the strength of the ligand carboxylate stretching and bending modes increase with Nd3+ < Eu3+ < Am3+ < Tb3+ < Ho3+, suggesting the metal-oxygen bonds are predominantly ionic. Optical absorbance spectroscopy measurements reveal strong f-f transitions; some exhibit pronounced crystal field splitting. The photoluminescence spectrum contains weak Am3+-based emission that is achieved through direct and indirect metal center excitation. The weak emissive behavior is somewhat surprising given that ligand-to-metal resonance energy transfer is efficient in the isoelectronic Eu3+ (4f6) and related Tb3+ (4f8) analogs. The optical properties were explored further within a series of heterometallic MOF-76(Tb1-xAmx) (x = 0.8, 0.2, and 0.1) samples, and the results reveal enhanced Am3+ photoluminescence.
Collapse
Affiliation(s)
- Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Michael A Sinnwell
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Bruce K McNamara
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Edgar C Buck
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
13
|
Lu H, Ma J, Yang J, Hou H, Lu J, Wang JQ, Wang Y, Lin J. A ratiometric radio-photoluminescence dosimeter based on a radical excimer for X-ray detection. Chem Commun (Camb) 2023; 59:12617-12620. [PMID: 37791606 DOI: 10.1039/d3cc03824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A novel radio-photoluminescence material featuring fluorochromic responses toward UV or X-ray irradiation has been obtained. Such a unique monomer- to excimer-based luminescence transition allows for dosimetry of ionizing radiation in a ratiometric manner. Rather than quenching the luminescence, the radiation-induced radical species of Th-105 boost the excimer emission, rendering it as a rare material possessing radical-excimers.
Collapse
Affiliation(s)
- Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jingqi Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Junpu Yang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Huiliang Hou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jiacheng Lu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| |
Collapse
|
14
|
Zhou ZH, Li XJ, Huang ZW, Mei L, Ma FQ, Yu JP, Zhang Q, Chai ZF, Hu KQ, Shi WQ. Th 6-Based Multicomponent Heterometallic Metal-Organic Frameworks Featuring 6,12-Connected Topology for Iodine Adsorption. Inorg Chem 2023; 62:15346-15351. [PMID: 37682658 DOI: 10.1021/acs.inorgchem.3c02202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Its high coordination number and tendency to cluster make Th4+ suitable for constructing metal-organic frameworks (MOFs) with novel topologies. In this work, two novel thorium-based heterometallic MOF isomers (IHEP-17 and IHEP-18) were assembled from a Th6 cluster, a multifunctional organic ligand [4-(1H-pyrazol-4-yl)benzoic acid (HPyba)], and Cu2+/Ni2+ cations via the one-pot solvothermal synthesis strategy. The framework features a 6,12-connected new topology net and contains two kinds of supramolecular cage structures, Th36M4 and Th24M2, suitable for guest exchange. Both MOF materials can efficiently adsorb I2. X-ray photoelectron spectroscopy, Raman spectroscopy, and single-crystal X-ray diffraction indicate that the adsorbed iodine is uniformly distributed within the Th36M4 cage but not the Th24M2 cage in the form of I3-.
Collapse
Affiliation(s)
- Zhi-Heng Zhou
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, Shandong, China
| | - Xing-Jun Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fu-Qiu Ma
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, Shandong, China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Leonel G, Lennox CB, Scharrer M, Jayanthi K, Friščic T, Navrotsky A. Experimental Investigation of Thermodynamic Stabilization in Boron Imidazolate Frameworks (BIFs) Synthesized by Mechanochemistry. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:17754-17760. [PMID: 37736295 PMCID: PMC10510708 DOI: 10.1021/acs.jpcc.3c04164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Indexed: 09/23/2023]
Abstract
This study experimentally explores the energetics for the formation of boron-imidazolate frameworks (BIFs), which are synthesized by mechanochemistry. The topologically similar frameworks employ the same tetratopic linker based on tetrakis(imidazolyl)boric acid but differ in the monovalent cation metal nodes. This permits assessment of the stabilizing effect of metal nodes in frameworks with sodalite (SOD) and diamondoid (dia) topologies. The enthalpy of formation from endmembers (metal oxide and linker), which define thermodynamic stability of the structures, has been determined by use of acid solution calorimetry. The results show that heavier metal atoms in the node promote greater energetic stabilization of denser structures. Overall, in BIFs the relation between cation descriptors (ionic radius and electronegativity) and thermodynamic stability depends on framework topology. Thermodynamic stability increases with the metallic character of the cation employed as the metal node, independent of the framework topology. The results suggest unifying aspects for thermodynamic stabilization across MOF systems.
Collapse
Affiliation(s)
- Gerson
J. Leonel
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Cameron B. Lennox
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H2L
0B7, Canada
| | - Manuel Scharrer
- School
of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - K Jayanthi
- School
of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tomislav Friščic
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H2L
0B7, Canada
| | - Alexandra Navrotsky
- School
of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
16
|
Guo X, Zhou L, Liu X, Tan G, Yuan F, Nezamzadeh-Ejhieh A, Qi N, Liu J, Peng Y. Fluorescence detection platform of metal-organic frameworks for biomarkers. Colloids Surf B Biointerfaces 2023; 229:113455. [PMID: 37473653 DOI: 10.1016/j.colsurfb.2023.113455] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sensitive and selective detection of biomarkers is crucial in the study and early diagnosis of diseases. With the continuous development of biosensing technologies, fluorescent biosensors based on metal-organic frameworks have attracted increasing attention in the field of biomarker detection due to the combination of the advantages of MOFs, such as high specific surface area, large porosity, and structure with tunable functionality and the technical simplicity, sensitivity and efficiency and good applicability of fluorescent detection techniques. Therefore, researchers must understand the fluorescence response mechanism of such fluorescent biosensors and their specific applications in this field. Of all biomarkers applicable to such sensors, the chemical essence of nucleic acids, proteins, amino acids, dopamine, and other small molecules account for about a quarter of the total number of studies. This review systematically elaborates on four fluorescence response mechanisms: metal-centered emission (MC), ligand-centered emission (LC), charge transfer (CT), and guest-induced luminescence change (GI), presenting their applications in the detection of nucleic acids, proteins, amino acids, dopamine, and other small molecule biomarkers. In addition, the current challenges of MOFs-based fluorescent biosensors are also discussed, and their further development prospects are concerned.
Collapse
Affiliation(s)
- Xuanran Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Luyi Zhou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Xuezhang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Guijian Tan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Fei Yuan
- College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | | | - Na Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China; Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
17
|
Kusumoto S, Atoini Y, Koide Y, Chainok K, Hayami S, Kim Y, Harrowfield J, Thuéry P. Nanotubule inclusion in the channels formed by a six-fold interpenetrated, triperiodic framework. Chem Commun (Camb) 2023; 59:10004-10007. [PMID: 37522165 DOI: 10.1039/d3cc02636a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
When reacted together with uranyl ions under solvo-hydrothermal conditions, a bis(pyridiniumcarboxylate) zwitterion (L) and tricarballylic acid (H3tca) give the complex [NH4]2[UO2(L)2][UO2(tca)]4·2H2O (1). The two ligands are segregated into different units, an anionic nanotubule for tca3- and a six-fold interpenetrated cationic framework with lvt topology for L. The entangled framework defines large channels which contain the square-profile nanotubules. Complex 1 has a photoluminescence quantum yield of 19% and its emission spectrum shows the superposition of the signals due to the two independent species.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Youssef Atoini
- Technical University of Munich, Campus Straubing, Schulgasse 22, Straubing 94315, Germany
| | - Yoshihiro Koide
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Yang Kim
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, Strasbourg 67083, France.
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France.
| |
Collapse
|
18
|
Nicholas AD, Arteaga A, Ducati LC, Buck EC, Autschbach J, Surbella RG. Insight into the Structural and Emissive Behavior of a Three-Dimensional Americium(III) Formate Coordination Polymer. Chemistry 2023; 29:e202300077. [PMID: 36973189 DOI: 10.1002/chem.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023]
Abstract
We report the structural, vibrational, and optical properties of americium formate (Am(CHO2 )3 ) crystals synthesized via the in situ hydrolysis of dimethylformamide (DMF). The coordination polymer features Am3+ ions linked by formate ligands into a three-dimensional network that is isomorphous to several lanthanide analogs, (e. g., Eu3+ , Nd3+ , Tb3+ ). Structure determination revealed a nine-coordinate Am3+ metal center that features a unique local C3v symmetry. The metal-ligand bonding interactions were investigated by vibrational spectroscopy, natural localized molecular orbital calculations, and the quantum theory of atoms in molecules. The results paint a predominantly ionic bond picture and suggest the metal-oxygen bonds increase in strength from Nd-O
Collapse
Affiliation(s)
- Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Lucas C Ducati
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Edgar C Buck
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York, Buffalo, NY, 14260-3000, USA
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| |
Collapse
|
19
|
Xiao Y, You ZX, Guan QL, Sun LX, Xing YH, Bai FY. A UOF based on a cyclotriphosphazene skeleton: fluorescence sensing of different substituted aldehydes and NACs. Chem Commun (Camb) 2023. [PMID: 37449388 DOI: 10.1039/d3cc02660d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A novel uranyl organic framework (U-hdpcp) based on flexible cyclic triphosphazene polycarboxylate ligands was prepared, which possesses the ability to sense aromatic aldehyde solutions (benzaldehyde, salicylaldehyde and 2-bromobenzaldehyde) and nitro compounds (2,4,6-trinitrophenol, 2,4-dinitrophenol and o-nitrophenol). A fluorescent thin film based on U-hdpcp@PVA with the ability to sense aldehyde vapors was prepared via a spin coating method. The work expands the library of UOF materials based on large-sized carboxylic acid ligands and demonstrates promising applications in the field of fluorescent sensors.
Collapse
Affiliation(s)
- Yao Xiao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Zi-Xin You
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Qing-Lin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Li-Xian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Jinji Road 1#, Guilin 541004, P. R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| |
Collapse
|
20
|
Ju Y, Li ZJ, Qiu J, Li X, Yang J, Zhang ZH, He MY, Wang JQ, Lin J. Adsorption and Detection of Iodine Species by a Thorium-Based Metal-Organic Framework. Inorg Chem 2023; 62:8158-8165. [PMID: 37186814 DOI: 10.1021/acs.inorgchem.3c00473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Actinide-bearing metal-organic frameworks (MOFs) encompass intriguing structures and properties, but the radioactivity of actinide cripples their applications. Herein, we have constructed a new thorium-based MOF (Th-BDAT) as a bifunctional platform for the adsorption and detection of radioiodine, a more radioactive fission product that can readily spread through the atmosphere in its molecular form or via solution as anionic species. The iodine capture within the framework of Th-BDAT from both the vapor phase and the cyclohexane solution has been verified, showing that Th-BDAT features maximum I2 adsorption capacities (Qmax) of 959 and 1046 mg/g, respectively. Notably, the Qmax of Th-BDAT toward I2 from cyclohexane solution ranks among the highest value for Th-MOFs reported to date. Furthermore, incorporating highly extended and π-electron-rich BDAT4- ligands renders Th-BDAT as a luminescent chemosensor whose emission can be selectively quenched by iodate with a detection limit of 1.367 μM. Our findings thus foreshadow promising directions that might unlock the full potential of actinide-based MOFs from the point of view of practical application.
Collapse
Affiliation(s)
- Yu Ju
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.1, Gehu Middle Road, Changzhou 213164, P. R. China
| | - Zi-Jian Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an 710049, P. R. China
| | - Xiaoyun Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Junpu Yang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an 710049, P. R. China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.1, Gehu Middle Road, Changzhou 213164, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.1, Gehu Middle Road, Changzhou 213164, P. R. China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an 710049, P. R. China
| |
Collapse
|
21
|
Hanna SL, Farha OK. Energy-structure-property relationships in uranium metal-organic frameworks. Chem Sci 2023; 14:4219-4229. [PMID: 37123191 PMCID: PMC10132172 DOI: 10.1039/d3sc00788j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023] Open
Abstract
Located at the foot of the periodic table, uranium is a relatively underexplored element possessing rich chemistry. In addition to its high relevance to nuclear power, uranium shows promise for small molecule activation and photocatalysis, among many other powerful functions. Researchers have used metal-organic frameworks (MOFs) to harness uranium's properties, and in their quest to do so, have discovered remarkable structures and unique properties unobserved in traditional transition metal MOFs. More recently, (e.g. the last 8-10 years), theoretical calculations of framework energetics have supplemented structure-property studies in uranium MOFs (U-MOFs). In this Perspective, we summarize how these budding energy-structure-property relationships in U-MOFs enable a deeper understanding of chemical phenomena, enlarge chemical space, and elevate the field to targeted, rather than exploratory, discovery. Importantly, this Perspective encourages interdisciplinary connections between experimentalists and theorists by demonstrating how these collaborations have elevated the entire U-MOF field.
Collapse
Affiliation(s)
- Sylvia L Hanna
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
- Department of Chemical and Biological Engineering, Northwestern University Evanston IL 60208 USA
| |
Collapse
|
22
|
Wang JY, Mei L, Liu Y, Jin QY, Hu KQ, Yu JP, Jiao CS, Zhang M, Shi WQ. Unveiling Structural Diversity of Uranyl Compounds of Aprotic 4,4'-Bipyridine N, N'-Dioxide Bearing O-Donors. ACS OMEGA 2023; 8:8894-8909. [PMID: 36910938 PMCID: PMC9996810 DOI: 10.1021/acsomega.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
As an aprotic O-donor ligand, 4,4'-bipyridine N,N'-dioxide (DPO) shows good potential for the preparation of uranyl coordination compounds. In this work, by regulating reactant compositions and synthesis conditions, diverse coordination assembly between uranyl and DPO under different reaction conditions was achieved in the presence of other coexisting O-donors. A total of ten uranyl-DPO compounds, U-DPO-1 to U-DPO-10, have been synthesized by evaporation or hydro/solvothermal treatment, and the possible competition and cooperation of DPO with other O-donors for the formation of these uranyl-DPO compounds are discussed. Starting with an aqueous solution of uranyl nitrate, it is found that an anionic nitrate or hydroxyl group is involved in the coordination sphere of uranyl in U-DPO-1 ((UO2)(NO3)2(H2O)2·(DPO)), U-DPO-2 ((UO2)(NO3)2(DPO)), and U-DPO-3 ((UO2)(DPO)(μ2-OH)2), where DPO takes three different kinds of coordination modes, i.e. uncoordinated, monodentate, and biconnected. The utilization of UO2(CF3SO3)2 in acetonitrile, instead of an aqueous solution of uranyl nitrate, precludes the participation of nitrate and hydroxyl, and ensures the engagement of DPO ligands (4-5 DPO ligands for each uranyl) in a uranyl coordination sphere of U-DPO-4 ([(UO2)(CF3SO3)(DPO)2](CF3SO3)), U-DPO-5 ([UO2(H2O)(DPO)2](CF3SO3)2) and U-DPO-6 ([(UO2)(DPO)2.5](CF3SO3)2). Moreover, when combined with anionic carboxylate ligands, terephthalic acid (H2TPA), isophthalic acid (H2IPA), and succinic acid (H2SA), DPO works well with them to produce four mixed-ligand uranyl compounds with similar structures of two-dimensional (2D) networks or three-dimensional (3D) frameworks, U-DPO-7 ((UO2)(TPA)(DPO)), U-DPO-8 ((UO2)2(DPO)(IPA)2·0.5H2O), U-DPO-9 ((UO2)(SA)(DPO)·H2O), and U-DPO-10 ((UO2)2(μ2-OH)(SA)1.5(DPO)). Density functional theory (DFT) calculations conducted to probe the bonding features between uranyl ions and different O-donor ligands show that the bonding ability of DPO is better than that of anionic CF3SO3 -, nitrate, and a neutral H2O molecule and comparable to that of an anionic carboxylate group. Characterization of physicochemical properties of U-DPO-7 and U-DPO-10 with high phase purity including infrared (IR) spectroscopy, thermogravimetric analysis (TGA), and luminescence properties is also provided.
Collapse
Affiliation(s)
- Jing-yang Wang
- Fundamental
Science on Nuclear Safety and Simulation Technology Laboratory, College
of Nuclear Science and Technology, Harbin
Engineering University, Harbin 150001, China
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu-yan Jin
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-qiu Hu
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-pan Yu
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cai-shan Jiao
- Fundamental
Science on Nuclear Safety and Simulation Technology Laboratory, College
of Nuclear Science and Technology, Harbin
Engineering University, Harbin 150001, China
| | - Meng Zhang
- Fundamental
Science on Nuclear Safety and Simulation Technology Laboratory, College
of Nuclear Science and Technology, Harbin
Engineering University, Harbin 150001, China
| | - Wei-qun Shi
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Kusumoto S, Atoini Y, Masuda S, Koide Y, Kim JY, Hayami S, Kim Y, Harrowfield J, Thuéry P. Flexible Aliphatic Diammonioacetates as Zwitterionic Ligands in UO 22+ Complexes: Diverse Topologies and Interpenetrated Structures. Inorg Chem 2023; 62:3929-3946. [PMID: 36811464 DOI: 10.1021/acs.inorgchem.2c04321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
N,N,N',N'-Tetramethylethane-1,2-diammonioacetate (L1) and N,N,N',N'-tetramethylpropane-1,3-diammonioacetate (L2) are two flexible zwitterionic dicarboxylates which have been used as ligands for the uranyl ion, 12 complexes having been obtained from their coupling to diverse anions, mostly anionic polycarboxylates, or oxo, hydroxo and chlorido donors. The protonated zwitterion is a simple counterion in [H2L1][UO2(2,6-pydc)2] (1), where 2,6-pydc2- is 2,6-pyridinedicarboxylate, but it is deprotonated and coordinated in all the other complexes. [(UO2)2(L2)(2,4-pydcH)4] (2), where 2,4-pydc2- is 2,4-pyridinedicarboxylate, is a discrete, binuclear complex due to the terminal nature of the partially deprotonated anionic ligands. [(UO2)2(L1)(ipht)2]·4H2O (3) and [(UO2)2(L1)(pda)2] (4), where ipht2- and pda2- are isophthalate and 1,4-phenylenediacetate, are monoperiodic coordination polymers in which central L1 bridges connect two lateral strands. Oxalate anions (ox2-) generated in situ give [(UO2)2(L1)(ox)2] (5) a diperiodic network with the hcb topology. [(UO2)2(L2)(ipht)2]·H2O (6) differs from 3 in being a diperiodic network with the V2O5 topological type. [(UO2)2(L1)(2,5-pydc)2]·4H2O (7), where 2,5-pydc2- is 2,5-pyridinedicarboxylate, is a hcb network with a square-wave profile, while [(UO2)2(L1)(dnhpa)2] (8), where dnhpa2- is 3,5-dinitro-2-hydroxyphenoxyacetate, formed in situ from 1,2-phenylenedioxydiacetic acid, has the same topology but a strongly corrugated shape leading to interdigitation of layers. (2R,3R,4S,5S)-Tetrahydrofurantetracarboxylic acid (thftcH4) is only partially deprotonated in [(UO2)3(L1)(thftcH)2(H2O)] (9), which crystallizes as a diperiodic polymer with the fes topology. [(UO2)2Cl2(L1)3][(UO2Cl3)2(L1)] (10) is an ionic compound in which discrete, binuclear anions cross the cells of the cationic hcb network. 2,5-Thiophenediacetate (tdc2-) is peculiar in promoting self-sorting of the ligands in the ionic complex [(UO2)5(L1)7(tdc)(H2O)][(UO2)2(tdc)3]4·CH3CN·12H2O (11), which is the first example of heterointerpenetration in uranyl chemistry, involving a triperiodic, cationic framework and diperiodic, anionic hcb networks. Finally, [(UO2)7(O)3(OH)4.3Cl2.7(L2)2]Cl·7H2O (12) crystallizes as a 2-fold interpenetrated, triperiodic framework in which chlorouranate undulating monoperiodic subunits are bridged by the L2 ligands. Complexes 1, 2, 3, and 7 are emissive with photoluminescence quantum yields in the range of 8-24%, and their solid-state emission spectra show the usual dependence on number and nature of donor atoms.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Youssef Atoini
- Technical University of Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany
| | - Shunya Masuda
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yoshihiro Koide
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Jee Young Kim
- Department of Food and Nutrition, Kosin University, 194 Wachiro, Yongdo-Gu, Busan 49104, South Korea
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
24
|
Saeed M, Firdous A, Zaman MS, Izhar F, Riaz M, Haider S, Majeed M, Tariq S. MOFs
for desulfurization of fuel oil: Recent advances and future insights. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Muhammad Saeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Aswa Firdous
- Department of Chemistry Quaid‐i‐Azam University Islamabad Pakistan
| | - Muhammad Saleh Zaman
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| | - Fatima Izhar
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Mubeshar Riaz
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Sabah Haider
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Muzamil Majeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Shahzaib Tariq
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| |
Collapse
|
25
|
Ren ZH, Zhang ZR, Ma LJ, Luo CY, Dai J, Zhu QY. Oxidatively Doped Tetrathiafulvalene-Based Metal-Organic Frameworks for High Specific Energy of Supercapatteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6621-6630. [PMID: 36695585 DOI: 10.1021/acsami.2c17523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Poor electrical conductivity and instability of metal-organic frameworks (MOFs) have limited their energy storage and conversion efficiency. In this work, we report the application of oxidatively doped tetrathiafulvalene (TTF)-based MOFs for high-performance electrodes in supercapatteries. Two isostructural MOFs, formulated as [M(py-TTF-py)(BPDC)]·2H2O (M = NiII (1), ZnII (2); py-TTF-py = 2,6-bis(4'-pyridyl)TTF; H2BPDC = biphenyl-4,4'-dicarboxylic acid), are crystallographically characterized. The structural analyses show that the two MOFs possess a three-dimensional 8-fold interpenetrating diamond-like topology, which is the first example for TTF-based dual-ligand MOFs. Upon iodine treatment, MOFs 1 and 2 are converted into oxidatively doped 1-ox and 2-ox with high crystallinity. The electrical conductivity of 1-ox and 2-ox is significantly increased by six∼seven orders of magnitude. Benefiting from the unique structure and the pronounced development of electrical conductivity, the specific capacities reach 833.2 and 828.3 C g-1 at a specific current of 1 A g-1 for 1-ox and 2-ox, respectively. When used as a battery-type positrode to assemble a supercapattery, the AC∥1-ox and AC∥2-ox (AC = activated carbon) present an energy density of 90.3 and 83.0 Wh kg-1 at a power density of 1.18 kW kg-1 and great cycling stability with 82% of original capacity and 92% columbic efficiency retention after 10,000 cycles. Ex situ characterization illustrates the ligand-dominated mechanism in the charge/discharge processes. The excellent electrochemical performances of 1-ox and 2-ox are rarely reported for supercapatteries, illustrating that the construction of unique highly dense and robust structures of MOFs followed by postsynthetic oxidative doping is an effective approach to fabricate MOF-based electrode materials.
Collapse
Affiliation(s)
- Zhou-Hong Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhi-Ruo Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Li-Jun Ma
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chen-Yue Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jie Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
26
|
Fu Y, Wang X, Ju Y, Zheng Z, Jian J, Li ZJ, Jin C, Wang JQ, Lin J. A robust thorium-organic framework as a bifunctional platform for iodine adsorption and Cr(VI) sensitization. Dalton Trans 2023; 52:1177-1181. [PMID: 36648495 DOI: 10.1039/d2dt03623a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Simple synthetic modulation based on thorium nitrate and tris((4-carboxyl)phenylduryl)amine (H3TCBPA) gives rise to a new thorium-based metal-organic framework, Th-TCBPA, which features excellent hydrolytic and thermal stabilities. Incorporating electron-rich TCBPA3- linkers not only endows Th-TCBPA with high adsorption capacity toward radioiodine vapor, but also makes it a luminescence sensor for the highly sensitive and selective detection of Cr(VI) anions.
Collapse
Affiliation(s)
- Yiran Fu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Xue Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
| | - Yu Ju
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
| | - Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Jie Jian
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Zi-Jian Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Chan Jin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
27
|
Park KC, Kittikhunnatham P, Lim J, Thaggard GC, Liu Y, Martin CR, Leith GA, Toler DJ, Ta AT, Birkner N, Lehman-Andino I, Hernandez-Jimenez A, Morrison G, Amoroso JW, Zur Loye HC, DiPrete DP, Smith MD, Brinkman KS, Phillpot SR, Shustova NB. f-block MOFs: A Pathway to Heterometallic Transuranics. Angew Chem Int Ed Engl 2023; 62:e202216349. [PMID: 36450099 DOI: 10.1002/anie.202216349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
A novel series of heterometallic f-block-frameworks including the first examples of transuranic heterometallic 238 U/239 Pu-metal-organic frameworks (MOFs) and a novel monometallic 239 Pu-analog are reported. In combination with theoretical calculations, we probed the kinetics and thermodynamics of heterometallic actinide(An)-MOF formation and reported the first value of a U-to-Th transmetallation rate. We concluded that formation of uranyl species could be a driving force for solid-state metathesis. Density of states near the Fermi edge, enthalpy of formation, band gap, proton affinity, and thermal/chemical stability were probed as a function of metal ratios. Furthermore, we achieved 97 % of the theoretical maximum capacity for An-integration. These studies shed light on fundamental aspects of actinide chemistry and also foreshadow avenues for the development of emerging classes of An-containing materials, including radioisotope thermoelectric generators or metalloradiopharmaceuticals.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Donald J Toler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - An T Ta
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Nancy Birkner
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.,Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634, USA
| | | | | | - Gregory Morrison
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jake W Amoroso
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Hans-Conrad Zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.,Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Dave P DiPrete
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kyle S Brinkman
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.,Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634, USA
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
28
|
Chen SH, Wang HQ. Synthesis, structures, and characterizations of four uranyl coordination polymers constructed by mixed-ligand strategy. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Thuéry P, Harrowfield J. Two protons masquerading as a metal ion? Anionic coordination polymers of uranyl ion and tetrahydrofurantetracarboxylate with protonated or metal-complexed azamacrocyclic cations. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2161375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette, France
| | | |
Collapse
|
30
|
A Comprehensive Review on Zeolite Chemistry for Catalytic Conversion of Biomass/Waste into Green Fuels. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238578. [PMID: 36500669 PMCID: PMC9739862 DOI: 10.3390/molecules27238578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Numerous attempts have been made to produce new materials and technology for renewable energy and environmental improvements in response to global sustainable solutions stemming from fast industrial expansion and population growth. Zeolites are a group of crystalline materials having molecularly ordered micropore arrangements. Over the past few years, progress in zeolites has been observed in transforming biomass and waste into fuels. To ensure effective transition of fossil energy carriers into chemicals and fuels, zeolite catalysts play a key role; however, their function in biomass usage is more obscure. Herein, the effectiveness of zeolites has been discussed in the context of biomass transformation into valuable products. Established zeolites emphasise conversion of lignocellulosic materials into green fuels. Lewis acidic zeolites employ transition of carbohydrates into significant chemical production. Zeolites utilise several procedures, such as catalytic pyrolysis, hydrothermal liquefaction, and hydro-pyrolysis, to convert biomass and lignocelluloses. Zeolites exhibit distinctive features and encounter significant obstacles, such as mesoporosity, pore interconnectivity, and stability of zeolites in the liquid phase. In order to complete these transformations successfully, it is necessary to have a thorough understanding of the chemistry of zeolites. Hence, further examination of the technical difficulties associated with catalytic transformation in zeolites will be required. This review article highlights the reaction pathways for biomass conversion using zeolites, their challenges, and their potential utilisation. Future recommendations for zeolite-based biomass conversion are also presented.
Collapse
|
31
|
Kvashnina KO. Rare radioisotopes at the ready. Nat Chem 2022; 14:1337-1338. [PMID: 36344818 DOI: 10.1038/s41557-022-01086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kristina O Kvashnina
- The Rossendorf Beamline at The European Synchrotron Radiation Facility, Grenoble, France.
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
| |
Collapse
|
32
|
Thuéry P, Harrowfield J. Anionic uranyl ion complexes with pyrazinetetracarboxylate: Influence of structure-directing cations. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Ferrier MG, Childs BC, Silva CM, Greenough MM, Moore EE, Swift AJ, Di Pietro SA, Martin AA, Jeffries JR, Holliday KS. Unconventional Pathways to Carbide Phase Synthesis via Thermal Decomposition of UI 4(1,4-dioxane) 2. Inorg Chem 2022; 61:17579-17589. [PMID: 36269886 DOI: 10.1021/acs.inorgchem.2c02590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UI4(1,4-dioxane)2 was subjected to laser-based heating─a method that enables localized, fast heating (T > 2000 °C) and rapid cooling under controlled conditions (scan rate, power, atmosphere, etc.)─to understand its thermal decomposition. A predictive computational thermodynamic technique estimated the decomposition temperature of UI4(1,4-dioxane)2 to uranium (U) metal to be 2236 °C, a temperature achievable under laser irradiation. Dictated by the presence of reactive, gaseous byproducts, the thermal decomposition of UI4(1,4-dioxane)2 under furnace conditions up to 600 °C revealed the formation of UO2, UIx, and U(C1-xOx)y, while under laser irradiation, UI4(1,4-dioxane)2 decomposed to UO2, U(C1-xOx)y, UC2-zOz, and UC. Despite the fast dynamics associated with laser irradiation, the central uranium atom reacted with the thermal decomposition products of the ligand (1,4-dioxane = C4H8O2) instead of producing pure U metal. The results highlight the potential to co-develop uranium precursors with specific irradiation procedures to advance nuclear materials research by finding new pathways to produce uranium carbide.
Collapse
Affiliation(s)
- Maryline G Ferrier
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Bradley C Childs
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Chinthaka M Silva
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Michelle M Greenough
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Emily E Moore
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Andrew J Swift
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Silvina A Di Pietro
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Aiden A Martin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Jason R Jeffries
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Kiel S Holliday
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
34
|
Niu Q, Huang Q, Yu TY, Liu J, Shi JW, Dong LZ, Li SL, Lan YQ. Achieving High Photo/Thermocatalytic Product Selectivity and Conversion via Thorium Clusters with Switchable Functional Ligands. J Am Chem Soc 2022; 144:18586-18594. [PMID: 36191239 DOI: 10.1021/jacs.2c08258] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural exploration and functional application of thorium clusters are still very rare on account of their difficult synthesis caused by the susceptible hydrolysis of thorium element. In this work, we elaborately designed and constructed four stable thorium clusters modified with different functionalized capping ligands, Th6-MA, Th6-BEN, Th6-C8A, and Th6-Fcc, which possessed nearly the same hexanuclear thorium-oxo core but different capabilities in light absorption and charge separation. Consequently, for the first time, these new thorium clusters were treated as model catalysts to systematically investigate the light-induced oxidative coupling reaction of benzylamine and thermodriven oxidation of aniline, achieving >90% product selectivity and approximately 100% conversion, respectively. Concurrently, we found that thorium clusters modified by switchable functional ligands can effectively modulate the selectivity and conversion of catalytic reaction products. Moreover, catalytic characterization and density functional theory calculations consistently indicated that these thorium clusters can activate O2/H2O2 to generate active intermediates O2·-/HOO· and then improved the conversion of amines efficiently. Significantly, this work represents the first report of stable thorium clusters applied to photo/thermotriggered catalytic reactions and puts forward a new design avenue for the construction of more efficient thorium cluster catalysts.
Collapse
Affiliation(s)
- Qian Niu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qing Huang
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Tao-Yuan Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jing-Wen Shi
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
35
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Li K, Liu W, Zhang H, Cheng L, Zhang Y, Wang Y, Chen N, Zhu C, Chai Z, Wang S. Progress in solid state and coordination chemistry of actinides in China. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the past decade, the area of solid state chemistry of actinides has witnessed a rapid development in China, based on the significantly increased proportion of the number of actinide containing crystal structures reported by Chinese researchers from only 2% in 2010 to 36% in 2021. In this review article, we comprehensively overview the synthesis, structure, and characterizations of representative actinide solid compounds including oxo-compounds, organometallic compounds, and endohedral metallofullerenes reported by Chinese researchers. In addition, Chinese researchers pioneered several potential applications of actinide solid compounds in terms of adsorption, separation, photoelectric materials, and photo-catalysis, which are also briefly discussed. It is our hope that this contribution not only calls for further development of this area in China, but also arouses new research directions and interests in actinide chemistry and material sciences.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University , Yantai , 264005 , China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , School of Chemistry and Chemical Engineering, Nanjing University , Nanjing , 210023 , China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| |
Collapse
|
37
|
Andriotou D, Duval S, Volkringer C, Arevalo-Lopez AM, Simon P, Vezin H, Loiseau T. Crystalline Molecular Assemblies of Complexes Showing Eightfold Coordinated Niobium(IV) Dodecahedral Geometry in the Pyridine-Dicarboxylic Acid System. Inorg Chem 2022; 61:15346-15358. [DOI: 10.1021/acs.inorgchem.2c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Despoina Andriotou
- Unité de Catalyse et Chimie du Solide (UCCS) − UMR CNRS 8181, Université de Lille, Centrale Lille, Université d’Artois, F-59000 Lille, France
| | - Sylvain Duval
- Unité de Catalyse et Chimie du Solide (UCCS) − UMR CNRS 8181, Université de Lille, Centrale Lille, Université d’Artois, F-59000 Lille, France
| | - Christophe Volkringer
- Unité de Catalyse et Chimie du Solide (UCCS) − UMR CNRS 8181, Université de Lille, Centrale Lille, Université d’Artois, F-59000 Lille, France
| | - Angel M. Arevalo-Lopez
- Unité de Catalyse et Chimie du Solide (UCCS) − UMR CNRS 8181, Université de Lille, Centrale Lille, Université d’Artois, F-59000 Lille, France
| | - Pardis Simon
- Unité de Catalyse et Chimie du Solide (UCCS) − UMR CNRS 8181, Université de Lille, Centrale Lille, Université d’Artois, F-59000 Lille, France
| | - Hervé Vezin
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité & l’Environnement (LASIRE) − UMR CNRS 8516, Université de Lille, F-59000 Lille, France
| | - Thierry Loiseau
- Unité de Catalyse et Chimie du Solide (UCCS) − UMR CNRS 8181, Université de Lille, Centrale Lille, Université d’Artois, F-59000 Lille, France
| |
Collapse
|
38
|
Li J, Goncharov VG, Strzelecki AC, Xu H, Guo X, Zhang Q. Energetic Systematics of Metal-Organic Frameworks: A Case Study of Al(III)-Trimesate MOF Isomers. Inorg Chem 2022; 61:15152-15165. [PMID: 36099470 DOI: 10.1021/acs.inorgchem.2c02345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermal stability and thermodynamic properties of aluminum(III)-1,3,5-benzenetricarboxylate (Al-BTC) metal-organic frameworks (MOFs), including MIL-96, MIL-100, and MIL-110, have been investigated through a suite of calorimetric and X-ray techniques. In situ high-temperature X-ray diffraction (HT-XRD) and thermogravimetric analysis coupled with differential scanning calorimetry (TGA-DSC) revealed that these MOFs undergo thermal amorphization prior to ligand combustion. Thermal stabilities of Al-BTC MOFs follow the increasing order MIL-110 < MIL-96 < MIL-100, based on estimated amorphization temperatures. Their thermodynamic stabilities were directly measured by high-temperature drop combustion calorimetry. Normalized (per mole of Al) enthalpies of formation (ΔH*f) of MIL-96, MIL-100, and MIL-110 from Al2O3, H3BTC, and H2O (only Al2O3 and H3BTC for MIL-100) were determined to be -56.9 ± 13.7, -36.2 ± 17.9, and 62.8 ± 11.6 kJ/mol·Al, respectively. Our results demonstrate that MIL-96 and MIL-100 are thermodynamically favorable, while MIL-110 is metastable, in agreement with thermal and hydrothermal stability trends. The enthalpic preferences of MIL-96 and MIL-100 may be attributed to their shared trinuclear μ3-oxo-bridged (Al3(μ3-O)) secondary building units (SBUs) promoting stabilization of Al polyhedra by the ligands within these frameworks, in comparison to the sterically strained Al8 octamer cluster cores formed in MIL-110. Furthermore, similar ΔH*f of MIL-96 and MIL-100 explain their concurrent formation as physical mixtures often encountered during synthesis, implying the importance of kinetic factors that may facilitate the formation of Al-BTC framework isomers. More importantly, the normalized formation enthalpies of Al-BTC MOF isomers follow a negative correlation with the ratio of charged coordinated substituents to linkers (normalized per mole of Al within the MOF formula unit), with enthalpic preference given to systems with smaller (O2- + OH-)/ligand ratios. This trend has been successfully extended to the previously measured ΔH*f of several Zn4O-based frameworks (e.g., MOF-5, MOF-5(DEF), MOF-177, UMCM-1), all of which have been found to be metastable with respect to their dense phases (ZnO, H2O, and ligands). The result suggests that carboxylate MOFs with higher metal coordination environments attain more enthalpic stabilization from the coordinated ligands. Thus, the formation of some lanthanide/actinide, transition metal, and main group carboxylate frameworks may be energetically more favored, which, however, requires further studies.
Collapse
Affiliation(s)
- Jiahong Li
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Vitaliy G Goncharov
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States.,Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States
| | - Andrew C Strzelecki
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States.,Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States.,Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hongwu Xu
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaofeng Guo
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States.,Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
39
|
Kusumoto S, Atoini Y, Masuda S, Kim JY, Hayami S, Kim Y, Harrowfield J, Thuéry P. Zwitterionic and Anionic Polycarboxylates as Coligands in Uranyl Ion Complexes, and Their Influence on Periodicity and Topology. Inorg Chem 2022; 61:15182-15203. [PMID: 36083206 DOI: 10.1021/acs.inorgchem.2c02426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The three zwitterionic di- and tricarboxylate ligands 1,1'-[(2,3,5,6-tetramethylbenzene-1,4-diyl)bis(methylene)]bis(pyridin-1-ium-4-carboxylate) (pL1), 1,1'-[(2,3,5,6-tetramethylbenzene-1,4-diyl)bis(methylene)]bis(pyridin-1-ium-3-carboxylate) (mL1), and 1,1',1″-[(2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene)]tris(pyridin-1-ium-4-carboxylate) (L2) have been used as ligands to synthesize a series of 15 uranyl ion complexes involving various anionic coligands, in most cases polycarboxylates. [(UO2)2(pL1)2(cbtc)(H2O)2]·10H2O (1, cbtc4- = cis,trans,cis-1,2,3,4-cyclobutanetetracarboxylate) is a discrete, dinuclear ring-shaped complex with a central cbtc4- pillar. While [UO2(pL1)(NO3)2] (2), [UO2(pL1)(OAc)2] (3), and [UO2(pL1)(HCOO)2] (4) are simple chains, [(UO2)2(mL1)(1,3-pda)2] (5, 1,3-pda2- = 1,3-phenylenediacetate) is a daisy chain and [UO2(pL1)(pdda)]3·10H2O (6, pdda2- = 1,2-phenylenedioxydiacetate) is a double-stranded, ribbon-like chain. Both [UO2(pL1)(pht)]·5H2O (7, pht2- = phthalate) and [(UO2)3(mL1)(pht)2(OH)2] (8) crystallize as diperiodic networks with the sql topology, the latter involving hydroxo-bridged trinuclear nodes. [(UO2)2(pL1)(c/t-1,3-chdc)2] (9, c/t-1,3-chdc2- = cis/trans-1,3-cyclohexanedicarboxylate) and [UO2(pL1)(t-1,4-chdc)]·1.5H2O (10, t-1,4-chdc2- = trans-1,4-cyclohexanedicarboxylate) are also diperiodic, with the V2O5 and sql topologies, respectively. Both [(UO2)2(mL1)(c/t-1,4-chdc)2] (11) and [(UO2)2(pL1)(1,2-pda)2] (12, 1,2-pda2- = 1,2-phenylenediacetate) crystallize as diperiodic networks with hcb topology, and they display threefold parallel interpenetration. [HL2][(UO2)3(L2)(adc)3]Br (13, adc2- = 1,3-adamantanedicarboxylate) contains a very corrugated hcb network with two different kinds of cells, and the uncoordinated HL2+ molecule associates with the coordinated L2 to form a capsule containing the bromide anion. [(UO2)2(pL1)(kpim)2] (14, kpim2- = 4-ketopimelate) is a three-periodic framework with pL1 molecules pillaring fes diperiodic subunits, whereas [(UO2)2(L2)2(t-1,4-chdc)](NO3)1.7Br0.3·6H2O (15), the only cationic complex in the series, is a triperiodic framework with dmc topology and t-1,4-chdc2- anions pillaring fes diperiodic subunits. Solid-state emission spectra and photoluminescence quantum yields are reported for all complexes.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Youssef Atoini
- Technical University of Munich Campus Straubing, Schulgasse 22, 94315 Straubing, Germany
| | - Shunya Masuda
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Jee Young Kim
- Department of Food and Nutrition, Kosin University, 194 Wachiro, Yongdo-Gu, Busan 49104, South Korea
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Jack Harrowfield
- ISIS, Université de Strasbourg, 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
40
|
Park KC, Martin CR, Leith GA, Thaggard GC, Wilson GR, Yarbrough BJ, Maldeni Kankanamalage BKP, Kittikhunnatham P, Mathur A, Jatoi I, Manzi MA, Lim J, Lehman-Andino I, Hernandez-Jimenez A, Amoroso JW, DiPrete DP, Liu Y, Schaeperkoetter J, Misture ST, Phillpot SR, Hu S, Li Y, Leydier A, Proust V, Grandjean A, Smith MD, Shustova NB. Capture Instead of Release: Defect-Modulated Radionuclide Leaching Kinetics in Metal-Organic Frameworks. J Am Chem Soc 2022; 144:16139-16149. [PMID: 36027644 DOI: 10.1021/jacs.2c06905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparison of defect-controlled leaching-kinetics modulation of metal-organic frameworks (MOFs) and porous functionalized silica-based materials was performed on the example of a radionuclide and radionuclide surrogate for the first time, revealing an unprecedented readsorption phenomenon. On a series of zirconium-based MOFs as model systems, we demonstrated the ability to capture and retain >99% of the transuranic 241Am radionuclide after 1 week of storage. We report the possibility of tailoring radionuclide release kinetics in MOFs through framework defects as a function of postsynthetically installed organic ligands including cation-chelating crown ether-based linkers. Based on comprehensive analysis using spectroscopy (EXAFS, UV-vis, FTIR, and NMR), X-ray crystallography (single crystal and powder), and theoretical calculations (nine kinetics models and structure simulations), we demonstrated the synergy of radionuclide integration methods, topological restrictions, postsynthetic scaffold modification, and defect engineering. This combination is inaccessible in any other material and highlights the advantages of using well-defined frameworks for gaining fundamental knowledge necessary for the advancement of actinide-based material development, providing a pathway for addressing upcoming challenges in the nuclear waste administration sector.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Preecha Kittikhunnatham
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Isak Jatoi
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Mackenzie A Manzi
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | | | | | - Jake W Amoroso
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - David P DiPrete
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joseph Schaeperkoetter
- Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802, United States
| | - Scott T Misture
- Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802, United States
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Shenyang Hu
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yulan Li
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Antoine Leydier
- Commissariat à l'Énergie Atomique (CEA), DES, ISEC, DMRC, University Montpellier, Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Vanessa Proust
- Commissariat à l'Énergie Atomique (CEA), DES, ISEC, DMRC, University Montpellier, Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Agnès Grandjean
- Commissariat à l'Énergie Atomique (CEA), DES, ISEC, DMRC, University Montpellier, Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
41
|
Li L, Yu T, Qian Z, Wu X, He H, Ye G, Qiao Y. Synthesis and structure of metal-TCPE (metal = Th, Ce) metal-organic frameworks based on 1,2,4,5-tetrakis(4-carboxyphenyl) ethylene. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220525. [PMID: 36061522 PMCID: PMC9428531 DOI: 10.1098/rsos.220525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Two new metal-organic frameworks (MOFs) (Th/ Ce -TCPE) based on 1,2,4,5-tetrakis(4-carboxyphenyl)ethylene were obtained using a straightforward reaction under moderate conditions. Th and Ce formed the central units of this MOF in the mononuclear and in the unusual trinuclear cluster configurations, respectively. The resulting MOFs were analysed by fluorescence spectroscopy to understand their luminescence. The obtained data revealed that benzene's electron cloud density and torsion angle on the ligand were affected by the acetic acid molecule and Th(IV), which caused Th-TCPE to irradiate stronger blue emission, but Ce-TCPE showed no fluorescence due to the self-quenching. Such a unique luminescence property could be used for fluorescence or radiopharmaceutical sensing.
Collapse
Affiliation(s)
- Lin Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ting Yu
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, People's Republic of China
| | - Zhenghua Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Xiaoling Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hui He
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, People's Republic of China
| | - Guoan Ye
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, People's Republic of China
| | - Yanbo Qiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| |
Collapse
|
42
|
Xu M, Lu H, Wang C, Qiu J, Zheng Z, Guo X, Zhang ZH, He MY, Qian J, Lin J. Enhancing photosensitivity via the assembly of a uranyl coordination polymer. Chem Commun (Camb) 2022; 58:9389-9392. [PMID: 35904873 DOI: 10.1039/d2cc02985e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synergistic assembly of uranyl centres and luminescent 2,6-bis(pyrazol-1-yl)pyridine-4-carboxylates (bppCOOH) gives rise to a uranyl coordination polymer, namely U-bppCOO, which exhibits a luminescence quenching response toward UV or X-ray irradiation doses. Notably, the photosensitivity of U-bppCOO has been significantly enhanced via metal-ligand assembly compared with that of the naked bppCOOH ligand.
Collapse
Affiliation(s)
- Miaomiao Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China.
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
| | - Chunhui Wang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington, 99164-4630, USA
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China.
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China.
| | - Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China.
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| |
Collapse
|
43
|
The Chemistry and Applications of Metal-Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144529. [PMID: 35889401 PMCID: PMC9320690 DOI: 10.3390/molecules27144529] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023]
Abstract
Enzymatic biocatalysis is a sustainable technology. Enzymes are versatile and highly efficient biocatalysts, and have been widely employed due to their biodegradable nature. However, because the three-dimensional structure of these enzymes is predominantly maintained by weaker non-covalent interactions, external conditions, such as temperature and pH variations, as well as the presence of chemical compounds, can modify or even neutralize their biological activity. The enablement of this category of processes is the result of the several advances in the areas of molecular biology and biotechnology achieved over the past two decades. In this scenario, metal–organic frameworks (MOFs) are highlighted as efficient supports for enzyme immobilization. They can be used to ‘house’ a specific enzyme, providing it with protection from environmental influences. This review discusses MOFs as structures; emphasizes their synthesis strategies, properties, and applications; explores the existing methods of using immobilization processes of various enzymes; and lists their possible chemical modifications and combinations with other compounds to formulate the ideal supports for a given application.
Collapse
|
44
|
Carboxymethyl cellulose-coated HKUST-1 for baclofen drug delivery in vitro. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02348-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
The effectiveness of silver nanoparticles as a clean-up material for water polluted with bacteria DNA conveying antibiotics resistance genes: Effect of different molar concentrations and competing ions. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Thuéry P, Harrowfield J. Ni(2,2':6',2″-Terpyridine-4'-carboxylate) 2 Zwitterions and Carboxylate Polyanions in Mixed-Ligand Uranyl Ion Complexes with a Wide Range of Topologies. Inorg Chem 2022; 61:9725-9745. [PMID: 35687129 DOI: 10.1021/acs.inorgchem.2c01220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The zwitterionic complex formed by NiII and 2,2':6',2″-terpyridine-4'-carboxylate, Ni(tpyc)2, has been used as a coligand with a diverse group of polycarboxylates in uranyl ion complexes synthesized under solvo-hydrothermal conditions, thus giving a series of 14 mixed ligand, heterometallic compounds. Both [(UO2)2(c-1,2-chdc)Ni(tpyc)2(NO3)2]2·4CH3CN (1) and [(UO2)2(tdc)Ni(tpyc)2(NO3)2]2 (2), where c-1,2-chdc2- is cis-1,2-cyclohexanedicarboxylate and tdc2- is 2,5-thiophenedicarboxylate, display discrete U4Ni2 dinickelatetrauranacycles, a motif which is also found as part of a daisychain coordination polymer in [(UO2)4(bdc)3Ni2(tpyc)4(NO3)2]·2CH3CN·2H2O (3), where bdc2- is 1,4-benzenedicarboxylate. Similar U4Ni2 rings associate to form a nanotubular polymer in [(UO2)2(tca)Ni(tpyc)2(NO3)]·2CH3CN·2H2O (4), where tca3- is tricarballylate. [(UO2)2(1,2-pda) (1,2-pdaH)Ni(tpyc)2(NO3)]·CH3CN (5), where 1,2-pda2- is 1,2-phenylenediacetate, crystallizes as a meander-like chain in which each bent section can be seen as an open, semi-U4Ni2 ring. Oxalate (ox2-) gives [(UO2)2(ox)2Ni(tpyc)2] (6), a monoperiodic polymer containing smaller U4Ni rings, while 1,2,3-benzenetricarboxylate (1,2,3-btc3-) and citrate (citH3-) give [Ni(tpycH)(H2O)3][UO2(1,2,3-btc)]2·2H2O (7) and [UO2Ni2(tpyc)4][UO2(citH)]2 (8), two complexes with charge separation, the latter displaying one-periodic + two-periodic semi-interpenetration. [(UO2)2(btcH)Ni(tpyc)2(NO3)] (9) and [(UO2)2(cbtcH)Ni(tpyc)2(NO3)] (10), where btc4- and cbtc4- are 1,2,3,4-butanetetracarboxylate and cis,trans,cis-1,2,3,4-cyclobutanetetracarboxylate, respectively, are diperiodic networks with hcb topology, and [(UO2)2(ndc)Ni(tpyc)2(OH)(NO3)] (11), where ndc2- is 2,6-naphthalenedicarboxylate, is a sql network containing dinuclear nodes and involving 100-membered U10Ni4 metallacyclic units. U4Ni2 rings are found in the diperiodic polymer formed in [(UO2)4(t-R-1,2-chdc)4Ni2(tpyc)4] (12), where t-R-1,2-chdc2- is trans-R,R-1,2-cyclohexanedicarboxylate, the heavily puckered sheets being interlocked. 1,3-Phenylenediacetate (1,3-pda2-) gives a very thick diperiodic polymer with KIa topology, [(UO2)4(1,3-pda)4Ni2(tpyc)4]·CH3CN·2H2O (13). A triperiodic framework is formed with nitrilotriacetate (nta3-) in [(UO2)2(nta)2Ni2(tpyc)2] (14), where NiII is found in Ni(tpyc)2 units as well as in Ni(nta)24- moieties which both act as 4-coordinated nodes.
Collapse
Affiliation(s)
- Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 Allée Gaspard Monge, Strasbourg 67083, France
| |
Collapse
|
47
|
Bansal D, Kaden P, Patzschke M, März J, Schmidt M. Comparative Analysis of Mononuclear 1:1 and 2:1 Tetravalent Actinide (U, Th, Np) Complexes: Crystal Structure, Spectroscopy, and Electrochemistry. Inorg Chem 2022; 61:10509-10520. [PMID: 35736135 DOI: 10.1021/acs.inorgchem.2c01405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Six mononuclear tetravalent actinide complexes (1-6) have been synthesized using a new Schiff base ligand 2-methoxy-6-(((2-methyl-1-(pyridin-2-yl)propyl)imino)methyl)phenol (HLpr). The HLpr is treated with tetravalent actinide elements in varied stoichiometries to afford mononuclear 1:1 complexes [MCl3-Lpr·nTHF] (1-3) and 2:1 complexes [MCl2-L2pr] (4-6) (M = Th4+ (1 and 4), U4+ (2 and 5), and Np4+ (3 and 6)). All complexes are characterized using different analytical techniques such as IR, NMR, and absorption spectroscopy as well as crystallography. UV-vis spectroscopy revealed more red-shifted absorption spectra for 2:1 complexes as compared to 1:1 complexes. 1H NMR of Th(IV) complexes exhibit diamagnetic spectra, whereas U(IV) and Np(IV) complexes revealed paramagnetically shifted 1H NMR. Interestingly, NMR signals are paramagnetically shifted between -70 and 40 ppm in 2 and 3 but are confined within -35 to 25 ppm in 2:1 complexes 5 and 6. Single-crystal structures for 1:1 complexes revealed an eight-coordinated Th(IV) complex (1) and seven-coordinated U(IV) (2) and Np(IV) (3) complexes. However, all 2:1 complexes 4-6 were isolated as eight-coordinated isostructural molecules. The geometry around the Th4+ center in 1 is found to be trigonal dodecahedral and capped trigonal prismatic around U(IV) and Np(IV) centers in 2 and 3, respectively. However, An4+ centers in 2:1 complexes are present in dodecahedral geometry. Importantly, 2:1 complexes exhibit increased bond distances in comparison to their 1:1 counterparts as well as interesting bond modulation with respect to ionic radii of An(IV) centers. Cyclic voltammetry displays an increased oxidation potential of the ligand by 300-500 mV, after coordination with An4+. CV studies indicate Th(IV)/Th(II) reduction beyond -2.3 V, whereas attempts were made to identify redox potentials for U(IV) and Np(IV) centers. Spectroscopic binding studies reveal that complex stability in 1:1 stoichiometry follows the order Th4+ ≈ U4+ > Np4+.
Collapse
Affiliation(s)
- Deepak Bansal
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Peter Kaden
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Michael Patzschke
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Juliane März
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Moritz Schmidt
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
48
|
Highlighting Recent Crystalline Engineering Aspects of Luminescent Coordination Polymers Based on F-Elements and Ditopic Aliphatic Ligands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123830. [PMID: 35744946 PMCID: PMC9230055 DOI: 10.3390/molecules27123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Three principal factors may influence the final structure of coordination polymers (CPs): (i) the nature of the ligand, (ii) the type and coordination number of the metal center, and (iii) the reaction conditions. Further, flexible carboxylate aliphatic ligands have been widely employed as building blocks for designing and synthesizing CPs, resulting in a diverse array of materials with exciting architectures, porosities, dimensionalities, and topologies as well as an increasing number of properties and applications. These ligands show different structural features, such as torsion angles, carbon backbone number, and coordination modes, which affect the desired products and so enable the generation of polymorphs or crystalline phases. Additionally, due to their large coordination numbers, using 4f and 5f metals as coordination centers combined with aliphatic ligands increases the possibility of obtaining different crystal phases. Additionally, by varying the synthetic conditions, we may control the production of a specific solid phase by understanding the thermodynamic and kinetic factors that influence the self-assembly process. This revision highlights the relationship between the structural variety of CPs based on flexible carboxylate aliphatic ligands and f-elements (lanthanide and actinides) and their outstanding luminescent properties such as solid-state emissions, sensing, and photocatalysis. In this sense, we present a structural analysis of the CPs reported with the oxalate ligand, as the one rigid ligand of the family, and other flexible dicarboxylate linkers with –CH2– spacers. Additionally, the nature of the luminescence properties of the 4f or 5f-CPs is analyzed, and finally, we present a novel set of CPs using a glutarate-derived ligand and samarium, with the formula [2,2′-bipyH][Sm(HFG)2 (2,2′-bipy) (H2O)2]•(2,2′-bipy) (α-Sm) and [2,2′-bipyH][Sm(HFG)2 (2,2′-bipy) (H2O)2] (β-Sm).
Collapse
|
49
|
Li ZJ, Guo X, Qiu J, Lu H, Wang JQ, Lin J. Recent advances in the applications of thorium-based metal-organic frameworks and molecular clusters. Dalton Trans 2022; 51:7376-7389. [PMID: 35438104 DOI: 10.1039/d2dt00265e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This perspective highlights the recent advances in the structural and practical aspects of thorium-based metal-organic frameworks (Th-MOFs) and molecular clusters. Thorium, as an underexplored actinide, features surprisingly rich coordination geometries and accessibility of the 5f orbital. These features lead to a myriad of topologies and electronic structures, many of which are undocumented for other tetravalent metal-containing MOFs or clusters. Moreover, Th-MOFs inherit the modularity, structural tunability, porosity, and versatile functionality of the state-of-the-art MOFs. Recognizing the radioactive nature of these thorium-bearing materials that may limit their practical uses, Th-MOFs and Th-clusters still have great potential for various applications, including radionuclide sequestration, hydrocarbon storage/separation, radiation detection, photoswitch, CO2 conversion, photocatalysis, and electrocatalysis. The objective of this updated perspective is to propose pathways for the renaissance of interest in thorium-based materials.
Collapse
Affiliation(s)
- Zi-Jian Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, WA 99164-4630, USA
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
50
|
Liu H, Fu T, Mao Y. Metal-Organic Framework-Based Materials for Adsorption and Detection of Uranium(VI) from Aqueous Solution. ACS OMEGA 2022; 7:14430-14456. [PMID: 35557654 PMCID: PMC9089359 DOI: 10.1021/acsomega.2c00597] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/31/2022] [Indexed: 05/25/2023]
Abstract
The steady supply of uranium resources and the reduction or elimination of the ecological and human health hazards of wastewater containing uranium make the recovery and detection of uranium in water greatly important. Thus, the development of effective adsorbents and sensors has received growing attention. Metal-organic frameworks (MOFs) possessing fascinating characteristics such as high surface area, high porosity, adjustable pore size, and luminescence have been widely used for either uranium adsorption or sensing. Now pertinent research has transited slowly into simultaneous uranium adsorption and detection. In this review, the progress on the research of MOF-based materials used for both adsorption and detection of uranium in water is first summarized. The adsorption mechanisms between uranium species in aqueous solution and MOF-based materials are elaborated by macroscopic batch experiments combined with microscopic spectral technology. Moreover, the application of MOF-based materials as uranium sensors is focused on their typical structures, sensing mechanisms, and the representative examples. Furthermore, the bifunctional MOF-based materials used for simultaneous detection and adsorption of U(VI) from aqueous solution are introduced. Finally, we also discuss the challenges and perspectives of MOF-based materials for uranium adsorption and detection to provide a useful inspiration and significant reference for further developing better adsorbents and sensors for uranium containment and detection.
Collapse
Affiliation(s)
- Hongjuan Liu
- School
of Nuclear Science and Technology, University
of South China, Hengyang 421001, China
- Department
of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Tianyu Fu
- School
of Nuclear Science and Technology, University
of South China, Hengyang 421001, China
| | - Yuanbing Mao
- Department
of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|