1
|
Yao D, Yuan N, Miao Z, Li D, Yang J. Silver nanocluster-based fluorescent probes for detection of trace water in organic solvents with potential application in reaction monitoring. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3554-3560. [PMID: 40242916 DOI: 10.1039/d5ay00246j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Confined silver nanoclusters within the pores of zeolites can bring about fascinating luminescent composites with high stability. The open structure of zeolites endues the materials with excellent fluorescence sensing performance, making them suitable for application in sensor fields. In LTA zeolites, Ag42+ clusters can form [Ag4(H2O)m]2+ in the hydrated state exhibiting green emission or form [Ag6(O)n]2+ with red emission in the dehydration state, leading to reversible emission. Herein, we prepared a luminescent detector based on Ag-zeolites for trace amounts of water in organic solvents through a simple, cost-effective and environmentally friendly method. With the incorporation of water, the materials display a remarkable reversible optical switch from red to green owing to the reversible Ag42+ cluster structure of [Ag4(H2O)m]2+ ↔ [Ag6(O)n]2+ in zeolites. The luminescent material features a low detection limit (0.2% v/v) for water and can be used for detecting trace amounts of water in organic solvents.
Collapse
Affiliation(s)
- Decui Yao
- College of Chemical Engineering and Materials, Handan University, Hebei Key Laboratory of Heterocyclic Compounds, Hebei Center for New Inorganic Optoelectronic Nanomaterial Research, Handan, Hebei 056005, China.
| | - Ningning Yuan
- College of Chemical Engineering and Materials, Handan University, Hebei Key Laboratory of Heterocyclic Compounds, Hebei Center for New Inorganic Optoelectronic Nanomaterial Research, Handan, Hebei 056005, China.
| | - Zhenzhen Miao
- College of Chemical Engineering and Materials, Handan University, Hebei Key Laboratory of Heterocyclic Compounds, Hebei Center for New Inorganic Optoelectronic Nanomaterial Research, Handan, Hebei 056005, China.
| | - Dong Li
- College of Chemical Engineering and Materials, Handan University, Hebei Key Laboratory of Heterocyclic Compounds, Hebei Center for New Inorganic Optoelectronic Nanomaterial Research, Handan, Hebei 056005, China.
| | - Jing Yang
- School of Resources & Chemical Engineering, Sanming University, Sanming, 365004, Fujian, PR China
| |
Collapse
|
2
|
Talianov PM, Mikushina DD, Rzhevskiy S, Arabuli KV, Zelenkov LE, Khubezhov S, Logunov LS, Gets DS, Peltek OO, Zyuzin MV, Makarov SV. Template-Assisted Synthesis of CsPbBr 3 Nanocrystals with a Humidity-Induced Fluorescent Response: Mechanism and Sensing Applications. J Phys Chem Lett 2025; 16:4205-4213. [PMID: 40255090 DOI: 10.1021/acs.jpclett.5c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Metal halide perovskites present a vast potential for the development of cutting-edge optoelectronic devices. However, their vulnerability to environmental factors, especially humidity, leads to widely acknowledged stability challenges. On the other hand, such a high sensitivity to water in the atmosphere is an opportunity for humidity sensing applications. In this study, we synthesize lead halide perovskite CsPbBr3 nanocrystals within CaCO3 templates with a porous structure (CsPbBr3@CaCO3) and investigate the mechanisms underlying the fluorescence response to changes in relative humidity. The reversible transformation of CsPbBr3 to CsPb2Br5 leads to the removal of surface defects, which results in an increase in photoluminescence intensity, thereby enabling the determination of ambient relative humidity levels. Moreover, we investigated a mechanism of CsPbBr3 degradation driven by CO2 in humid environments underlying the perovskite transformations. As a proof of concept, we developed a fluorescence-based humidity sensor based on CsPbBr3@CaCO3 with rapid response and recovery times, maintaining performance across multiple cycles.
Collapse
Affiliation(s)
- Pavel M Talianov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| | - Daria D Mikushina
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Sergey Rzhevskiy
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Konstantin V Arabuli
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Lev E Zelenkov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| | - Soslan Khubezhov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| | - Lev S Logunov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Dmitry S Gets
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Oleksii O Peltek
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Sergey V Makarov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| |
Collapse
|
3
|
Li Z, Tian L, Wu W, Feng L, Khaniyev B, Mukhametkarimov Y, Ibraimov M, Zhou F, Liu W, Liu J. Colorimetric Fabry-Pérot Sensor with Hetero-Structured Dielectric for Humidity Monitoring. SMALL METHODS 2025; 9:e2401485. [PMID: 39478648 DOI: 10.1002/smtd.202401485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/13/2024] [Indexed: 04/25/2025]
Abstract
A full-color colorimetric humidity sensor with high brightness is proposed by using a hetero-structured dielectric film in a metal-insulator-metal (MIM) resonator. A humidity-responsive polymer is designed to graft on top of a metal-organic frameworks (MOFs) thin film (MOFs-Polymer) as insulator layer in the resonator. Programmable tuning of reflected color is achieved by controlling the polymer thicknesses, and finite difference time domain simulation of light-matter interactions at subwavelength scales proves the dependence of the reflected wavelength on dielectric layer thickness of the resonator. Vivid full-color changing is realized during tracking humidity process due to swelling of the stimuli-responsive polymer. Ultrafast response (≈0.75 s) is achieved for tracking trace H2O from H2O/methanol mixture, which is ≈104 faster than that of the pure polymer-based MIM resonator. Meanwhile, the study observes significant spectral redshift because the porous MOFs film facilitates the preconcentration of external stimulus and improves the detection sensitivity of the resonator. Further, double-channel anti-counterfeiting multiplexing imaging is devised on the MIM resonator by photomask technology. Patterned encoding for security label is achieved on the MIM resonator by engineering humidity-tunable pixels of Au/MOFs-Polymer/Au and humidity-invalid pixels of Au/MOFs/Au.
Collapse
Affiliation(s)
- Zhihuan Li
- State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lejie Tian
- State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Wu
- State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Li Feng
- State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bakyt Khaniyev
- Department of Physics and Technology, Al-Farabi Kazakh National University, Al-Farabi av. 71, Almaty, 050040, Kazakhstan
| | - Yerzhan Mukhametkarimov
- Department of Physics and Technology, Al-Farabi Kazakh National University, Al-Farabi av. 71, Almaty, 050040, Kazakhstan
| | - Margulan Ibraimov
- Department of Physics and Technology, Al-Farabi Kazakh National University, Al-Farabi av. 71, Almaty, 050040, Kazakhstan
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
4
|
Zheng F, Li C, Huang Y, Lu Z, Hou X, Luo Y. Recent advances in optical heavy water sensors. Chem Commun (Camb) 2025; 61:3283-3300. [PMID: 39868706 DOI: 10.1039/d4cc06277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
D2O and H2O, as two important solvents with very similar properties, play a pivotal role in nuclear industrial production, life and scientific research. Unfortunately, D2O and H2O are highly susceptible to contamination by each other, so effective qualitative and quantitative analyses of both are necessary. This review comprehensively discusses the progress in optical sensing for the detection of a trace amount of H2O in heavy water or vice versa, mainly including five types of analytical systems: inorganic nanocrystals, carbon-based nanomaterials, lanthanide complexes, organic polymers, and organic small molecules. The whole article is divided into several sub-sections based on multiple mechanisms underlying the design of heavy water optical sensors, i.e., the difference in binding energy, the difference in quenching efficacy of oscillator types and the difference in acid-base of H2O and D2O. The working mechanism, advantages and disadvantages, analytical performance and applications of the reported sensors in recent years were analyzed in detail, and the future development is envisioned for the optical sensors towards distinguishing D2O and H2O.
Collapse
Affiliation(s)
- Fei Zheng
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Chenghui Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yan Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yanju Luo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
5
|
Timofeeva M, Kenzhebayeva Y, Burzak N, Bazhenova A, Lunev A, Novikov AS, Bondarenko AB, Shipilovskikh SA, Dyachuk VA, Milichko VA. A light-driven ultrafast sensor based on biocompatible solvatochromic metal-organic frameworks. MATERIALS HORIZONS 2025; 12:1255-1261. [PMID: 39585310 DOI: 10.1039/d4mh01264j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The design of fast, endurant, and biocompatible porous frameworks with solvatochromism, aimed to addressing the multiple visual sensing of chemicals, still remains a challenge. Here, we report on a solvatochromic metal-organic framework (MOF) based on cobalt and trimesic acid. We examined its solvatochromism through the solvent exchange and revealed high selectivity to water/dimethylformamide combination. The color change over 50 cycles during the solvent exchange occurs for 0.1 s, being 2 orders of magnitude faster than for existing MOFs. Despite the cobalt content, toxicity assays in vivo and in vitro revealed high biocompatibility of the MOF. The latter allowed implementing the fastest, highly-endurant and biocompatible MOF-based visual sensor of humidity in a desiccator for storage of water-sensitive goods and chemicals. Finally, for such a sensor, we demonstrated its multiple uses through remote light-driven recovery that contributes to the sustainability of this functional MOF.
Collapse
Affiliation(s)
- Maria Timofeeva
- School of Physics and Engineering, ITMO University, Saint Petersburg, 191002, Russia.
| | - Yuliya Kenzhebayeva
- School of Physics and Engineering, ITMO University, Saint Petersburg, 191002, Russia.
| | - Nikita Burzak
- Almazov Federal Medical Research Centre, Saint Petersburg, 197341, Russia
| | - Agniia Bazhenova
- The Saint Petersburg Mining University, Saint Petersburg, 199106, Russia
| | - Artem Lunev
- School of Physics and Engineering, ITMO University, Saint Petersburg, 191002, Russia.
| | - Alexander S Novikov
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Andrey B Bondarenko
- Almazov Federal Medical Research Centre, Saint Petersburg, 197341, Russia
- Department of Medical Biology, Saint Petersburg State Pediatric Medical University, Saint Petersburg, 194100, Russia
| | | | - Vyacheslav A Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia.
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, Saint Petersburg, 191002, Russia.
- Université de Lorraine, Institut Jean Lamour, Nancy, 54000, France
| |
Collapse
|
6
|
Sinchow M, Chaicharoen R, Chuasaard T, Yotnoi B, Saenjum C, Ngamjarurojana A, Rujiwatra A. Water-Induced Turn-on of Lanthanide Photoluminescence Emission and Application in Colorimetric Sensing of Trace Water. ACS OMEGA 2024; 9:49441-49451. [PMID: 39713629 PMCID: PMC11656258 DOI: 10.1021/acsomega.4c06958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/12/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
To examine the water-induced photoluminescence turn-on and its potential application in trace water sensing, a new series of [LnIII(dmba)3(H2O)2]·2H2O, where LnIII = LaIII (I), PrIII (II), NdIII (III), SmIII (IV), EuIII (V), GdIII (VI), TbIII (VII), DyIII (VIII), HoIII (IX), and ErIII (X), were synthesized using dimethoxybenzoic acid (Hdmba). Their single-crystal structures and thermal and chemical robustness were investigated, and the effects of lanthanide contraction and noncovalent interactions were discussed. The photoluminescence and colorimetric properties of I-X were investigated. Their dependence on dehydration and rehydration was disclosed, from which the significant role of noncovalent interactions was proposed. Based on the dehydration-rehydration-dependent responses in the forms of photoluminescence emission and color, the turn-off (dehydration) and turn-on (rehydration) of the red emission of EuIII (V) were demonstrated. Using a mobile phone camera and freeware application, its use in the colorimetric sensing of trace water in polar organic solvents was successfully achieved. With respect to ethanol, acetonitrile, and acetone, linear correlations were established from 0 to 3-5% by volume of water with an R 2 of over 0.98. The detection and quantification limits were less than 0.5 and 1.5%, respectively. The percentage recoveries were 92 and 110%. The underlying mechanism was postulated.
Collapse
Affiliation(s)
- Malee Sinchow
- Office
of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, 239 Houy
Kaew Road, Chiang Mai 50200, Thailand
| | - Rania Chaicharoen
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, 239 Houy
Kaew Road, Chiang Mai 50200, Thailand
| | - Thammanoon Chuasaard
- Office
of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, 239 Houy
Kaew Road, Chiang Mai 50200, Thailand
| | - Bunlawee Yotnoi
- Department
of Chemistry, School of Science, University
of Phayao, Phayao 56000, Thailand
| | - Chalermpong Saenjum
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Athipong Ngamjarurojana
- Department
of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Apinpus Rujiwatra
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, 239 Houy
Kaew Road, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Jiang Y, Du Z, Qiu H, Lin X, Yang Y, Zeng C. Regulation of the Metal Center in Lanthanide Nanoparticles to Achieve Multifunctional Sensing. Anal Chem 2024; 96:12692-12700. [PMID: 39058516 DOI: 10.1021/acs.analchem.4c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Development of a multifunctional sensor is highly desirable. In this work, traces of a carcinoid cancer biomarker of 5-hydroxyindole-3-acetic acid (5-HIAA) in real human urine can be detected by lanthanide nanoparticle Eu-CFC (CFC = 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid) and the sensing devices of the test paper and agarose gel, achieving an ultralow LOD of 0.8 × 10-3 ppm within a sensing time of 2.0 min. Interestingly, by metal center regulation of Tb and Eu codoping, nanoparticle TbEu2-CFC shows high-sensitivity and low-LOD (0.019% v/v) sensing of water in ethanol. The sensing mechanisms are revealed by both experiments and quantum chemical studies.
Collapse
Affiliation(s)
- Yefei Jiang
- Department of Chemistry and Materials and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China
| | - Ziyi Du
- Department of Chemistry and Materials and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China
| | - Hongdeng Qiu
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xiaoming Lin
- Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, No. 378 Outer Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yangyi Yang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chenghui Zeng
- Department of Chemistry and Materials and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China
| |
Collapse
|
8
|
Dash PP, Ghosh AK, Mohanty P, Behura R, Behera S, Jali BR, Sahoo SK. Advances on fluorescence chemosensors for selective detection of water. Talanta 2024; 275:126089. [PMID: 38608343 DOI: 10.1016/j.talanta.2024.126089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Water, although an important part of everyday life, is acts as one of the most significant contaminants in various applications such as biomedical monitoring, chemical production, petroleum-based fuel and food processing. In fact, the presence of water in other solvents is a huge concern. For the quantification of trace water content, different methods such as Karl-Fischer, electrochemical, nuclear magnetic resonance, chromatography, and thermogravimetric analysis have been used. Although every technique has its own benefit, each one suffers from several drawbacks that include high detection costs, lengthy procedures and specialized operations. Nowadays, the development of fluorescence-based chemical probes has become an exciting area of research for the quick and accurate estimation of water content in organic solvents. A variety of chemical processes such as hydrolysis reaction, metal ions promoted oxidation reaction, suppression of the -C═N isomerization, protonation and deprotonation reactions, and molecular aggregation have been well researched in the last few years for the fluorescent detection of trace water. These chemical processes eventually lead to different photophysical events such as aggregation-induced emission (AIE), aggregation-induced emission enhancement (AIEE), aggregation-caused quenching (ACQ), fluorescent resonance energy transfer (FRET), charge transfer, photo-induced electron transfer (PET), excited state intramolecular proton transfer (ESIPT) that are responsible for the detection. This review presents a summary of the fluorescence-based chemosensors reported in recent years. The design of water sensors, sensing mechanisms and their potential applications are reviewed and discussed.
Collapse
Affiliation(s)
- Pragyan Parimita Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Arup Kumar Ghosh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Rubi Behura
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Sunita Behera
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
9
|
Huang R, Liu T, Peng H, Liu J, Liu X, Ding L, Fang Y. Molecular design and architectonics towards film-based fluorescent sensing. Chem Soc Rev 2024; 53:6960-6991. [PMID: 38836431 DOI: 10.1039/d4cs00347k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.
Collapse
Affiliation(s)
- Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| |
Collapse
|
10
|
Tai S, Zhang C, Shi S, Yang K, Han S, Wu J, Zhang S, Zhang K. Excitation wavelength-dependent lanthanide-disalicylaldehyde coordination hybrid capable of distinguishing D 2O from H 2O. Talanta 2024; 271:125732. [PMID: 38309109 DOI: 10.1016/j.talanta.2024.125732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The increasing demands in fields of anti-counterfeiting, fluorescence analysis, clinical therapy and LED illumination are urgently eager for more excellent optically switchable luminescent materials with the stable and multimodal fluorescence in single-component matrix. Herein, the lanthanide-disalicylaldehyde coordination hybrid H2Qj4/TbxEuy is proposed as an efficient luminescent matrix to connect terbium sensibilization with ESIPT (excited-state intramolecular proton transfer) effects, and three multi-emission hybrids are finally designed and synthesized by regulating Tb3+ and Eu3+ ratios. Surprisingly, the H2Qj4/Tb0.91Eu0.09 shows the excitation wavelength-dependent luminescence in solution which originates from two energy transfer ways of terbium sensibilization effect. It exhibits green and red lights under the 369 and 394 nm UV lamp, respectively. Three hybrids are further used as lab-on-a-molecule fluorescent probes to perform multianalyte detection for various solvents by selected fluorescent sensing channels. By means of PCA (principal component analysis) and HCA (hierarchical cluster analysis), all of them can successfully detect and discriminate17 common solvents, especially the H2O and D2O. Moreover, the H2Qj4/Tb0.91Eu0.09 also shows the wide linear responses of H2O content in D2O, discrimination of two-component solvent mixtures, hygroscopicity evaluation of D2O and information encryption which will advance the progress of multimodal luminescent materials and multianalyte chemosensors.
Collapse
Affiliation(s)
- Shengdi Tai
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Chengjian Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shuaibo Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Kang Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shaolong Han
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jinyu Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shishen Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Kun Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
11
|
Ma X, Jin X, Bai H, Ma L, Li X, Fang X, Chen W, She M. Visual detection of water content in liquor with near-infrared fluorescence sensor assisted by smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123791. [PMID: 38134656 DOI: 10.1016/j.saa.2023.123791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Water content was an essential indicator in organic solvents, and it was necessary to develop a facile, cheap and readily available tool for the real-time, specifical and sensitive detection of water content. In this work, two novel D-π-A type near-infrared fluorescence sensors (DCM-1 and DCM-2) were designed and synthesized for the detection of trace water in organic solvents. DCM-1 and DCM-2 with solvent-dependent effects and large Stokes shift (>120 nm) showed good linear "intensity-to-content" relationships in four commonly-used organic solvents, and accomplished the ultra-fast and high-accuracy detection of the trace water in organic solvents. More importantly, a portable, fast, and accurate smartphone-assisted visual assay was designed for visual quantitative detection of the water content in organic solvents with a detection limit as low as 1.028 % v/v (e.g. in ethanol) and a wide detection range (0-60 % v/v). The smartphone-based visual assay was further applied to estimate the water content in disinfection alcohol and commercial liquor, which furnished a new strategy and broad prospects to achieve the accurate onsite detection of water content.
Collapse
Affiliation(s)
- Xuehao Ma
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Xilang Jin
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China.
| | - Haiyan Bai
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Liyuan Ma
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Xiao Li
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Xingliang Fang
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Weixing Chen
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Mengyao She
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, The College of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
12
|
Maulana MY, Raissa R, Nurrudin A, Andreani AS, Angelina M, Septiani NLW, Yuliarto B, Jenie SNA. An ultra-sensitive SARS-CoV-2 antigen optical biosensor based on angiotensin converting enzyme 2 (ACE-2) functionalized magnetic-fluorescent silica nanoparticles. NANOTECHNOLOGY 2024; 35:205702. [PMID: 38330490 DOI: 10.1088/1361-6528/ad27aa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
This work reports on the design and synthesis of an angiotensin-converting enzyme 2 (ACE-2) functionalized magnetic fluorescent silica nanoparticles (Fe-FSNP) as a biosensing platform to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen. Iron oxide (Fe3O4) nanoparticles were synthesized via ultrasonic-assisted coprecipitation and then coated with fluorescent silica nanoparticles (FSNP) through thesol-gelmethod forming the Fe-FSNP samples. Silica obtained from local geothermal powerplant was used in this work and Rhodamine B was chosen as the incorporated fluorescent dye, hence this reports for the first time ACE-2 was immobilized on the natural silica surface. The Fe-FSNP nanoparticle consists of a 18-25 nm magnetic core and a silica shell with a thickness of 30 nm as confirmed from the transmission electron microscopy image. Successful surface functionalization of the Fe-FSNP with ACE-2 as bioreceptor was conducted through hydrosylilation reaction and confirmed through the Fourier transform infrared spectroscopy. The detection of SARS-Cov-2 antigen by Fe-FSNP/ACE2 was measured through the change in its maximum fluorescence intensity at 588 nm where fluorescence- quenching had occurred. The biosensing platform showed a rapid response at 30 min with a linear range of 10-6to 10-2μg ml-1. The magnetic-fluorescent properties of the nanoparticle enables an ultra-sensitive detection of SARS-Cov-2 antigen with the limit of detection as low as 2 fg ml-1.
Collapse
Affiliation(s)
- Muhammad Yovinanda Maulana
- Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
| | - Raissa Raissa
- Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Department of Chemistry, Universitas Pertamina, Jakarta 12200, Indonesia
| | - Ahmad Nurrudin
- Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
| | - Agustina Sus Andreani
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
- Research Centre for Chemistry, National Research and Innovation Agency (BRIN), Building 452, Kawasan Puspitek, South Tangerang 15314, Indonesia
| | - Marissa Angelina
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center (CSC), Bogor, West Java 16911, Indonesia
| | - Ni Luh Wulan Septiani
- Research Centre for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspitek, South Tangerang 15314, Indonesia
| | - Brian Yuliarto
- Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
| | - S N Aisyiyah Jenie
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
- Research Centre for Chemistry, National Research and Innovation Agency (BRIN), Building 452, Kawasan Puspitek, South Tangerang 15314, Indonesia
| |
Collapse
|
13
|
Yang K, Shi S, Wu J, Han S, Tai S, Zhang S, Zhang K. A dynamic Eu(III)-macrocycle served as the turn-on fluorescent probe for distinguishing H 2O from D 2O. Anal Chim Acta 2024; 1286:342048. [PMID: 38049238 DOI: 10.1016/j.aca.2023.342048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
H2O and D2O are an important pair of analogues, and their high-efficient detections are closely related to fields of chemical industry, food processing, semiconductor, environmental monitoring, etc. Because of their extremely similar physical and chemical properties, H2O and D2O can be mutually soluble in any ratios, and it is generally thought that the discrimination of H2O and D2O is an enormous challenge. Herein, upon the fact that vibrational frequency of O-H is greater than O-D, we design a dynamic Eu(III)-macrocycle Eu-2a with two emitters which exhibits the imine bond breakage of macrocycle emitter H2L2a in H2O or D2O, resulting in the turn-on fluorescence of Eu(III) emitter. For their differential fluorescence sensing signals of Eu-2a on three emission bands (433, 500 and 615 nm), the statistical analysis method is employed to produce fully separated fingerprints and thus high-throughput discrimination of 13 common solvents, especially the H2O and D2O. Fluorescent titration experiments by instrumental or smartphone-based analysis method also prove the successful determination of proportional H2O/D2O mixtures together with the good sensitivity and wide linear response range. Moreover, this H2O-triggered fluorescent complex Eu-2a used as the fluorescence ink also shows its potential in information encryption application. This article must be a valuable reference for the areas of lanthanide-based luminescent material, multianalyte detection and information encryption.
Collapse
Affiliation(s)
- Kang Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shuaibo Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jinyu Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shaolong Han
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shengdi Tai
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shishen Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Kun Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
14
|
Che S, Pan S, Shao X, He W, Shou Q, Fu H, She Y. Portable and reversible smart labels for non-destructive detection of seafood freshness via amine-response fluorescent ionic liquids. Food Chem 2024; 430:136946. [PMID: 37544151 DOI: 10.1016/j.foodchem.2023.136946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Herein, a functionalized ionic liquid (IL) 7-HDCP (7-hydroxycoumarin-quaternary phosphorus) was developed as NH3 trapping agents and fluorescent indicators to achieve in-time and on-site detection of seafood freshness. Interestingly, the IL displayed remarkable blue fluorescence "turn-on" enhancement to gaseous amine due to excellent amine solubility. By FTIR and 1H NMR spectrogram, this fluorescence "turn-on" phenomenon originated from the weak hydrogen bonding between the ester group of the coumarin functional group and the ammonia molecule. Moreover, the IL exhibited a rapid response (<11 s), prominent sensitivity (0.12 ppm), excellent selectivity (10 interfering substances) and outstanding reversibility (>22 cycles). Benefiting from ion characters, 7-HDCP obtained advantages of easy-to-fabricate and easy-to-use, which was fabricated by one-step simple immersion without aggregation-caused quenching phenomenon. This portable and sensitive smart label made of ion probes facilitates the timely and on-site NH3 detection in the early deterioration stages of aquatic products, enabling "early detection, early warning, and early treatment".
Collapse
Affiliation(s)
- Siying Che
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shujia Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xinxiang Shao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wei He
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qijia Shou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan 430074, PR China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
15
|
Wu Y, Lian M, Huang G, Zhang Y, Yi N, Tian L, Gan F, Ma C. A tert-Butyldiphenylsilyl-Containing Polyimide-Based Chemosensor for Sequential Detection of Fluoride Ions and Trace Water in Organic Solvents. Molecules 2023; 28:7987. [PMID: 38138477 PMCID: PMC10745802 DOI: 10.3390/molecules28247987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
A tert-butyldiphenylsilyl-containing polyimide (PI-OSi) has been established as a colorimetric and ratiometric chemosensor for rapid detecting fluoride ions (F-). The UV-vis absorbance ratio value (A322/A288) of PI-OSi in a DMF solution displays a wide linear range change to F- concentrations with a detection limit (DL) value of 2.13 μM. Additionally, adding incremental amounts of F- to a DMF solution of PI-OSi shows an immediate color change to yellow and finally to green from colorless. More interestingly, the resulting PI-OSi plus F- system (PI-OSi·F) could detect trace water in DMF. The A292/A322 value of PI-OSi·F almost linearly increases with low water content, which suggests convenient quantitative sensing of trace water content in DMF. The DL value of PI-OSi·F for sensing water in DMF is determined to be 0.00149% (v/v). The solution color of PI-OSi·F returns to colorless when the water content increases, indicating that PI-OSi·F can conveniently estimate water content in DMF by naked-eye detection. The detection mechanisms confirmed by an 1H NMR study and a DFT calculation involve a F--induced desilylation reaction of PI-OSi to form phenolate anion followed by protonation with trace water. Finally, PI-OSi film was fabricated for the colorimetric detection of F- and water in CH3CN.
Collapse
Affiliation(s)
- Yancheng Wu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China (N.Y.); (F.G.)
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Dash PP, Mohanty P, Behera S, Behura R, Palai BB, Nath B, Sahoo SK, Jali BR. Pyrene-based fluorescent chemosensor for rapid detection of water and its applications. Methods 2023; 219:127-138. [PMID: 37832896 DOI: 10.1016/j.ymeth.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
This manuscript introduces a pyrene-based Schiff base L by reacting pyrenecarboxaldehyde with 2-aminothiazole in equimolar ratio. The ligand L was characterized by various spectral data and single crystal. The water sensing ability of L was examined in different organic solvents. The weakly emissive L in DMSO showed a fluorescence enhancement upon the addition of water. The water-induced fluorescence enhancement of L was occurred due to the combined effect of aggregation-induced emission (AIE) phenomenon and suppression of photo-induced electron transfer (PET) process. Using L, the water in DMSO can be detected down to 0.50 wt% with a quantification limit of 1.52 wt%. The analytical novelty of the developed sensor L was validated by detecting moisture in a variety of raw food products.
Collapse
Affiliation(s)
- Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - P Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - S Behera
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - R Behura
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - Bibhuti B Palai
- School of Chemical Science, NISER, Bhubaneswar, Odisha 752050, India
| | - Bhaskar Nath
- Department of Educational Sciences, Assam University Silchar, Cachar, Assam 788011, India
| | - Suban K Sahoo
- Department of Chemistry, SardarVallabhbhai National Institute of Technology, Surat, Gujarat 395007, India.
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India.
| |
Collapse
|
17
|
Fluorescent Probes as a Tool in Diagnostic and Drug Delivery Systems. Pharmaceuticals (Basel) 2023; 16:ph16030381. [PMID: 36986481 PMCID: PMC10056067 DOI: 10.3390/ph16030381] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Over the last few years, the development of fluorescent probes has received considerable attention. Fluorescence signaling allows noninvasive and harmless real-time imaging with great spectral resolution in living objects, which is extremely useful for modern biomedical applications. This review presents the basic photophysical principles and strategies for the rational design of fluorescent probes as visualization agents in medical diagnosis and drug delivery systems. Common photophysical phenomena, such as Intramolecular Charge Transfer (ICT), Twisted Intramolecular Charge Transfer (TICT), Photoinduced Electron Transfer (PET), Excited-State Intramolecular Proton Transfer (ESIPT), Fluorescent Resonance Energy Transfer (FRET), and Aggregation-Induced Emission (AIE), are described as platforms for fluorescence sensing and imaging in vivo and in vitro. The presented examples are focused on the visualization of pH, biologically important cations and anions, reactive oxygen species (ROS), viscosity, biomolecules, and enzymes that find application for diagnostic purposes. The general strategies regarding fluorescence probes as molecular logic devices and fluorescence–drug conjugates for theranostic and drug delivery systems are discussed. This work could be of help for researchers working in the field of fluorescence sensing compounds, molecular logic gates, and drug delivery.
Collapse
|
18
|
Ku CA, Chung CK. Advances in Humidity Nanosensors and Their Application: Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23042328. [PMID: 36850926 PMCID: PMC9960561 DOI: 10.3390/s23042328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 05/27/2023]
Abstract
As the technology revolution and industrialization have flourished in the last few decades, the development of humidity nanosensors has become more important for the detection and control of humidity in the industry production line, food preservation, chemistry, agriculture and environmental monitoring. The new nanostructured materials and fabrication in nanosensors are linked to better sensor performance, especially for superior humidity sensing, following the intensive research into the design and synthesis of nanomaterials in the last few years. Various nanomaterials, such as ceramics, polymers, semiconductor and sulfide, carbon-based, triboelectrical nanogenerator (TENG), and MXene, have been studied for their potential ability to sense humidity with structures of nanowires, nanotubes, nanopores, and monolayers. These nanosensors have been synthesized via a wide range of processes, including solution synthesis, anodization, physical vapor deposition (PVD), or chemical vapor deposition (CVD). The sensing mechanism, process improvement and nanostructure modulation of different types of materials are mostly inexhaustible, but they are all inseparable from the goals of the effective response, high sensitivity and low response-recovery time of humidity sensors. In this review, we focus on the sensing mechanism of direct and indirect sensing, various fabrication methods, nanomaterial geometry and recent advances in humidity nanosensors. Various types of capacitive, resistive and optical humidity nanosensors are introduced, alongside illustration of the properties and nanostructures of various materials. The similarities and differences of the humidity-sensitive mechanisms of different types of materials are summarized. Applications such as IoT, and the environmental and human-body monitoring of nanosensors are the development trends for futures advancements.
Collapse
|
19
|
Huang J, Zhao Q, Zhang H, Liu HB, Wang J. Fluorescence ''turn-on'' probe for the selective detection of water in organic solvents based on functionalized mesoporous silica. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122099. [PMID: 36375288 DOI: 10.1016/j.saa.2022.122099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
A fluorescence ''turn-on'' probe, namely, TTA-SBA-15, for the selective detection of water (H2O) was designed by grafting terthiophene fluorophore onto ethylenediamine functionalized mesoporous SBA-15 silica. The maximum fluorescence emission peak of TTA-SBA-15 ranged from 462 nm (toluene) to 525 nm (methanol) in various organic solvents. No fluorescence was observed in H2O due to the donor-excited photoinduced electron transfer mechanism, in which terthiophene acted as the donor and the amino group acted as the acceptor. Upon adding trace amounts of H2O into the TTA-SBA-15 suspensions dispersed in various organic solvents, TTA-SBA-15 was successfully applied as a ''turn-on'' fluorescent probe for the quantitative determination of trace H2O in organic solvents with high sensitivity and low detection limit. To demonstrate the selective detection mechanism of TTA-SBA-15 for H2O, the fluorescent spectra of two control materials (TT-SBA-15 and PyA-SBA-15) were also investigated in H2O and various organic solvents. The experimental results indicated that the terthiophene fluorophore and amine functional group on TTA-SBA-15 contributed to the H2O selectivity, highlighting the structure-activity relationships in developing organic functionalized mesoporous silica for potential applications.
Collapse
Affiliation(s)
- Jing Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qian Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
20
|
Water-induced fluorescence turn-on imidazole derivative and its interaction with bovine serum albumin. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
21
|
Kumar Panda S, Kumar Singh A. Combined experimental and TD-DFT study of a highly sensitive AIE-based probe for the detection of water in organic solvents and its application in inkless writing. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Economically viable multi-responsive probes for fluorimetric detection of trace levels of Ga3+, Al3+ and PPi in near aqueous medium. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Triphenylamine-based conjugated fluorescent sensor for highly sensitive detection of water in organic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
A palmatine-based fluorescent sensor for sensitive fluorometric and smartphone-assisted on-site fluorescent colorimetric detection of water in organic solvents. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Xiao Y, Liu X, Li N, Pang Y, Zheng Z. Central condensed ring changes for manipulating the self-assembly and photophysical behaviors of cyanostilbene-based hexacatenars. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
26
|
Georgiev NI, Krasteva PV, Bakov VV, Bojinov VB. A Highly Water-Soluble and Solid State Emissive 1,8-Naphthalimide as a Fluorescent PET Probe for Determination of pHs, Acid/Base Vapors, and Water Content in Organic Solvents. Molecules 2022; 27:molecules27134229. [PMID: 35807479 PMCID: PMC9268048 DOI: 10.3390/molecules27134229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/25/2022] Open
Abstract
A new highly water-soluble 1,8-naphthalimide fluorophore designed on the “fluorophore-spacer-receptor1-receptor2” model has been synthesized. Due to the unusually high solubility in water, the novel compound proved to be a selective PET-based probe for the determination of pHs in aqueous solutions and rapid detection of water content in organic solvents. Based on the pH dependence of the probe and its high water solubility, the INH logic gate was achieved using NaOH and water as chemical inputs, where NaOH is the disabler and the water is an enabler. In addition, the probe showed effective fluorescence “off-on” reversibility on glass support after exposure to acid and base vapors, which defines it as a promising platform for rapid detection of acid/base vapors in the solid-state, thus extending the molecular sensing concept from solution to the solid support.
Collapse
Affiliation(s)
- Nikolai I. Georgiev
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +35-(92)-8163207 (N.I.G.); +35-(92)-8163206 (V.B.B.)
| | | | | | - Vladimir B. Bojinov
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +35-(92)-8163207 (N.I.G.); +35-(92)-8163206 (V.B.B.)
| |
Collapse
|
27
|
Yang X, Cai Z, Li D, Lei D, Li Y, Wang G, Zhang J, Dou X. D-π-A Dual-Mode Probe Design for the Detection of nM-Level Typical Oxidants. Anal Chem 2022; 94:9184-9192. [PMID: 35713422 DOI: 10.1021/acs.analchem.2c01894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although a set of functional molecules with the D-π-A structure has been explored as optical probes for the detection of target analytes, it remains a great challenge to elaborately design a single probe for distinguishing different analytes by their intrinsic oxidation or reduction capabilities and thus to generate distinct optical responses. Here, a unique TCF-based probe (DMA-CN) containing two unsaturated double bonds in the π-conjugation bridge and TCF with different reaction activities that could be cut off by KMnO4 and NaClO in varying degrees was developed, causing remarkably distinguishable responses for both fluorescence and colorimetric channels to discriminate KMnO4 and NaClO from each other. The fluorescence and colorimetric limits of detection (LODs) of the proposed DMA-CN toward KMnO4 were calculated as 60 and 91 nM, respectively, while those for NaClO were 13.3 and 214 nM, and all the optical signal change can be observed within 1 s with good specificity. Based on the proposed probe design strategy, a well-fabricated test strip was proven to be promising for the rapid, in-field detection and risk management. We expect that the present probe design methodology would provide a powerful strategy for efficient probe exploration, especially for discriminating the substances with similar oxidizing properties.
Collapse
Affiliation(s)
- Xinyi Yang
- Department of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhenzhen Cai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dezhong Li
- Department of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yushu Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Guangfa Wang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jun Zhang
- Department of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Zhang C, Li X, Li Z, Wang Y, Lu J, Zhu L, Zhang F. Two-Stage Three-Dimensional Luminescent Sensing Strategy for Precisely Detecting a Wide Range of Water Content in Tetrahydrofuran. Anal Chem 2022; 94:7004-7011. [PMID: 35500230 DOI: 10.1021/acs.analchem.1c05600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of efficient sensors for detecting water content in organic solvents is highly desirable for various cases in the chemical industry. Relevant sensors based on luminescent materials are promising due to their superior sensitivity and visualization. However, reported luminescent probes are either aggregation-caused quenching-type molecules, which present an emission quenching effect in high water content, or aggregation induced emission-type luminogens, which exhibit weak emission in organic solvents. This factor narrows the targeted water-content sensing range. Herein, we developed a series of indoline-based donor-acceptor-donor luminogens involving twist intramolecular charge transfer and an aggregation-induced emission effect, which exhibited a unique "on-off-on" emission behavior in tetrahydrofuran with the continuous increase of water content from 0% to 99%. Simultaneously, the emission wavelength underwent a process of first red-shift and then blue-shift. Three-dimensional working curves based upon the log value of wavelength and emission intensity ratio versus water content in tetrahydrofuran were established with two-stage characteristics, aiming to visually detect a wide range of water content in organic solvents. Such a sensing method offers extra sensitivity, convenience, and accuracy.
Collapse
Affiliation(s)
- Chenchen Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xuping Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.,Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.,Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Ziqi Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yan Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jianjun Lu
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Liangliang Zhu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
29
|
Kaur N, Gauri. Anthraquinone appended chemosensors for fluorescence monitoring of anions and/or metal ions. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Pramanik A, Karmakar J, Grynszpan F, Levine M. Highly Sensitive Water Detection Through Reversible Fluorescence Changes in a syn-Bimane Based Boronic Acid Derivative. Front Chem 2022; 9:782481. [PMID: 35111727 PMCID: PMC8802138 DOI: 10.3389/fchem.2021.782481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Reported herein is a fluorometric and colorimetric sensor for the presence of trace amounts of water in organic solvents, using syn-bimane based boronate ester 1. This sensor responds to the presence of water with a highly sensitive turn-off fluorescence response, with detection limits as low as 0.018% water (v/v). Moreover, analogously high performance was observed when compound 1 was adsorbed on filter paper, with the paper-based sensor responding both to the presence of liquid water and to humid atmospheres. Reusability of the paper-based sensor up to 11 cycles was demonstrated, albeit with progressive decreases in the performance, and 1H NMR and mass spectrometry analyses were used to explain the observed, hydrolysis-based sensor response.
Collapse
Affiliation(s)
| | | | - Flavio Grynszpan
- Department of Chemical Sciences, Ariel University, Ariel, Israel
| | - Mindy Levine
- Department of Chemical Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
31
|
Kumar P, Kumar V, Kaur N, Mobin SM, Kaur P, Singh K. A fluorene based probe: Synthesis and "turn-on" water sensitivity of the in-situ formed Cu 2+ complex: Application in bio-imaging. Anal Chim Acta 2022; 1189:339211. [PMID: 34815050 DOI: 10.1016/j.aca.2021.339211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
A new fluorene based probe (FTH) has been evaluated for its photo-physical properties in solution as well as in the aggregated state/viscous environment. Addition of a poor solvent (water) to the solution of the probe in a good (acetonitrile) solvent significantly enhanced the otherwise weak emission due to aggregation induced emission (AIE). The emission enhancement is also related to the increase in viscosity of the solution, leading to the restricted intramolecular rotation of the peripheral (phenyl) groups. Interestingly, the emission behaviour of the non-emissive in-situ formed Cu2+ complex is drastically modulated in the presence of water. The solution of the putative Cu2+ complex of the probe turns highly emissive (yellow colour) upon addition of a small fraction of water (up to 7.6 wt %), but the yellow emission diminishes upon increasing higher water fraction. We propose that the initially formed Cu2+ complex undergoes hydrolysis in the presence of higher water content releasing the free amine possessing the diaryl amino rotors thus rendering the solution non-emissive. Thus the current probe being reported herein discloses its potential to generate trace water sensitive turn-on Cu2+ complex. Additionally, the bio-imaging potential of FTH for live cancer cells and its sensitivity towards intracellular presence of Cu2+ ions has been demonstrated.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, UGC Centre of Advanced Study, Guru Nanak Dev University, Amritsar, 143005, India
| | - Virendra Kumar
- Department of Chemistry, UGC Centre of Advanced Study, Guru Nanak Dev University, Amritsar, 143005, India
| | - Navpreet Kaur
- Discipline of Bioscience and BioMedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shaikh M Mobin
- Discipline of Bioscience and BioMedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India; Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India; Discipline of Metallurgy Engineering and Material Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Paramjit Kaur
- Department of Chemistry, UGC Centre of Advanced Study, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Kamaljit Singh
- Department of Chemistry, UGC Centre of Advanced Study, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
32
|
Nishimoto E, Mise Y, Fumoto T, Miho S, Tsunoji N, Imato K, Ooyama Y. Tetraphenylethene–anthracene-based fluorescence emission sensor for detection of water with photo-induced electron transfer and aggregation-induced emission characteristics. NEW J CHEM 2022. [DOI: 10.1039/d2nj01599d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a fluorescent sensor for water over a wide range from low to high water content regions in organic solvents, we have designed and developed a PET (photo-induced electron transfer)/AIE...
Collapse
|
33
|
Miho S, Imato K, Ooyama Y. Fluorescent polymer films based on photo-induced electron transfer for visualizing water. RSC Adv 2022; 12:25687-25696. [PMID: 36199315 PMCID: PMC9462076 DOI: 10.1039/d2ra03894c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
As fluorescent materials for visualization, detection, and quantification of a trace amount of water, we have designed and developed a PET (photo-induced electron transfer)-type fluorescent monomer SM-2 composed of methyl methacrylate-substituted anthracene fluorophore-(aminomethyl)-4-cyanophenylboronic acid pinacol ester (AminoMeCNPhenylBPin) and achieved preparation of a copolymer poly(SM-2-co-MMA) composed of SM-2 and methyl methacrylate (MMA). Both SM-2 and poly(SM-2-co-MMA) exhibited enhancement of the fluorescence emission with the increase in water content in various solvents (less polar, polar, protic, and aprotic solvents) due to the formation of the PET inactive (fluorescent) species SM-2a and poly(SM-2-co-MMA)a, respectively, by the interaction with water molecules. The detection limit (DL) of poly(SM-2-co-MMA) for water in the low water content region below 1.0 wt% in acetonitrile was 0.066 wt%, indicating that poly(SM-2-co-MMA) can act as a PET-type fluorescent polymeric sensor for a trace amount of water in solvents, although it was inferior to that (0.009 wt%) of SM-2. It was found that spin-coated poly(SM-2-co-MMA) films as well as 15 wt% SM-2-doped polymethyl methacrylate (PMMA) films produced a satisfactory reversible fluorescence off–on switching between the PET active state under a drying process and the PET inactive state upon exposure to moisture, which is demonstrated by the fact that the both the films are similar in hydrophilicity to each other from the measurement of the water contact angles on the polymer film surface. Herein we propose that PET-type fluorescent polymer films based on a fluorescence enhancement system are one of the most promising and convenient functional dye materials for visualizing moisture and water droplets. Photo-induced electron transfer (PET)-type fluorescent polymer films based on a fluorescence enhancement system have been prepared as one of the most promising and convenient functional dye materials for visualizing moisture and water droplets.![]()
Collapse
Affiliation(s)
- Saori Miho
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Keiichi Imato
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|