1
|
Liu Z, Fang JJ, Wang ZY, Xie YP, Lu X. Modulation of Optical and Electrochemical Properties of Cu(I) Alkynyl Clusters by Carboxylic Acid Ligands. Chemistry 2025; 31:e202500230. [PMID: 40128117 DOI: 10.1002/chem.202500230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
Surface ligands play a pivotal role in the functional design of atomically precise Cu(I) nanoclusters. They act as protective agents, ensuring the stability of the Cu(I) clusters, while also influencing their structure and properties. This study delves into the synthesis, structure, and properties of innovative Cu(I) nanoclusters co-stabilized by carboxylic acid and alkynyl ligands. The findings reveal that these surface ligands wield a significant impact on the cluster's structure and can even modulate the luminescent characteristics of the Cu(I) alkynyl clusters. Moreover, density-functional theory (DFT) calculations shed light on how different carboxylic acid ligands affect the UV-visible absorptivity of paired Cu(I) clusters. In addition, ferrocene carboxylic acids were employed as protective ligands to impart electrochemical properties to the Cu(I) clusters. This research presents an effective methodology for synthesizing atomically precise Cu(I) clusters shielded by carboxylic acid ligands.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Jun-Jie Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Zhi-Yi Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| |
Collapse
|
2
|
Chandrashekar P, Varghese DA, Thomas T, Pal AK, Muraleedharan A, Salam A, Ghosh M, Mondal PK, Suresh SV, Nandi CK, Datta A, Mandal S. Two- and Three-Dimensional Silver Cluster Assemblies: Effect of Argentophilic Interactions in Photoluminescence. J Phys Chem Lett 2025; 16:4107-4113. [PMID: 40243552 DOI: 10.1021/acs.jpclett.5c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Silver nanocluster assemblies are an emerging class of fluorescent and stable solid materials by virtue of their structural tunability and stability compared to isolated clusters. The photophysical properties of the cluster nodes are influenced by an intra- or intercluster interaction. In this work, we show two-dimensional (2D) [Ag5(C2tBu)2(CF3COO)3(C4H4N2)](CHCl3) and three-dimensional (3D) [Ag4(C2tBu)(CF3COO)3(C4H4N2)] silver nanocluster assemblies obtained by tuning the molar ratios of the same protecting ligands and linker. The 2D assembly possesses a one-dimensional (1D) chain held together through the Ag···Ag interactions, whereas in the 3D assembly, Ag4 units are linked through trifluoroacetate ligands to form the 1D chain with Ag4-O-Ag4 and Ag4-O-C-O-Ag4 connectivity. This varying effect of argentophilic interaction influences photoluminescence properties. In the 2D assembly, the emission was found to be dominated by the cluster-centered state owning to enhanced argentophilic interactions, whereas in 3D, the emission is from the linker. The theoretical investigations also revealed that the lowest unoccupied molecular orbitals (LUMOs) of the 3D assembly are localized on the pyrazine linker. In contrast, the LUMOs of the 2D assembly are mostly localized on the metal atoms within the cluster. This work highlights not only the importance of synthesis but also emphasizes the understanding of the cluster structure-luminescence relationship.
Collapse
Affiliation(s)
- Priyanka Chandrashekar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Dayona Aleyamma Varghese
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Teena Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Arunima Muraleedharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Abdul Salam
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi 175005 India
| | - Meghna Ghosh
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Pradip Kumar Mondal
- Elettra-Sincrotrone Trieste, Strada Statale 14, km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Sona Velaparambil Suresh
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi 175005 India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
3
|
Zheng H, Li Y, Zhan WW, Zhou J, Wu G, Zhang C, Sun D, Yang Y. Integrating Circular Polarized Luminescence and Long Persistent Luminescence in Cu 8 Cage-Like Clusters via Ligand Engineering. Angew Chem Int Ed Engl 2025; 64:e202423787. [PMID: 39915244 DOI: 10.1002/anie.202423787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Indexed: 02/20/2025]
Abstract
Copper clusters with diverse luminescent properties are of particular interest. In this study, a series of Cu8 clusters with cage-like structures was synthesized and characterized. By employing a stepwise ligand engineering strategy that progressively introduced circularly polarized luminescence (CPL) and long persistent luminescence (LPL) properties, we successfully synthesized R/S-Cu8-Cl, the first copper cluster to demonstrate both CPL and LPL. The CPL originates from the chiral metal core induced by the chiral alkynyl ligand, whereas the LPL is attributed to the inherent properties of chlorine-modified triphenylphosphine, which is retained and modified after ligation. The polymethyl methacrylate (PMMA) film containing Cu8 clusters displays lifetimes of up to 75.18 ms at room temperature and an afterglow exceeding 1.5 s, marking the longest luminescent lifetime recorded for molecular copper-cluster-based materials known to date. Additionally, R/S-Cu8-Cl shows excitation-dependent luminescence and variations in luminescence when UV light is switched on and off, highlighting its potential for advanced anti-counterfeiting applications. This work not only presents innovative cage-like copper cluster structures but also offers new approaches for designing multifunctional clusters.
Collapse
Affiliation(s)
- Hao Zheng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Yan Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Wen-Wen Zhan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Jie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Guanyi Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Chengkai Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| |
Collapse
|
4
|
Shingyouchi Y, Ogami M, Biswas S, Tanaka T, Kamiyama M, Ikeda K, Hossain S, Yoshigoe Y, Osborn DJ, Metha GF, Kawawaki T, Negishi Y. Ligand-Dependent Intracluster Interactions in Electrochemical CO 2 Reduction Using Cu 14 Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409910. [PMID: 39632376 PMCID: PMC12019909 DOI: 10.1002/smll.202409910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) has been extensively studied because it can be leveraged to directly convert CO2 into valuable hydrocarbons. Among the various catalysts, copper nanoclusters (Cu NCs) exhibit high selectivity and efficiency for producing CO2RR products owing to their unique geometric/electronic structures. However, the influence of protective ligands on the CO2RR performance of Cu NCs remains unclear. In this study, it is shown that different thiolate ligands, despite having nearly identical geometries, can substantially affect the electrochemical stability of Cu14 NCs in the CO2RR. Notably, Cu14 NCs protected by 2-phenylethanethiolate exhibit greater stability and achieve a relatively higher selectivity (≈40%) for formic acid production compared with the cyclohexanethiolate-protected counterpart. These insights are crucial for designing Cu NCs that are both stable and highly selective, enhancing their efficacy for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Yamato Shingyouchi
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
| | - Masaki Ogami
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
| | - Sourav Biswas
- Research Institute for Science and TechnologyTokyo University of Science2641 YamazakiNodaChiba278–8510Japan
| | - Tomoya Tanaka
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
| | - Maho Kamiyama
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
| | - Kaoru Ikeda
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
| | - Sakiat Hossain
- Research Institute for Science and TechnologyTokyo University of Science2641 YamazakiNodaChiba278–8510Japan
| | - Yusuke Yoshigoe
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
| | - D. J. Osborn
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Tokuhisa Kawawaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
- Research Institute for Science and TechnologyTokyo University of Science2641 YamazakiNodaChiba278–8510Japan
- Carbon Value Research CenterTokyo University of Science2641 YamazakiNodaChiba278–8510Japan
| | - Yuichi Negishi
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
- Carbon Value Research CenterTokyo University of Science2641 YamazakiNodaChiba278–8510Japan
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversityKatahira 2‐1‐1, Aoba‐kuSendai980–8577Japan
| |
Collapse
|
5
|
Jiang WH, Zeng XM, Wu M, Qin L, Yao LY, Yang GY. Thermally Activated Delayed Fluorescence-Based Near-Infrared-II Luminescence and Controlled Size Growth of Silver Nanoclusters. ACS NANO 2025; 19:7129-7139. [PMID: 39937922 DOI: 10.1021/acsnano.4c16160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Due to the significant relationships between structure and properties, the controlled construction of atomically precise metal clusters presents both a formidable challenge and great importance. The innovative synthesis of well-defined silver nanoclusters with near-infrared II (NIR-II) luminescent properties may inspire further exploration of functional metal nanoclusters for bioimaging applications. In this study, we employed the multidentate chelating nitrogen ligand 3,5-di(2-pyridyl)pyrazole (Hbpypz) to construct three unprecedented silver nanoclusters: [Ag27(bpypz)14]3+ (Ag27), [Ag62(bpypz)18]6+ (Ag62), and [Ag91(bpypz)24]5+ (Ag91). Single-crystal X-ray analysis indicated that these cluster structures stem from Ag13 units, exhibiting cluster-of-cluster configurations. By modulating the stoichiometry of the chelating ligand and silver centers, we achieved controlled size growth and reversible cluster-to-cluster conversions among these silver nanoclusters. Notably, the Ag27 nanocluster exhibits an interesting thermally activated delayed fluorescence (TADF) based luminescence in the second near-infrared (NIR-II) region and demonstrates high catalytic efficiency in the oxidative coupling of benzylamines via a singlet oxygen (1O2) oxidation mechanism.
Collapse
Affiliation(s)
- Wen-Hui Jiang
- MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiang-Ming Zeng
- MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Minjian Wu
- MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Lin Qin
- Key Laboratory of Agro-product Quality and Safety, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liao-Yuan Yao
- MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
6
|
Zhang C, Si WD, Tian WD, Xiao WJ, Gao ZY, Wang Z, Tung CH, Sun D. Single-atom "surgery" on chiral all-dialkynyl-protected superatomic silver nanoclusters. Sci Bull (Beijing) 2025; 70:365-372. [PMID: 39562187 DOI: 10.1016/j.scib.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/23/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
The manipulation of single atom within the metallic kernel of nanoclusters has attracted considerable attention due to its potentials to elucidate kernel-based structure-property relationships at the single-atom level. Herein, new-designed chiral bialkynyl ligands, have been chosen as protective agents to isolate two pairs of 8-electron superatomic silver nanoclusters, R/S-Ag39 and R/S-Ag40. X-ray diffraction analysis reveals that Ag39 and Ag40 with the same number of chiral ligands, possess a closely analogous silver skeleton but a single-atomic difference. The incorporation of an extra Ag40th atom into Ag40 evokes two significant changes of structure and property compared to Ag39: (i) a reduction in the symmetry of the entire nanocluster, resulting in an enhancement of kernel-related asymmetry g-factor; (ii) a regulation of the transitions (1P → 1D and Ligand(π) → 1D) of excited state, leading to a second near-infrared (NIR-II, 1000-1700 nm) phosphorescent emission red-shift from 1088 to 1150 nm. This work not only provides vital insights into the relationship between structures and ground/excited states chiroptical activities at the single-atom level, but also presents bialkynyl as a promising stabilizing agent for building superatomic metal nanoclusters.
Collapse
Affiliation(s)
- Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei-Dong Tian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wan-Jun Xiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
7
|
Deng G, Yun H, Chen Y, Yoo S, Lee K, Jang J, Liu X, Lee CW, Tang Q, Bootharaju MS, Hwang YJ, Hyeon T. Ferrocene-Functionalized Atomically Precise Metal Clusters Exhibit Synergistically Enhanced Performance for CO 2 Electroreduction. Angew Chem Int Ed Engl 2025; 64:e202418264. [PMID: 39628114 DOI: 10.1002/anie.202418264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 12/14/2024]
Abstract
The integration of organometallic compounds with metal nanoparticles can, in principle, generate hybrid nanocatalysts endowed with augmented functionality, presenting substantial promise for catalytic applications. Herein, we synthesize an atomically precise metal cluster (Ag9Cu6) catalyst integrated with alkynylferrocene molecules (Ag9Cu6-Fc). This hybrid catalyst design facilitates a continuous electron transfer channel via an ethynyl bridge and establishes a distinctive local chemical environment, resulting in remarkably enhanced catalytic activity in CO2 electroreduction. The Ag9Cu6-Fc catalyst achieves a record-high product selectivity of CO Faradaic efficiency of 100 % and an industrial-level CO partial current density of -680 mA/cm2, surpassing the performance of the Ag9Cu6 cluster (62 % and -230 mA/cm2, respectively) without ferrocene functionalization in a membrane electrode assembly cell. Operando experimental and computational findings offer valuable insights into the role of ferrocene functionalization in synergistically improving the catalytic performance of metal clusters, propelling the advancement of metallic-organometallic hybrid nanoparticles for energy conversion technologies.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyewon Yun
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghwan Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Matsuyama T, Suzuki T, Oba Y, Kikkawa S, Uchida S, Ohyama J, Higashi K, Kaneko T, Kato K, Nitta K, Uruga T, Hatada K, Yoshikawa K, Heilmaier A, Suzuki K, Yonesato K, Yamaguchi K, Nakatani N, Kawasoko H, Yamazoe S. In situ QXAFS study of CO and H 2 adsorption on Pt in [PtAu 8(PPh 3) 8]-H[PMo 12O 40] solid. NANOSCALE 2025; 17:2480-2487. [PMID: 39611297 DOI: 10.1039/d4nr03785e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The adsorption behaviors of H2 and CO molecules in crown-motif [PtAu8(PPh3)8]-H[PMo12O40] (PtAu8-PMo12) solids were investigated by in situ quick-scan X-ray absorption fine structure (QXAFS) measurements with a time resolution of 0.1 s. The electronic state of Pt in PtAu8-PMo12 was drastically changed by the adsorption of H2 and CO molecules because of the formation of Pt-H2/Pt-CO interactions. H2 was adsorbed more rapidly (<0.5 s) on Pt than CO (∼2.5 s) and showed reversible adsorption/desorption behavior on Pt atoms in PtAu8-PMo12. The rapid adsorption of H2 is due to the fast diffusion of H2, which has a smaller kinetic diameter than CO, in the narrow channels between the closed voids in PtAu8-PMo12. Meanwhile, CO was irreversibly adsorbed on Pt, resulting in structural isomerization to the stable "chalice-motif" PtAu8, which was determined by XAFS analysis and density functional theory calculations. Structural isomerization was involved by pushing ligands aside to make space for CO adsorption as the void size near Pt in the crown-motif PtAu8-PMo12 was narrower than the kinetic diameter of CO.
Collapse
Affiliation(s)
- Tomoki Matsuyama
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, Tokyo 192-0397, Japan.
| | - Taishi Suzuki
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, Tokyo 192-0397, Japan.
| | - Yuto Oba
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, Tokyo 192-0397, Japan.
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, Tokyo 192-0397, Japan.
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto-shi, Kumamoto 860-8555, Japan
| | - Kotaro Higashi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takuma Kaneko
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kazuo Kato
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kiyofumi Nitta
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Tomoya Uruga
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Keisuke Hatada
- Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Kazuki Yoshikawa
- Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Amelie Heilmaier
- Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Nakatani
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, Tokyo 192-0397, Japan.
| | - Hideyuki Kawasoko
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, Tokyo 192-0397, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, Tokyo 192-0397, Japan.
| |
Collapse
|
9
|
Jin JL, Zhang SF, Fang JJ, Shen YL, Xie YP, Lu X. Assembly of silver(I)-copper(I) bimetallic thiolate complexes assisted by phenylacetylene stabilizers. Dalton Trans 2025; 54:1270-1275. [PMID: 39624945 DOI: 10.1039/d4dt02753a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
AgI/CuI bimetallic clusters have been widely reported, but synthesis of such clusters via simple self-assembly of heterometallic ions in air remains challenging due to the susceptibility of CuI ions to oxidation. In this study, protected by the phenylacetylene auxiliary ligand, we utilized [Cu(CH3CN)4]PF6 in conjunction with the (iPrSAg)n polymer to form Ag(I)-Cu(I) oligomer precursors, serving as the starting point for constructing a new [Ag11-xCux(iPrS)9(DPPM)3](PF6)2 cluster (DPPM = bis(diphenylphosphino)methane, Ag11-xCux, x = 5-9). When the (iPrSAg)n precursor was replaced by (tBuSAg)n, another cluster [Ag21Cu4S2(tBuS)18(CH3CN)4](CH3OH)2(H3O)(PF6)4 (Ag21Cu4) was obtained. By combining crystallographic data and electrospray ionization mass spectrometry (ESI-MS) results, the compositions and structures of these two new clusters were determined. Additionally, the optical physical properties of the luminescent Ag11-xCux were investigated, showing red phosphorescence emission in both solid-state and solution phases. The solid-state phosphorescence quantum yield (QY) is 8%, with a lifetime of 7.2 μs. These findings suggest that phenylacetylene auxiliary ligands can effectively stabilize CuI ions and guide the assembly of silver-copper bimetallic thiolate motifs into new compounds under ambient conditions.
Collapse
Affiliation(s)
- Jun-Ling Jin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| | - Sheng-Fa Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| | - Jun-Jie Fang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yang-Lin Shen
- School of Materials and Chemical Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, China
| | - Yun-Peng Xie
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xing Lu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
10
|
Li J, Xie H, Sun D, Li H, Xin X. Co-assemblies of Silver Nanoclusters and Fullerenols With Enhanced Third-Order Nonlinear Optical Response. SMALL METHODS 2025:e2401782. [PMID: 39797428 DOI: 10.1002/smtd.202401782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH4)6[Ag6(mna)6] (H2mna = 2-mercaptonicotinic acid, abbreviated to Ag6─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C60─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C60─OH, which provides a feasible basis for realizing the NLO response. Then, the co-assemblies are doped into a PMMA matrix to prepare composite film and its NLO properties are evaluated by Z-scan technique. Remarkably, the effective nonlinear absorption coefficients β is of two orders magnitude higher than those of the Ag6─NCs assemblies at the absence of C60─OH. This work showcases a new approach for amplifying NLO responses which greatly facilitates the development of integrated photonic devices.
Collapse
Affiliation(s)
- Jinrui Li
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Huiyan Xie
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Di Sun
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Hongguang Li
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xia Xin
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
11
|
Zhang LP, Fang JJ, Liu Z, Xie YP, Lu X. Recent Progress in Atomically Precise Cu-M Alloy Nanoclusters. Chemistry 2024:e202404281. [PMID: 39727333 DOI: 10.1002/chem.202404281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 12/28/2024]
Abstract
Metal nanoclusters (NCs) with dimensions of approximately 3 nm serve as a crucial link between metal-organic complexes and metal nanoparticles, garnering significant interest due to their distinctive molecule-like characteristics. These include well-defined molecular structures, clear HOMO-LUMO transitions, quantized charge, and robust luminescence emission. Atomically precise alloy NCs, in contrast to homometallic NCs, exhibit a wealth of structures and intriguing properties, with their novel attributes often intricately tied to the positions of alloyed elements within the structure, facilitating the exploration of structure-property relationships. A notable subgroup within this category comprises Cu-M (where M represents metals such as Au, Ag, Rh, Ir, Pd, Pt, Zn, Al etc.) alloy NCs. In this review, we initially outline recent advancements in the development of efficient synthetic techniques for Cu-M alloy NCs, emphasizing the underlying physical and chemical properties that enable precise control over their sizes and surface characteristics. Subsequently, we delve into recent progress in structural elucidation techniques for Cu-M alloy NCs. This structural insight is instrumental in comprehensively understanding the structure-property correlations at the molecular level. Finally, we showcase various examples of Cu-M alloy NCs to illustrate their photoluminescent and catalytic properties, shedding light on their diverse functionalities and potential applications.
Collapse
Affiliation(s)
- Lai-Ping Zhang
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, 453000, China
| | - Jun-Jie Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department College of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
12
|
Wu R, Cao Y, Liu Y, Zhou Y, Chen Z, Zhu JJ. Alkynyl Ligands Templated Assemblies of Silver Nanoclusters with Exceptional Electrochemiluminescence Activity for Pancreatic Cancer Specific tsRNAs Measurement. Anal Chem 2024; 96:19396-19403. [PMID: 39591548 DOI: 10.1021/acs.analchem.4c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Proper manipulation of the ligand complex on the motifs of metal nanoclusters (MNCs) to form an ordered self-assembly is an effective approach to enhance the electrochemiluminescence (ECL) emission of MNCs. We report a facile approach for the preparation of self-assembled AgNCs (AgNCsAssy) induced by alkynyl ligands with enhanced ECL and stability. The formation of these AgNCsAssy was simultaneously driven by the diverse coordination modes of alkynyl ligands with Ag and intercluster interactions, for which it was found that the para-substituted alkynyl ligands exhibited apparently irregular nanoparticles, while the monosubstituted counterparts were present in the form of ribbons. The calculations revealed that the energy gap between the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) played a crucial role in their ECL emissions because of the substituent effects, especially, the low-lying LUMO levels could help to enhance the ECL emission. Moreover, mechanistic studies revealed that both the coreactant and alkynyl ligands made significant contributions to the ECL performance. Concurrently, the CRISPR-associated proteins (CRISPR-Cas) 12a system shows great potential in biosensing applications due to the advantages of easy design and precise targeting. As a proof of concept, we integrated the cascade amplification of catalytic hairpin assembly (CHA) circuit and the collateral cleavage activity of CRISPR-Cas12a to construct an ultrasensitive ECL biosensor for pancreatic cancer (PC)-specific tsRNAs, with a detection limit of 3.33 fM. This work is not only instructive for the synthesis of self-assembled MNCs with high ECL activities but also contributes to the understanding of the ECL mechanism of self-assembled MNCs.
Collapse
Affiliation(s)
- Ru Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yue Cao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yang Zhou
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, People's Republic of China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
13
|
Qin Z, Wang L, Chen L, Li Y, Shen K. Differential Activation of Alkynes between Capped and Naked Ag Nanoclusters Anchored by Highly-Open Mesoporous CeO 2 for Two Coupling Reactions with CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403517. [PMID: 39045902 DOI: 10.1002/smll.202403517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Indexed: 07/25/2024]
Abstract
The cyclization of 3-hydroxy alkynes and the carboxylation of terminal alkynes both with CO2 are two attractive strategies to simultaneously reduce CO2 emission and produce value-added chemicals. Herein, the differential activation of alkynes over atomically precise Ag nanoclusters (NCs) supported on Metal-organic framework-derived highly-open mesoporous CeO2 (HM-CeO2) by reserving or removing their surface captopril ligands is reported. The ligand-capped Ag NCs possess electron-rich Ag atoms as efficient π-activation catalytic sites in cyclization reactions, while the naked Ag NCs possess partial positive-charged Ag atoms as perfect σ-activation catalytic sites in carboxylation reactions. Impressively, via coupling with HM-CeO2 featuring abundant basic sites and quick mass transfer, the ligand-capped Ag NCs afford 97.9% yield of 4,4-dimethyl-5-methylidene-1,3-dioxolan-2-one for the cyclization of 2-methyl-3-butyn-2-ol with CO2, which is 4.5 times that of the naked Ag NCs (21.7%), while the naked Ag NCs achieve 98.5% yield of n-butyl 2-alkynoate for the carboxylation of phenylacetylene with CO2, which is 15.6 times that of ligand-capped Ag NCs (6.3%). Density functional theory calculations reveal the ligand-capped Ag NCs can effectively activate alkynyl carbonate ions for the intramolecular ring closing in cyclization reaction, while the naked Ag NCs are highly affiliative in stabilizing terminal alkynyl anions for the insertion of CO2 in carboxylation reaction.
Collapse
Affiliation(s)
- Ze Qin
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Li Wang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liyu Chen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kui Shen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
14
|
Cui X, Zhang X, Li T, Zhu S, Han G, Li H. Substituent effect in determining the total structure of an all-alkynyl-protected Ag 98 nanocluster for methanol tolerant oxygen reduction reaction. Chem Sci 2024:d4sc04318a. [PMID: 39416300 PMCID: PMC11474724 DOI: 10.1039/d4sc04318a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Metal nanoclusters (NCs) with atomically precise structures are desirable models for truly understanding their structure-property relationship. This study reports the synthesis and structural anatomy of a Ag98 NC protected solely by an alkynyl ligand, 2-(trifluoromethyl)phenylacetylene (2-CF3PhC[triple bond, length as m-dash]CH), which features a -CF3 substituent at the ortho position (ortho-CF3). 2-CF3PhC[triple bond, length as m-dash]CH ligands are so exquisitely arranged on the surface of Ag98 that the steric hindrance caused by ortho-CF3 is minimized but its function as a hydrogen-bond (H-bond) acceptor (H⋯F) is maximized. Such a rule also applies to inter-cluster interactions which define the stacking sequence of Ag98 NCs. When supported on carbon black, Ag98 NCs demonstrate desirable oxygen reduction activity with robust long-term durability and excellent methanol tolerance, outperforming the commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Xiaoqin Cui
- Institute of Crystalline Materials, Shanxi University Taiyuan 030006 Shanxi China
| | - Xuehuan Zhang
- Institute of Molecular Science, Shanxi University Taiyuan 030006 Shanxi China
| | - Ting Li
- Institute of Crystalline Materials, Shanxi University Taiyuan 030006 Shanxi China
| | - Sheng Zhu
- Institute of Molecular Science, Shanxi University Taiyuan 030006 Shanxi China
| | - Gaoyi Han
- Institute of Molecular Science, Shanxi University Taiyuan 030006 Shanxi China
| | - Huan Li
- Institute of Crystalline Materials, Shanxi University Taiyuan 030006 Shanxi China
| |
Collapse
|
15
|
Mu WL, Li L, Cong XZ, Chen X, Xia P, Liu Q, Wang L, Yan J, Liu C. Hierarchical Assembly of High-Nuclearity Copper(I) Alkynide Nanoclusters: Highly Effective CO 2 Electroreduction Catalyst toward Hydrocarbons. J Am Chem Soc 2024. [PMID: 39365080 DOI: 10.1021/jacs.4c07518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The pursuit of precision in the engineering of metal nanoparticle assemblies has long fascinated scientists, but achieving atomic-level accuracy continues to pose a significant challenge. This research sheds light on the hierarchical assembly processes of two high-nuclearity Cu(I) nanoclusters (NCs). By employing a multiligand cooperative stabilization strategy, we have isolated a series of thiacalix[4]arene (TC4A)/alkynyl coprotected Cu(I) NCs (Cux, where x = 9, 13, 17, 22). These NCs are intricately coassembled from the fundamental building units of {Cu4(TC4A)} and alkynyl-stabilized Cu5L6 in various ratios. By capturing active anion templates such as O2-, Cl-, or C22- that are generated in situ, we have further explored the secondary structural self-assembly of these clusters. Cu13 serves as a secondary assembly module for constructing Cu38 and Cu43, which exhibit the highest nuclearity reported to date among Cu(I) NCs encased in macrocyclic ligands. Notably, Cu38 demonstrates an impressive Faradaic efficiency of 62.01% for hydrocarbons at -1.57 V vs RHE during CO2 electroreduction, with 34.03% for C2H4 and 27.98% for CH4. This performance establishes it as an exceptionally rare, large, atomically precise metal NC (nuclearity >30) capable of catalyzing the formation of highly electro-reduced hydrocarbon products. Our research has introduced a new approach for constructing high-nuclearity Cu(I) NCs through a hierarchical assembly method and investigating their potential in the electrocatalytic transformation of CO2 into hydrocarbons.
Collapse
Affiliation(s)
- Wen-Lei Mu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Lanyan Li
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, Hunan 410205, PR China
| | - Xu-Zi Cong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Xinyu Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Pengkun Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Qingyi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
16
|
Zhang K, Cao K, Sun J, Jin Y, Liu J, Duttwyler S. Crystal Structure of the Monocarborane Magnesium(II) Acetylide and Its Use in the Synthesis of α,β-Unsaturated Ketones. Inorg Chem 2024; 63:16595-16599. [PMID: 39177198 DOI: 10.1021/acs.inorgchem.4c02280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
We report the first crystal structure of heteroleptic Grignard reagent 2 based on the carborane endo/exo dianion [CB11H11-12-C≡C]2-. Full characterization reveals a rare coordination pattern and affirms the bimetallic nature. Navigating the reactivity landscape, we unlock the potential of 2 in nucleophilic addition with ketones to afford propargylic alcohols 3, renowned for their synthetic versatility and potential biological activities, and unveil the Meyer-Schuster rearrangement, yielding α,β-unsaturated carbonyl compounds 4. This narrative of synthesis, characterization, and reactivity opens new horizons for carborane chemistry, offering avenues for innovation and facile functionalization of carborane scaffolds.
Collapse
Affiliation(s)
- Kang Zhang
- Shaoxing University Yuanpei College, 2799 Qunxian Road, Shaoxing 312000, China
| | - Kang Cao
- Shaoxing University Yuanpei College, 2799 Qunxian Road, Shaoxing 312000, China
| | - Jizeng Sun
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yujie Jin
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jiyong Liu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Simon Duttwyler
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
17
|
Jiang L, Lin L, Wang Z, Ai H, Jia J, Zhu G. Constructing Isoreticular Metal-Organic Frameworks by Silver-Carbon Bonds. J Am Chem Soc 2024; 146:22930-22936. [PMID: 39115250 DOI: 10.1021/jacs.4c07945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The incorporation of new coordinate bonds and the development of universal methods for new structures have always been of major interest in metal-organic framework (MOF) research. The poor reversibility makes metal-carbon (M-C) bonds a great challenge to adopt as linkages to construct crystalline MOFs. Herein, three isoreticular microcrystalline MOFs connected by silver-carbon (Ag-C) bonds are presented for the first time and named AgC-MOFs. Their structures contain a double coordination mode (σ and π) between Ag(I) and alkynyl. The three AgC-MOFs all exhibit three-dimensional (3D) frameworks with uniform one-dimensional (1D) hexagonal channels, and the pore width could be tuned from 1.1 to 1.8 nm. The construction of crystalline MOFs using poorly reversible Ag-C coordinate bonds extends the nexuses for the MOF structure and lights up more possibilities for the systematic design of MOFs.
Collapse
Affiliation(s)
- Li Jiang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Lin Lin
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zihao Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hongyu Ai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jiangtao Jia
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
18
|
Ge R, Cai PW, Sun C, Sun YQ, Li XX, Zheng ST. Development of non-closed silver clusters by transition-metal-coordination-cluster substituted polyoxometalate templates. Chem Sci 2024; 15:12543-12549. [PMID: 39118619 PMCID: PMC11304815 DOI: 10.1039/d4sc01502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/22/2024] [Indexed: 08/10/2024] Open
Abstract
Nature seems to favor the formation of closed anion-templated silver clusters. How precisely to create non-closed sliver clusters remains an interesting challenge. In this work, we propose that the use of transition-metal-coordination-cluster substituted polyoxometalates (TMCC-substituted POMs) as templates is an effective synthetic strategy for creating the non-closed silver clusters, as demonstrated by the obtainment of four types of rare non-closed silver cluster species of Ag38-TM (TM = Co, Ni or Zn), Ag37-Zn, {Ag37-Zn}∞ and Ag36-TM (TM = Co, Ni). The idea of the strategy is to employ the TMCC-substituted POMs containing cluster modules with different bond interactions with Ag+ ions as templates to guide the formation of the non-closed silver clusters. For example, TMCC-substituted POM clusters are used as templates in this work, which contain POM modules that can coordinate with the Ag+ ions and TMCC moieties that are difficult to coordinate with the Ag+ ions, leading to the Ag+ ions being unable to form closed clusters around TMCC-substituted POM templates. The work demonstrates a promising approach to developing intriguing and unexplored non-closed silver clusters.
Collapse
Affiliation(s)
- Rui Ge
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Ping-Wei Cai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| |
Collapse
|
19
|
Lei Z, Zhao P, Guan ZJ, Nan ZA, Ehara M, Wang QM. 'Passivated Precursor' Approach to All-Alkynyl-Protected Gold Nanoclusters and Total Structure Determination of Au 130. Chemistry 2024; 30:e202401094. [PMID: 38797717 DOI: 10.1002/chem.202401094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A 'passivated precursor' approach is developed for the efficient synthesis and isolation of all-alkynyl-protected gold nanoclusters. Direct reduction of dpa-passivated precursor Au-dpa (Hdpa=2,2'-dipyridylamine) in one-pot under ambient conditions gives a series of clusters including Au22(C≡CR)18 (R=-C6H4-2-F), Au36(C≡CR)24, Au44(C≡CR)28, Au130(C≡CR)50, and Au144(C≡CR)60. These clusters can be well separated via column chromatography. The overall isolation yield of this series of clusters is 40 % (based on gold), which is much improved in comparison with previous approaches. It is notable that the molecular structure of the giant cluster Au130(C≡CR)50 is revealed, which presents important information for understanding the structure of the mysterious Au130 nanoclusters. Theoretical calculations indicated Au130(C≡CR)50 has a smaller HOMO-LUMO gap than Au130(S-C6H4-4-CH3)50. This facile and reliable synthetic approach will greatly accelerate further studies on all-alkynyl-protected gold nanoclusters.
Collapse
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, 350108, Fuzhou, P. R. China
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, 444-8585, Myodaiji, Okazaki, Aichi, Japan
| | - Zong-Jie Guan
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Zi-Ang Nan
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, 444-8585, Myodaiji, Okazaki, Aichi, Japan
| | - Quan-Ming Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
20
|
Yang Y, Guo S, Zhang Q, Guan ZJ, Wang QM. A Cages-on-Cluster Structure Constructed by Post-Clustering Covalent Modifications and Guest-Enabled Stimuli-Responsive Luminescence. Angew Chem Int Ed Engl 2024; 63:e202404798. [PMID: 38713516 DOI: 10.1002/anie.202404798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/09/2024]
Abstract
A gold(I)-cluster-based twin-cage has been constructed by post-clustering covalent modification of a hexa-aldehyde cluster precursor with triaminotriethylamines. The cages-on-cluster structure has double cavities and four binding sites, which show site-discriminative binding for silver(I) and copper(I) guests. The guests in the tripodal hats affect the luminescence of the cluster: the tetra-silver(I) host-guest complex is weakly red-emissive, while the bis-copper(I)-bis-silver(I) one is non-emissive but is a stimuli-responsive supramolecule. The copper(I) ion inside the tri-imine cavity is oxidation sensitive, which enables the release of the bright emissive precursor cluster triggered by H2O2 solution. The hybridization of a cluster with cavities to construct a cluster-based cage presents an innovative concept for functional cluster design, and the post-clustering covalent modification opens up new avenues for finely tuning the properties of clusters.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shan Guo
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Qian Zhang
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
21
|
Gao J, Zhang F, Zhang X. A 66-Nuclear All-Alkynyl Protected Peanut-Shaped Silver(I)/Copper(I) Heterometallic Nanocluster: Intermediate in Copper-Catalyzed Alkyne-Azide Cycloaddition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400377. [PMID: 38561956 PMCID: PMC11165478 DOI: 10.1002/advs.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Ligand-protected heterometallic nanoclusters in contrast to homo-metal counterparts show more broad applications due to the synergistic effect of hetero-metals but their controllable syntheses remain a challenge. Among heterometallic nanoclusters, monovalent Ag-Cu compounds are rarely explored due to much difference of Ag(I) and Cu(I) such as atom radius, coordination habits, and redox potential. Encouraged by copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, comproportionation reaction of Cu(II)X2 and Cu(0) in the presence of (PhC≡CAg)n complex and molybdate generated a core-shell peanut-shaped 66-nuclear Ag(I)-Cu(I) heterometallic nanocluster, [(Mo4O16)2@Cu12Ag54(PhC≡C)50] (referred to as Ag54Cu12). The structure and composition of Ag-Cu heterometallic nanocluster are fully characterized. X-ray single crystal diffraction reveals that Ag54Cu12 has a peanut-shaped silver(I)/copper(I) heterometallic nanocage protected by fifty phenylacetylene ligands in µ3-modes and encapsulated two mutually twisted tetramolybdates. Heterometallic nanocage contains a 54-Ag-atom outer ellipsoid silver cage decorated by 12 copper inside wall. Nanosized Ag54Cu12 is a n-type narrow-band-gap semiconductor with a good photocurrent response. Preliminary experiments demonstrates that Ag54Cu12 itself and activated carbon supported Ag54Cu12/C are effective catalysts for 1,3-dipole cycloaddition between alkynes and azides at ambient conditions. The work provides not only a new synthetic route toward Ag(I)-Cu(I) nanoclusters but also an important heterometallic intermediate in CuAAC catalytic reaction.
Collapse
Affiliation(s)
- Jin‐Ping Gao
- School of Chemistry & Material ScienceShanxi Normal UniversityTaiyuan030006P. R. China
| | - Fu‐Qiang Zhang
- School of Chemistry & Material ScienceShanxi Normal UniversityTaiyuan030006P. R. China
| | - Xian‐Ming Zhang
- School of Chemistry & Material ScienceShanxi Normal UniversityTaiyuan030006P. R. China
- College of ChemistryTaiyuan University of TechnologyTaiyuan030024P. R. China
| |
Collapse
|
22
|
Zhao YY, Li ZQ, Gong ZL, Bernhard S, Zhong YW. Endowing Metal-Organic Coordination Materials with Chiroptical Activity by a Chiral Anion Strategy. Chemistry 2024; 30:e202400685. [PMID: 38469986 DOI: 10.1002/chem.202400685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
Recently, chiral metal-organic coordination materials have emerged as promising candidates for a wide range of applications in chiroptoelectronics, chiral catalysis, and information encryption, etc. Notably, the chiroptical effect of coordination chromophores makes them appealing for applications such as photodetectors, OLEDs, 3D displays, and bioimaging. The direct synthesis of chiral coordination materials using chiral organic ligands or complexes with metal-centered chirality is very often tedious and costly. In the case of ionic coordination materials, the combination of chiral anions with cationic, achiral coordination compounds through noncovalent interactions may endow molecular materials with desirable chiroptical properties. The use of such a simple chiral strategy has been proven effective in inducing promising circular dichroism and/or circularly polarized luminescence signals. This concept article mainly delves into the latest advances in exploring the efficacy of such a chiral anion strategy for transforming achiral coordination materials into chromophores with superb photo- or electro-chiroptical properties. In particular, ionic small-molecular metal complexes, metal clusters, coordination supramolecular assemblies, and metal-organic frameworks containing chiral anions are discussed. A perspective on the future opportunities on the preparation of chiroptical materials with the chiral anion strategy is also presented.
Collapse
Affiliation(s)
- Yuan-Yuan Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Qiu Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, United States of America
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Zhao Z, Zhao M, Deng L, Li Q, Zhang J, Su H, Lv H, Yang GY. Two structurally new Lindqvist hexaniobate-templated silver thiolate clusters. Chem Commun (Camb) 2024; 60:5415-5418. [PMID: 38683147 DOI: 10.1039/d4cc00681j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Two structurally new Lindqvist hexaniobate-templated silver thiolate clusters, [Nb6O19@Ag45(iPrS)23(CH3COO)14] (Ag45) and (H3O)4[Nb6O19@Ag41KS2.5O2(H2O)7.5(iPrS)24(CH3COO)5] (Ag41), were synthesized using a facile one-pot solvothermal approach. Single crystal X-ray diffraction analyses revealed the presence of a classical Lindqvist-type [Nb6O19]8- anion template, with iPrS- and CH3COO- surface-protecting ligands in both silver clusters, which can further form two-dimensional Ag45 assembly and one-dimensional Ag41 chain packing structures. Both Ag45 and Ag41 clusters exhibited intriguing photothermal conversion properties and temperature-dependent emission behavior.
Collapse
Affiliation(s)
- Zichen Zhao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Mengyun Zhao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Lan Deng
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Qing Li
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Jing Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Haifeng Su
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| |
Collapse
|
24
|
Fang JJ, Liu Z, Wang ZY, Xie YP, Lu X. Chiral Canoe-Like Pd 0 or Pt 0 Alloyed Copper Alkynyl Nanoclusters Display Near-Infrared Luminescence. Angew Chem Int Ed Engl 2024; 63:e202401206. [PMID: 38469979 DOI: 10.1002/anie.202401206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Alloying nanoclusters (NCs) has emerged as a widely explored and versatile strategy for tailoring tunable properties, facilitating in-depth atomic-level investigations of structure-property correlations. In this study, we have successfully synthesized six atomically precise copper NCs alloyed with Group 10 metals (Pd or Pt). Notably, the Pd0 or Pt0 atom situated at the center of the distorted hexagonal antiprism Pd0/Pt0@Cu12 cage, coordinated with twelve Cu+ and two tBuC≡C- ligands. Moreover, ligand exchange strategies demonstrated the potential for Cl- and Br- to replace one or two alkynyl ligands positioned at the top or side of the NCs. The chirality exhibited by these racemic NCs is primarily attributed to the involvement of halogens and a chiral (Pd/Pt)@Cu18 skeleton. Furthermore, all the NCs exhibit near-infrared (NIR) luminescence, characterized by emission peaks at 705-755 nm, lifetimes ranging from 6.630 to 9.662 μs, and absolute photoluminescence quantum yields (PLQYs) of 1.75 %-2.52 % in their crystalline state. The experimental optical properties of these NCs are found to be in excellent agreement with the results of theoretical calculations. These alloy NCs not only offer valuable insights into the synthesis of Pd0/Pt0-Cu alloy NCs, but also bridge the gap in understanding the structure-luminescence relationships of Pd0/Pt0-Cu molecules.
Collapse
Affiliation(s)
- Jun-Jie Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhi-Yi Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
25
|
Peter BD, Pei W, Andrew GN, Zhou S, Luo Z. A luminescent Ag 8(DPPY) 6(PhCC) 6 cluster with a triangular superatomic Ag 8 core. NANOSCALE 2024; 16:8090-8095. [PMID: 38563406 DOI: 10.1039/d4nr00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We have synthesized single crystals of a highly stable Ag8 nanocluster protected by six ligands of diphenyl-2-phosphinic pyridine (DPPY) plus six ligands of phenylacetylene (PhCC). This Ag8(DPPY)6(PhCC)6 cluster bears a triangular superatomic Ag8 core, with the vertex and edge Ag atoms (quasi-triangle Ag6) being protected by both P and N bidentate coordination of the six DPPY ligands; meanwhile, the six PhCC ligands via μ3-C coordination form coordination on the two central Ag atoms capped on both sides of the triangle facet. Apart from the well-organized coordination of the two ligands pertaining to the balanced interactions with the Ag8 core, this Ag8 nanocluster exhibits superatomic stability with two delocalized valence electrons (1S2||1P0), assuming that the six PhCC ligands fix 6 localized electrons from the Ag atoms. Interestingly, the Ag8(DPPY)6(PhCC)6 NCs display temperature-dependent dual emissions at 330 and 535 nm under deep ultraviolet excitation. TD-DFT calculations reproduced the experimental spectrum, shedding light on the nature of excitation states and metal-ligand interactions in such a superatomic metal cluster.
Collapse
Affiliation(s)
- Blessing D Peter
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Pei
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Gaya N Andrew
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Si Zhou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
26
|
Huang QQ, Lin YY, Wang YL, Qi JY, Fu F, Wei QH. Pargyline-phosphine copper(I) clusters with tunable emission for light-emitting devices. Dalton Trans 2024; 53:5844-5850. [PMID: 38469690 DOI: 10.1039/d4dt00022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Three pargyline-phosphine copper(I) clusters, [Cu4(CC-C9H12N)3(PPh3)4](PF6) (1) and [Cu6(CC-C9H12N)4(dppy)4](X)2 (dppy = diphenyl-2-pyridylphosphine; X = PF6 for 2 and X = ClO4 for 3), were synthesized. Their structures were fully characterized using various spectroscopic methods and X-ray crystallography, which showed that the stoichiometry and nature of pargyline and phosphine ligands play an important role in tuning the structure and photophysical features of Cu(I) clusters. Interestingly, clusters 1, 2 and 3 exhibited red, orange and yellow phosphorescence with high quantum yields of 88.5%, 22.0% and 40.2%, respectively, at room temperature. Moreover, clusters 1-3 show distinct temperature-dependent emissions. The excellent luminescence performance of 1 and 3 was designed and employed for the construction of monochrome and white light-emitting devices (LEDs).
Collapse
Affiliation(s)
- Qiu-Qin Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yan-Yan Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yu-Ling Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Jia Yuan Qi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - FengFu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Qiao-Hua Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
27
|
Ren Z, Sun JJ, Xu L, Luo P, Ma ZW, Li S, Si YB, Dong XY, Pan F. X-ray-triggered through-space charge transfer and photochromism in silver nanoclusters. NANOSCALE 2024; 16:2662-2671. [PMID: 38230765 DOI: 10.1039/d3nr05409h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Materials exhibiting X-ray-induced photochromism have consistently piqued the interest of researchers. Exploring the photochromic properties of such materials is valuable for understanding the structural changes and electron transfer processes that occur under high energy radiation, such as X-ray irradiation. Here, a crystalline silver(I) nanocluster synthesized from tert-butylacetylene silver was found to have the ability to exhibit color and photoluminescence changes upon exposure to X-ray radiation. The responsive behavior was observed across a wide temperature range of 100-300 K, with the ability to respond particularly well to soft X-rays (λ > 1 Å) and exhibit light responsiveness to hard X-rays (λ < 1 Å). By combining experimental findings including X-ray diffraction, X-ray photoelectron spectroscopy, electron spin resonance, etc. with theoretical calculations, we have proposed that X-ray irradiation induces electron transfer from chloride (Cl-) located in the center of the silver(I) nanocluster to the surrounding Ag14 in the skeleton. This represents the first documented example in which electron transfer induced by X-ray excitation has been observed, accompanied by a photochromism process, in silver nanoclusters. This study contributes to our understanding of X-ray-induced photochromism and the electron transfer process in silver cluster compounds. It also provides valuable insights and potential design strategies for applications such as photochromism, photoluminescence color change, and photoenergy conversion.
Collapse
Affiliation(s)
- Zhen Ren
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China.
| | - Jun-Jun Sun
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China.
| | - Long Xu
- College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Peng Luo
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China.
| | - Zi-Wei Ma
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China.
| | - Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yu-Bing Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xi-Yan Dong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Fangfang Pan
- College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
28
|
Rong LJ, Ye YT, Lin X, Sun X, Chen S, Zhang J, Zhang L. Structure and optical limiting effects of heterometallic Ag 6@Ti 12 and Ag 8@Ti 12 oxo clusters regulated by alkynyl ligands. Dalton Trans 2024; 53:1947-1950. [PMID: 38214025 DOI: 10.1039/d3dt03941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Heterometallic Ag6@Ti12 and Ag8@Ti12 oxo clusters were prepared through a strategy of protecting polynuclear silver cores by a hollow Ti-O module. The introduction of alkyne ligands has shown significant influence on their structures and optical limiting effects.
Collapse
Affiliation(s)
- Li-Jun Rong
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Yu-Ting Ye
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Xiaohui Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Shumei Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
29
|
Hu Y, Zhang Q, Zhou J, Guo S, Xu J, Zheng H, Yang Y. Supramolecularly Dimeric Assemble of Planar Cu 13 Clusters Controlled by the Length of Spacers of Diphosphine. Inorg Chem 2023; 62:21091-21100. [PMID: 38079613 DOI: 10.1021/acs.inorgchem.3c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The controlled formation of dimeric clusters is challenging. Three copper(I) clusters, labeled as {Cu13[o-Ph(C≡C)2]6(L)4}(ClO4), were synthesized by using three different ligands, including 1,4-bis(diphenylphosphino)butane (dppb), 1,5-bis(diphenylphosphino)pentane (dpppe), and bis(diphenylphosphino)hexane (dpph). By increasing the flexibility of alkyl spacers in the diphosphine ligands, the relative positions of the phenyl rings could be optimized to achieve efficient packing with maximized intercluster interactions. In the crystal structures, cluster 1 with dppb ligands did not display interlocked structures. In contrast, cluster 2 with dpppe ligands formed supramolecularly interlocked polymers through weak π-π interactions and C-H···π interactions, while cluster 3 employing dpph ligands formed supramolecularly interlocked dimers with strong π-π interactions and C-H···π interactions. The supramolecular dimer of 3 was also evidenced by analyses through electrospray ionization mass spectrometry and transmission electron microscopy. Density functional theory calculation was used to understand the electronic structure and transitions. Supramolecularly interlocked polymers/dimers with rigid structures exhibited higher quantum efficiency. The solution of these clusters demonstrated remarkable aggregation-induced emission enhancements. This study presents unique examples of planar luminescent copper clusters, featuring the first serial dialkynyl-protected cluster. It underlines the importance of ligand flexibility in creating supramolecular cluster dimers.
Collapse
Affiliation(s)
- Yun Hu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shan Guo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jia Xu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Hao Zheng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
30
|
Xu C, Jin Y, Fang H, Zheng H, Carozza JC, Pan Y, Wei PJ, Zhang Z, Wei Z, Zhou Z, Han H. A High-Nuclearity Copper Sulfide Nanocluster [S-Cu 50] Featuring a Double-Shell Structure Configuration with Cu(II)/Cu(I) Valences. J Am Chem Soc 2023; 145:25673-25685. [PMID: 37889075 DOI: 10.1021/jacs.3c08549] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
This work represents an important step in the quest for creating atomically precise binary semiconductor nanoclusters (BS-NCs). Compared with coinage metal NCs, the preparation of BS-NCs requires strict control of the reaction kinetics to guarantee the formation of an atomically precise single phase under mild conditions, which otherwise could lead to the generation of multiple phases. Herein, we developed an acid-assisted thiolate dissociation approach that employs suitable acid to induce cleavage of the S-C bonds in the Cu-S-R (R = alkyl) precursor, spontaneously fostering the formation of the [Cu-S-Cu] skeleton upon the addition of extra Cu sources. Through this method, a high-nuclearity copper sulfide nanocluster, Cu50S12(SC(CH3)3)20(CF3COO)12 (abbreviated as [S-Cu50] hereafter), has been successfully prepared in high yield, and its atomic structure was accurately modeled through single-crystal X-ray diffraction. It was revealed that [S-Cu50] exhibits a unique double-shell structural configuration of [Cu14S12]@[Cu36S20], and the innermost [Cu14] moiety displays a rhombic dodecahedron geometry, which has never been observed in previously synthesized Cu metal, hydride, or chalcogenide NCs. Importantly, [S-Cu50] represents the first example incorporating mixed Cu(II)/Cu(I) valences in reported atomically precise copper sulfide NCs, which was unambiguously confirmed by XPS, EPR, and XANES. In addition, the electronic structure of [S-Cu50] was established by a variety of optical investigations, including absorption, photoluminescence, and ultrafast transient absorption spectroscopies, as well as theoretical calculations. Moreover, [S-Cu50] is air-stable and demonstrates electrocatalytic activity in ORR with a four-electron pathway.
Collapse
Affiliation(s)
- Cheng Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yuhao Jin
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Hao Fang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Huijuan Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jesse C Carozza
- Department of Chemistry, University at Albany, Albany, New York 12222, United States
| | - Yanxiong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ping-Jie Wei
- Key Laboratory for Advanced Materials of MOE & Department of Chemistry, East China University of Science and Technology Shanghai, Shanghai 200237, China
| | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co. Ltd., Shanghai 200233, China
| | - Zheng Wei
- Department of Chemistry, University at Albany, Albany, New York 12222, United States
| | - Zheng Zhou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Haixiang Han
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
31
|
Shen Q, Cong X, Chen L, Wang L, Liu Y, Wang L, Tang Z. Synthesis, structure anatomy, and catalytic properties of Ag 14Cu 2 nanoclusters co-protected by alkynyl and phosphine ligands. Dalton Trans 2023; 52:16812-16818. [PMID: 37905669 DOI: 10.1039/d3dt02838k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We report the synthesis, structure anatomy, and catalytic properties of Ag14Cu2(CCArF)14(PPh3)4 (CCArF: 3,5-bis(trifluoromethyl)phenylacetylene) nanoclusters, denoted as Ag14Cu2. Ag14Cu2 has a robust electronic structure with two free valence electrons, and it has a distinctive absorbance feature. Single-crystal X-ray diffraction (SC-XRD) disclosed that Ag14Cu2 possesses an octahedral Ag6 metal kernel capped by two Ag4Cu1(CCArF)7(PPh3)2 metal-ligand units. Remarkably, it exhibits excellent bifunctional catalytic performance for 4-nitrophenol reduction and the electrochemical CO2 reduction reaction (eCO2RR). In 4-nitrophenol reduction, it adopts first-order reaction kinetics with a rate constant of 0.137 min-1, while in the eCO2RR, it shows a CO faradaic efficiency (FECO) of 83.71% and a high current density of 92.65 mA cm-2 at -1.6 V vs. RHE. Moreover, Ag14Cu2 showed robust long-term stability with no significant decay in current density and FECO over 10 h of continuous operation in the eCO2RR. This study not only enriches the potpourri of alkynyl-protected bimetallic AgCu nanoclusters, but also demonstrates the great potential of employing metal nanoclusters for bifunctional catalytic applications.
Collapse
Affiliation(s)
- Quanli Shen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Xuzi Cong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Leyi Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Lei Wang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Yonggang Liu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| |
Collapse
|
32
|
Ríos P, See MS, Handford RC, Cooper JK, Don Tilley T. Tetracopper σ-Bound μ-Acetylide and -Diyne Units Stabilized by a Naphthyridine-based Dinucleating Ligand. Angew Chem Int Ed Engl 2023; 62:e202310307. [PMID: 37705304 DOI: 10.1002/anie.202310307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Reactions of a dicopper(I) tert-butoxide complex with alkynes possessing boryl or silyl capping groups resulted in formation of unprecedented tetracopper(I) μ-acetylide/diyne complexes that were characterized by NMR and UV/Vis spectroscopy, mass spectrometry and single-crystal X-ray diffraction. These compounds possess an unusual μ4 -η1 :η1 :η1 :η1 coordination mode for the bridging organic fragment, enforced by the rigid and dinucleating nature of the ligand utilized. Thus, the central π system remains unperturbed and accessible for subsequent reactivity and modification. This has been corroborated by addition of a fifth copper atom, giving rise to a pentacopper acetylide complex. This work may provide a new approach by which metal-metal cooperativity can be exploited in the transformation of acetylide and diyne groups to a variety of substrates, or as a starting point for the controlled synthesis of copper(I) alkyne-containing clusters.
Collapse
Affiliation(s)
- Pablo Ríos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla, 41092, Sevilla, Spain
- Department of Chemistry, University of California, Berkeley, USA
| | - Matthew S See
- Department of Chemistry, University of California, Berkeley, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rex C Handford
- Department of Chemistry, University of California, Berkeley, USA
| | - Jason K Cooper
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
33
|
Zhang S, Zhao L. Anaerobic photoinduced Cu(0/I)-mediated Glaser coupling in a radical pathway. Nat Commun 2023; 14:6741. [PMID: 37875487 PMCID: PMC10598264 DOI: 10.1038/s41467-023-42602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
The reaction mechanism of the historic copper-catalyzed Glaser coupling has been debated to be based on redox cycles of Cu ions in specific oxidation states or on a radical mechanism based on Cu(0)/Cu(I). Here, the authors demonstrate two coexisting Glaser coupling pathways which can be differentiated by anaerobic/irradiation or aerobic reaction conditions. Without O2, copper(I) acetylides undergo a photo-excited pathway to generate highly reactive alkynyl radicals, which combine together to form a homo-coupling product or individually react with diverse X-H (X = C, N, O, S and P) substrates via hydrogen atom transfer. With O2, copper(I) acetylides are oxidized to become a Cu-acetylide/Cu-O merged Cu(I/II) intermediate for further oxidative coupling. This work not only complements the radical mechanism for Glaser coupling, but also provides a mild way to access highly energetic alkynyl radicals for efficient organic transformations.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
34
|
Wang L, Chen L, Qin L, Liu Y, Tang Z. Alkynyl-protected Ag 20 Rh 2 Nanocluster with Atomic Precision: Structure Analysis and Tri-functionality Catalytic Application. Chem Asian J 2023; 18:e202300685. [PMID: 37622415 DOI: 10.1002/asia.202300685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/26/2023]
Abstract
We report the overall structure and trifunctionality catalytic application of an atomically precise alloy nanocluster of Ag20 Rh2 (C≡C-t Bu)16 (CF3 CO2 )6 (H2 O)2 (abbreviated as Ag20 Rh2 hereafter). Ag20 Rh2 has a twisted rod-like structure, where a Ag4 @Rh2 kernel is connected by two twisted Ag8 cubes on two sides. Ag20 Rh2 is a superatomic cluster with four free valence electrons, and it has characteristic absorbance feature. Interestingly, Ag20 Rh2 exhibited superior catalytic performance than the larger AgRh nanoparticle counterparts in electrochemical hydrogen evolution reaction (HER), reduction of 4-nitrophenol, and the methyl orange degradation reaction. Such intriguing catalytic properties are attributed to the more exposed active sites from the ultrasmall nanoclusters than relatively large nanoparticles. This study not only enriches the family member of alkynyl-protected AgRh nanoclusters with atomic precision, but also highlights the great advantages of employing nanoclusters as efficient catalysts for multiple functionalities.
Collapse
Affiliation(s)
- Lei Wang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Leyi Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yonggang Liu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|
35
|
Hu J, Zhou M, Li K, Yao A, Wang Y, Zhu Q, Zhou Y, Huang L, Pei Y, Du Y, Jin S, Zhu M. Evolution of Electrocatalytic CO 2 Reduction Activity Induced by Charge Segregation in Atomically Precise AuAg Nanoclusters Based on Icosahedral M 13 Unit 3D Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301357. [PMID: 37127865 DOI: 10.1002/smll.202301357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Indexed: 05/03/2023]
Abstract
The precise self-assembly of building blocks at atomic level provides the opportunity to achieve clusters with advanced catalytic properties. However, most of the current self-assembled materials are fabricated by 1/2D assembly of blocks. High dimensional (that is, 3D) assembly is widely believed to improve the performance of cluster. Herein, the effect of 3D assembly on the activity for electrocatalytic CO2 reduction reaction (CO2 RR) is investigated by using a range of clusters (Au8 Ag55 , Au8 Ag57 , Au12 Ag60 ) based on 3D assembly of M13 unit as models. Although three clusters have almost the same sizes and geometric structures, Au8 Ag55 exhibits the best CO2 RR performance due to the strong CO2 adsorption capacity and effective inhibition of H2 evolution competition reaction. The deep insight into the superior activity of Au8 Ag55 is the unique electronic structure attributed to the charge segregation. This study not only demonstrates that the assembly mode greatly affects the catalytic activity, but also offers an idea for rational designing and precisely constructing catalysts with controllable activities.
Collapse
Affiliation(s)
- Jiashen Hu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Manman Zhou
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Kang Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Aimin Yao
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yan Wang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Qingtao Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yanting Zhou
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Liu Huang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yuanxin Du
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Shan Jin
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Manzhou Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| |
Collapse
|
36
|
Chen L, Sun F, Shen Q, Wang L, Liu Y, Fan H, Tang Q, Tang Z. Structure, optical properties, and catalytic applications of alkynyl-protected M 4Rh 2 (M = Ag/Au) nanoclusters with atomic precision: a comparative study. Dalton Trans 2023. [PMID: 37365965 DOI: 10.1039/d3dt01326j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We report two atomically precise alloy nanoclusters of Ag4Rh2(CCArF)8(PPh3)2 and Au4Rh2(CCArF)8(PPh3)2 (Ar = 3,5-(CF3)2C6H3, abbreviated as Ag4Rh2 and Au4Rh2, respectively) co-protected by alkynyl and phosphine ligands. Both clusters have identical octahedral metal core configurations and can be termed superatoms with two free electrons. However, they possess different optical features, manifested by totally different absorbance peaks, and drastically different emission peaks, and also, Ag4Rh2 has a much higher fluorescence quantum yield (18.43%) than Au4Rh2 (4.98%). Moreover, Au4Rh2 exhibited markedly superior catalytic performance in the electrochemical hydrogen evolution reaction (HER), manifested by a much lower overpotential at 10 mA cm-2 and better stability. Density functional theory (DFT) calculations revealed that the free energy change of Au4Rh2 for the adsorption of two H* (0.64 eV) is lower than that of Ag4Rh2 for the adsorption of one H* (-0.90 eV) after stripping a single alkynyl ligand from the cluster. In contrast, Ag4Rh2 demonstrated much stronger catalytic capability for catalyzing 4-nitrophenol reduction. The present study provides an exquisite example to understand the structure-property relationship of atomically precise alloy nanoclusters, and emphasizes the importance of fine-tuning of the physicochemical properties and catalytic performance of the metal nanoclusters through modulating the metal core and beyond.
Collapse
Affiliation(s)
- Leyi Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Quanli Shen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Lei Wang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Yonggang Liu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Hao Fan
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| |
Collapse
|
37
|
Haraguchi N, Ogiwara N, Kumabe Y, Kikkawa S, Yamazoe S, Tachikawa T, Uchida S. Size-Controlled Synthesis of Luminescent Few-Atom Silver Clusters via Electron Transfer in Isostructural Redox-Active Porous Ionic Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300743. [PMID: 36828792 DOI: 10.1002/smll.202300743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Indexed: 06/08/2023]
Abstract
Ag clusters with a controlled number of atoms have received significant interest because they show size-dependent catalytic, optical, electronic, or magnetic properties. However, the synthesis of size-controlled, ligand-free, and air-stable Ag clusters with high yields has not been well-established. Herein, it is shown that isostructural porous ionic crystals (PICs) with redox-active polyoxometalates (POMs) can be used to synthesize Ag clusters via electron transfer from POMs to Ag+ . Ag clusters with average numbers of three, four, or six atoms emitting blue, green, or red colors, respectively, are formed and stabilized in the PICs under ambient conditions without any protecting ligands. The cluster size solely correlates with the degree of electron transfer, which is controlled by the reduction time and types of ions or elements of the PICs. Thus, advantages have been taken of POMs as electron sources and PICs as scaffolds to demonstrate a convenient method to obtain few-atom Ag clusters.
Collapse
Affiliation(s)
- Naoya Haraguchi
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yoshitaka Kumabe
- Molecular Photoscience Research Center, Kobe University, Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Takashi Tachikawa
- Molecular Photoscience Research Center, Kobe University, Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
38
|
Dai Z, Wang G, Xiao F, Lei D, Dou X. Amorphous Copper-Based Nanoparticles with Clusterization-Triggered Phosphorescence for Ultrasensing 2,4,6-Trinitrotoluene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300526. [PMID: 36929680 DOI: 10.1002/adma.202300526] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Indexed: 06/16/2023]
Abstract
Amorphous metal-based nanostructures have attracted great attention recently due to their facilitative electron transfer and abundant reactive sites, whereas it remains enigmatic as to whether amorphous copper-based nanoparticles (CuNPs) can be achieved. Here, for synthesizing amorphous CuNPs, glutathione is adopted as a ligand to inhibit the nucleation and crystallization process via its electrostatic repulsion. By subtly tailoring the solvent polarity, not only can amorphous glutathione-functionalized CuNPs (GSH-CuNPs) with phosphorescent performance be achieved after transferring the non-conjugation of GSH ligand to through-space conjugation, namely clusterization-triggered emission, but also the phosphorescence-off of GSH-CuNPs toward 2,4,6-trinitrotoluene (TNT) can be realized by the photoinduced electron-transfer process through the hydrogen bond channel, which is established between carboxyl and amino groups of GSH-CuNPs with the nitryl group of TNT. Benefitting from the intrinsic superiorities of the amorphous CuNPs, desired phosphorescence and detection performances of GSH-CuNPs toward airborne TNT microparticulates are undoubtedly realized, including high quantum yield (13.22%), excellent specificity in 33 potential interferents, instantaneous response, and ultralow detection limit (1.56 pg). The present GSH-CuNPs are expected to stretch amorphous metal-based nanostructures and deepen the insights into amorphous materials for optical detection.
Collapse
Affiliation(s)
- Zhuohua Dai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangfa Wang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Fangfang Xiao
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Artem'ev AV, Liu CW. Recent progress in dichalcophosphate coinage metal clusters and superatoms. Chem Commun (Camb) 2023. [PMID: 37184074 DOI: 10.1039/d3cc01215h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Atomically precise clusters of group 11 metals (Cu, Ag, and Au) attract considerable attention owing to their remarkable structure and fascinating properties. One of the unique subclasses of these clusters is based on dichalcophosphate ligands of [(RO)2PE2]- type (E = S or Se, and R = alkyl). These ligands successfully stabilise the most diverse Cu, Ag, and Au clusters and superatoms, spanning from simple ones to amazing assemblies featuring unusual structural and bonding patterns. It is noteworthy that such complicated clusters are assembled directly from cheap and simple reagents, metal(I) salts and dichalcophosphate anions. This reaction, when performed in the presence of a hydride or other anion sources, or foreign metal ions, results in hydrido- or anion-templated homo- or heteronuclear structures. In this feature article, we survey the recent advances in this exciting field, highlighting the powerful synthetic capabilities of the system "a metal(I) salt - [(RO)2PX2]- ligands - a templating anion or borohydride" as an inexhaustible platform for the creation of new atomically precise clusters, superatoms, and nanoalloys.
Collapse
Affiliation(s)
- Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - C W Liu
- National Dong Hwa University, Department of Chemistry, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
40
|
Xiao WC, Nie QB, Luo GG. Secondary hierarchical complexity in double-stranded cluster helicates covered by NNNNN type pincer ligands. Dalton Trans 2023; 52:6239-6243. [PMID: 37128862 DOI: 10.1039/d3dt00912b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We designed and synthesized a new tripyridine dipyrrolide pincer ligand, which could be doubly deprotonated to provide five-nitrogen-donor sites and then utilized to prepare a subnanometric chiral silver cluster. The cluster belongs to an S4 point group and shows a double-stranded helicate. DFT calculations were performed to analyze the electronic structure of the cluster. Interestingly, through hierarchical intercluster interactions, the cluster helicates evolve into complex secondary structures including a right-handed helix and a folded sheet, both of which are reminiscent of secondary structures of proteins, i.e., an α-helix and an antiparallel β-sheet.
Collapse
Affiliation(s)
- Wang-Chuan Xiao
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, P. R. China
| | - Qing-Bin Nie
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, P. R. China.
| | - Geng-Geng Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
41
|
Jia T, Guan ZJ, Zhang C, Zhu XZ, Chen YX, Zhang Q, Yang Y, Sun D. Eight-Electron Superatomic Cu 31 Nanocluster with Chiral Kernel and NIR-II Emission. J Am Chem Soc 2023; 145:10355-10363. [PMID: 37104621 DOI: 10.1021/jacs.3c02215] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Owing to the inherent instability caused by the low Cu(I)/Cu(0) half-cell reduction potential, Cu(0)-containing copper nanoclusters are quite uncommon in comparison to their Ag and Au congeners. Here, a novel eight-electron superatomic copper nanocluster [Cu31(4-MeO-PhC≡C)21(dppe)3](ClO4)2 (Cu31, dppe = 1,2-bis(diphenylphosphino)ethane) is presented with total structural characterization. The structural determination reveals that Cu31 features an inherent chiral metal core arising from the helical arrangement of two sets of three Cu2 units encircling the icosahedral Cu13 core, which is further shielded by 4-MeO-PhC≡C- and dppe ligands. Cu31 is the first copper nanocluster carrying eight free electrons, which is further corroborated by electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and density functional theory calculations. Interestingly, Cu31 demonstrates the first near-infrared (750-950 nm, NIR-I) window absorption and the second near-infrared (1000-1700 nm, NIR-II) window emission, which is exceptional in the copper nanocluster family and endows it with great potential in biological applications. Of note, the 4-methoxy groups providing close contacts with neighboring clusters are crucial for the cluster formation and crystallization, while 2-methoxyphenylacetylene leads only to copper hydride clusters, Cu6H or Cu32H14. This research not only showcases a new member of copper superatoms but also exemplifies that copper nanoclusters, which are nonluminous in the visible range may emit luminescence in the deep NIR region.
Collapse
Affiliation(s)
- Tao Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Chengkai Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Xiao-Zhao Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yun-Xin Chen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
42
|
Li Y, Luo XM, Luo P, Zang QX, Wang ZY, Zang SQ. Cocrystallization of Two Negatively Charged Dimercaptomaleonitrile-Stabilized Silver Nanoclusters. ACS NANO 2023; 17:5834-5841. [PMID: 36912873 DOI: 10.1021/acsnano.2c12473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Studies on the assembly of atomically precise metal nanoclusters (NCs) are of great significance in the nanomaterial field, which has attracted increasing interest in the last few decades. Herein, we report the cocrystallization of two negatively charged atom-precise silver nanoclusters, the octahedral [Ag62(MNT)24(TPP)6]8- (Ag62) and the truncated-tetrahedral [Ag22(MNT)12(TPP)4]4- (Ag22) in a 1:2 ratio (MNT2- = dimercaptomaleonitrile, TPP = triphenylphosphine). As far as we know, a cocrystal containing two negatively charged NCs has seldom been reported. Single-crystal structure determinations reveal that the component Ag22 and Ag62 NCs both adopt core-shell structures. In addition, the component NCs were separately obtained by adjusting the synthetic conditions. This work enriches the structural diversity of silver NCs and extends the family of cluster-based cocrystals.
Collapse
Affiliation(s)
- Yao Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Xi-Ming Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Peng Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, People's Republic of China
| | - Qiu-Xu Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
43
|
Liu JJ, Sun SN, Liu J, Kuang Y, Shi JW, Dong LZ, Li N, Lu JN, Lin JM, Li SL, Lan YQ. Achieving High-Efficient Photoelectrocatalytic Degradation of 4-Chlorophenol via Functional Reformation of Titanium-Oxo Clusters. J Am Chem Soc 2023; 145:6112-6122. [PMID: 36883963 DOI: 10.1021/jacs.2c11509] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Rational design of crystalline catalysts with superior light absorption and charge transfer for efficient photoelectrocatalytic (PEC) reaction coupled with energy recovery remains a great challenge. In this work, we elaborately construct three stable titanium-oxo clusters (TOCs, Ti10Ac6, Ti10Fc8, and Ti12Fc2Ac4) modified with a monofunctionalized ligand (9-anthracenecarboxylic acid (Ac) or ferrocenecarboxylic acid (Fc)) and bifunctionalized ligands (Ac and Fc). They have tunable light-harvesting and charge transfer capacities and thus can serve as outstanding crystalline catalysts to achieve efficient PEC overall reaction, that is, the integration of anodic organic pollutant 4-chlorophenol (4-CP) degradation and cathodic wastewater-to-H2 conversion. These TOCs can all exhibit very high PEC activity and degradation efficiency of 4-CP. Especially, Ti12Fc2Ac4 decorated with bifunctionalized ligands exhibits better PEC degradation efficiency (over 99%) and H2 generation than Ti10Ac6 and Ti10Fc8 modified with a monofunctionalized ligand. The study of the 4-CP degradation pathway and mechanism revealed that such better PEC performance of Ti12Fc2Ac4 is probably due to its stronger interactions with the 4-CP molecule and better •OH radical production. This work not only presents the effective combination of organic pollutant degradation and simultaneously H2 evolution reaction using crystalline coordination clusters as both anodic and cathodic catalyst but also develops a new PEC application for crystalline coordination compounds.
Collapse
Affiliation(s)
- Jing-Jing Liu
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Sheng-Nan Sun
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jiang Liu
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Yi Kuang
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jing-Wen Shi
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Long-Zhang Dong
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ning Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jia-Ni Lu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jiao-Min Lin
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shun-Li Li
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ya-Qian Lan
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
44
|
Deng G, Lee K, Deng H, Malola S, Bootharaju MS, Häkkinen H, Zheng N, Hyeon T. Alkynyl-Protected Chiral Bimetallic Ag 22 Cu 7 Superatom with Multiple Chirality Origins. Angew Chem Int Ed Engl 2023; 62:e202217483. [PMID: 36581588 DOI: 10.1002/anie.202217483] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Understanding the origin of chirality in the nanostructured materials is essential for chiroptical and catalytic applications. Here we report a chiral AgCu superatomic cluster, [Ag22 Cu7 (C≡CR)16 (PPh3 )5 Cl6 ](PPh4 ), Ag22 Cu7 , protected by an achiral alkynyl ligand (HC≡CR: 3,5-bis(trifluoromethyl)phenylacetylene). Its crystal structure comprises a rare interpenetrating biicosahedral Ag17 Cu2 core, which is stabilized by four different types of motifs: one Cu(C≡CR)2 , four -C≡CR, two chlorides and one helical Ag5 Cu4 (C≡CR)10 (PPh3 )5 Cl4 . Structural analysis reveals that Ag22 Cu7 exhibits multiple chirality origins, including the metal core, the metal-ligand interface and the ligand layer. Furthermore, the circular dichroism spectra of R/S-Ag22 Cu7 are obtained by employing appropriate chiral molecules as optical enrichment agents. DFT calculations show that Ag22 Cu7 is an eight-electron superatom, confirm that the cluster is chirally active, and help to analyze the origins of the circular dichroism.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongwen Deng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Nanfeng Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
45
|
Searching for Systems with Planar Hexacoordinate Carbons. ATOMS 2023. [DOI: 10.3390/atoms11030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Here, we present evidence that the D2h M2C50/2+ (M = Li-K, Be-Ca, Al-In, and Zn) species comprises planar hexacoordinate carbon (phC) structures that exhibit four covalent and two electrostatic interactions. These findings have been made possible using evolutionary methods for exploring the potential energy surface (AUTOMATON program) and the Interacting Quantum Atoms (IQA) methodology, which support the observed bonding interactions. It is worth noting, however, that these structures are not the global minimum. Nonetheless, incorporating two cyclopentadienyl anion ligands (Cp) into the CaC52+ system has enhanced the relative stability of the phC isomer. Moreover, cycloparaphenylene ([8]CPP) provides system protection and kinetic stability. These results indicate that using appropriate ligands presents a promising approach for expanding the chemistry of phC species.
Collapse
|
46
|
Biao Wu, Li XX, Zheng ST, Xie J. The first polyoxoniobate-templated silver cluster with temperature-dependent luminescent emission. Chem Commun (Camb) 2023; 59:2927-2930. [PMID: 36799226 DOI: 10.1039/d3cc00128h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The compound [(Nb6O19)@Ag34(tBuCC)24(CH3COO)2] (Ag34) was synthesized using the solvothermal method combined with volatilization. This was the first case, to the best of our knowledge, of isolating a silver cluster containing a polyoxoniobate (PONb) template. The luminescence, solution behavior and solid-state stability of Ag34 were studied in detail. Electrospray ionization mass spectrometry indicated that Ag34 can maintain the integrity of its skeleton in solution. Detection of temperature could be a potential application of its unique luminescent behavior. We expect this work to inspire further fabrications of PONb-templated high-nuclearity silver clusters.
Collapse
Affiliation(s)
- Biao Wu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China. .,Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China. .,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
47
|
Wang YM, Lin XC, Mo KM, Xie M, Huang YL, Ning GH, Li D. An Atomically Precise Pyrazolate-Protected Copper Nanocluster Exhibiting Exceptional Stability and Catalytic Activity. Angew Chem Int Ed Engl 2023; 62:e202218369. [PMID: 36573694 DOI: 10.1002/anie.202218369] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 12/28/2022]
Abstract
The synthesis of atomically precise copper nanoclusters (Cu-NCs) with high chemical stability is a prerequisite for practical applications, yet still remains a long-standing challenge. Herein, we have prepared a pyrazolate-protected Cu-NC (Cu8), which exhibited exceptional chemical stability either in solid-state or in solution. The crystals of Cu8 are still suitable for single crystal X-ray diffraction analysis even after being treated with boiling water, 8 wt % H2 O2 , high concentrated acid (1 M HCl) or saturated base (≈20 M KOH), respectively. More importantly, the structure of Cu8 in solution also remained intact toward oxygen, organic acid (100 eq. HOAc) or base (400 eq. dibutylamine) confirmed by 1 H NMR and UV/Vis analysis. Taking advantage of high alkali-resistant, Cu8 illustrates excellent catalytic activity for the synthesis of indolizines, and it can be reused for at least 10 cycles without losing catalytic performance.
Collapse
Affiliation(s)
- Yu-Mei Wang
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xiao-Chun Lin
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Kai-Ming Mo
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Mo Xie
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Guo-Hong Ning
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
48
|
Gupta RK, Li L, Wang Z, Han BL, Feng L, Gao ZY, Tung CH, Sun D. Regulating the assembly and expansion of the silver cluster from the Ag 37 to Ag 46 nanowheel driven by heteroanions. Chem Sci 2023; 14:1138-1144. [PMID: 36756341 PMCID: PMC9891368 DOI: 10.1039/d2sc06436g] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022] Open
Abstract
Precise control over the shape and size of metal nanoclusters through anion template-driven self-assembly is one of the key scientific goals in the nanocluster community, however, it is still not understood comprehensively. In this work, we report the controllable synthesis and atomically precise structures of silver nanowheels Ag37 and Ag46, using homo (Cl- ions) and heteroanion (Cl- and CrO4 2- ions) template strategies, along with macrocyclic p-phenyl-thiacalix[4]arene and small iPrS- ligands. Structural analyses revealed that in Ag37, Cl- ions serve as both local and global templates, whereas CrO4 2- ions function as local and Cl- ions as global templates in Ag46, resulting in a pentagonal nanowheel (Ag37) and a hexagonal (Ag46) nanowheel. The larger ionic size and more negative charges of CrO4 2- ions than Cl- ions offer more coordination sites for the silver atoms and are believed to be the key factors that drive the nanowheel core to expand significantly. Also, by taking advantage of the deep cavity of thiacalix[4]arene with an extended phenyl group, Ag46 has been used as a host material for dye adsorption depending on the charge and size of organic dyes. The successful use of heteroanions to control the expansion of well-defined silver nanowheels fills the knowledge gap in understanding the directing role of heteroanions in dictating the shape and size of nanoclusters at the atomic level.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Li Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Bao-Liang Han
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Lei Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal UniversityXinxiang453007China
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| |
Collapse
|
49
|
Tetranuclear Copper(I) and Silver(I) Pyrazolate Adducts with 1,1'-Dimethyl-2,2'-bibenzimidazole: Influence of Structure on Photophysics. Molecules 2023; 28:molecules28031189. [PMID: 36770855 PMCID: PMC9920877 DOI: 10.3390/molecules28031189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
A reaction of a cyclic trinuclear copper(I) or silver(I) pyrazolate complex ([MPz]3, M = Cu, Ag) with 1,1'-dimethyl-2,2'-bibenzimidazole (L) leads to the formation of tetranuclear adducts decorated by one or two molecules of a diimine ligand, depending on the amount of the ligand added (0.75 or 1.5 equivalents). The coordination of two L molecules stabilizes the formation of a practically idealized tetrahedral four-metal core in the case of a copper-containing complex and a distorted tetrahedron in the case of a Ag analog. In contrast, complexes containing one molecule of diimine possess two types of metals, two- and three-coordinated, forming the significantly distorted central M4 cores. The diimine ligands are twisted in these complexes with dihedral angles of ca. 50-60°. A TD-DFT analysis demonstrated the preference of a triplet state for the twisted 1,1'-dimethyl-2,2'-bibenzimidazole and a singlet state for the planar geometry. All obtained complexes demonstrated, in a solution, the blue fluorescence of the ligand-centered (LC) nature typical for free diimine. In contrast, a temperature decrease to 77 K stabilized the structure close to that observed in the solid state and activated the triplet states, leading to green phosphorescence at ca. 500 nm. The silver-containing complex Ag4Pz4L exhibited dual emission from both the singlet and triplet states, even at room temperature.
Collapse
|
50
|
Bevilacqua M, Roverso M, Bogialli S, Graiff C, Biffis A. From Au 11 to Au 13: Tailored Synthesis of Superatomic Di-NHC/PPh 3-Stabilized Molecular Gold Nanoclusters. Inorg Chem 2023; 62:1383-1393. [PMID: 36638827 PMCID: PMC9890486 DOI: 10.1021/acs.inorgchem.2c03331] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herein, we report a new method to synthesize molecular gold nanoclusters (AuNCs) stabilized by phosphine (PR3) and di-N-heterocyclic carbene (di-NHC) ligands. The interaction of di-NHC gold(I) complexes, with the general formula [(di-NHC)Au2Cl2] with well-known [Au11(PPh3)8Cl2]Cl clusters provides three new classes of AuNCs through a controllable reaction sequence. The synthesis involves an initial ligand metathesis reaction to produce [Au11(di-NHC)(PPh3)6Cl2]+ (type 1 clusters), followed by a thermally induced rearrangement/metal complex addition with the formation of Au13 clusters [Au13(di-NHC)2(PPh3)4Cl4]+ (type 2 clusters). Finally, an additional metathesis process yields [Au13(di-NHC)3(PPh3)3Cl3]2+ (type 3 clusters). The electronic and steric properties of the employed di-NHC ligand affect the product distribution, leading to the isolation and full characterization of different clusters as the main product. A type 3 cluster has been also structurally characterized and was preliminarily found to be strongly emissive in solution.
Collapse
Affiliation(s)
- Matteo Bevilacqua
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via F. Marzolo 1, 35131Padova, Italy,Consorzio
per le Reattività Chimiche e la Catalisi (CIRCC), c/o Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via
F. Marzolo 1, 35131Padova, Italy
| | - Marco Roverso
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via F. Marzolo 1, 35131Padova, Italy
| | - Sara Bogialli
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via F. Marzolo 1, 35131Padova, Italy
| | - Claudia Graiff
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124Parma, Italy
| | - Andrea Biffis
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via F. Marzolo 1, 35131Padova, Italy,Consorzio
per le Reattività Chimiche e la Catalisi (CIRCC), c/o Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via
F. Marzolo 1, 35131Padova, Italy,
| |
Collapse
|