1
|
Xu Z, Hattori S, Masuda Y, Toyoda S, Koba K, Yu P, Yoshida N, Du ZJ, Senoo K. Unprecedented N 2O production by nitrate-ammonifying Geobacteraceae with distinctive N 2O isotopocule signatures. mBio 2024; 15:e0254024. [PMID: 39475233 PMCID: PMC11633192 DOI: 10.1128/mbio.02540-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 12/12/2024] Open
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA), driven by nitrate-ammonifying bacteria, is an increasingly appreciated nitrogen-cycling pathway in terrestrial ecosystems. This process reportedly generates nitrous oxide (N2O), a strong greenhouse gas with ozone-depleting effects. However, it remains poorly understood how N2O is produced by environmental nitrate-ammonifiers and how to identify DNRA-derived N2O. In this study, we characterize two novel enzymatic pathways responsible for N2O production in Geobacteraceae strains, which are predominant nitrate-ammonifying bacteria in paddy soils. The first pathway involves a membrane-bound nitrate reductase (Nar) and a hybrid cluster protein complex (Hcp-Hcr) that catalyzes the conversion of NO2- to NO and subsequently to N2O. The second pathway is observed in Nar-deficient bacteria, where the nitrite reductase (NrfA) generates NO, which is then reduced to N2O by Hcp-Hcr. These enzyme combinations are prevalent across the domain Bacteria. Moreover, we observe distinctive isotopocule signatures of DNRA-derived N2O from other established N2O production pathways, especially through the highest 15N-site preference (SP) values (43.0‰-49.9‰) reported so far, indicating a robust means for N2O source partitioning. Our findings demonstrate two novel N2O production pathways in DNRA that can be isotopically distinguished from other pathways.IMPORTANCEStimulation of DNRA is a promising strategy to improve fertilizer efficiency and reduce N2O emission in agriculture soils. This process converts water-leachable NO3- and NO2- into soil-adsorbable NH4+, thereby alleviating nitrogen loss and N2O emission resulting from denitrification. However, several studies have noted that DNRA can also be a source of N2O, contributing to global warming. This contribution is often masked by other N2O generation processes, leading to a limited understanding of DNRA as an N2O source. Our study reveals two widespread yet overlooked N2O production pathways in Geobacteraceae, the predominant DNRA bacteria in paddy soils, along with their distinctive isotopocule signatures. These findings offer novel insights into the role of the DNRA bacteria in N2O production and underscore the significance of N2O isotopocule signatures in microbial N2O source tracking.
Collapse
Affiliation(s)
- Zhenxing Xu
- Marine College, Shandong University, Weihai, China
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shohei Hattori
- International Center for Isotope Effects Research (ICIER), Nanjing University, Nanjing, China
- Frontiers Science Center for Critical Earth Material Cycling, State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Sakae Toyoda
- School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Keisuke Koba
- Center for Ecological Research, Kyoto University, Shiga, Japan
| | - Pei Yu
- SDU-ANU Joint Science College, Shandong University, Weihai, China
| | - Naohiro Yoshida
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- National Institute of Information and Communications Technology, Tokyo, Japan
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, China
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Saghaï A, Hallin S. Diversity and ecology of NrfA-dependent ammonifying microorganisms. Trends Microbiol 2024; 32:602-613. [PMID: 38462391 DOI: 10.1016/j.tim.2024.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Nitrate ammonifiers are a taxonomically diverse group of microorganisms that reduce nitrate to ammonium, which is released, and thereby contribute to the retention of nitrogen in ecosystems. Despite their importance for understanding the fate of nitrate, they remain a largely overlooked group in the nitrogen cycle. Here, we present the latest advances on free-living microorganisms using NrfA to reduce nitrite during ammonification. We describe their diversity and ecology in terrestrial and aquatic environments, as well as the environmental factors influencing the competition for nitrate with denitrifiers that reduce nitrate to gaseous nitrogen species, including the greenhouse gas nitrous oxide (N2O). We further review the capacity of ammonifiers for other redox reactions, showing that they likely play multiple roles in the cycling of elements.
Collapse
Affiliation(s)
- Aurélien Saghaï
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
3
|
Fujishiro T, Takaoka K. Class III hybrid cluster protein homodimeric architecture shows evolutionary relationship with Ni, Fe-carbon monoxide dehydrogenases. Nat Commun 2023; 14:5609. [PMID: 37709776 PMCID: PMC10502027 DOI: 10.1038/s41467-023-41289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Hybrid cluster proteins (HCPs) are Fe-S-O cluster-containing metalloenzymes in three distinct classes (class I and II: monomer, III: homodimer), all of which structurally related to homodimeric Ni, Fe-carbon monoxide dehydrogenases (CODHs). Here we show X-ray crystal structure of class III HCP from Methanothermobacter marburgensis (Mm HCP), demonstrating its homodimeric architecture structurally resembles those of CODHs. Also, despite the different architectures of class III and I/II HCPs, [4Fe-4S] and hybrid clusters are found in equivalent positions in all HCPs. Structural comparison of Mm HCP and CODHs unveils some distinct features such as the environments of their homodimeric interfaces and the active site metalloclusters. Furthermore, structural analysis of Mm HCP C67Y and characterization of several Mm HCP variants with a Cys67 mutation reveal the significance of Cys67 in protein structure, metallocluster binding and hydroxylamine reductase activity. Structure-based bioinformatics analysis of HCPs and CODHs provides insights into the structural evolution of the HCP/CODH superfamily.
Collapse
Affiliation(s)
- Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, 338-8570, Japan.
| | - Kyosei Takaoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
4
|
Lemaire ON, Belhamri M, Wagner T. Structural and biochemical elucidation of class I hybrid cluster protein natively extracted from a marine methanogenic archaeon. Front Microbiol 2023; 14:1179204. [PMID: 37250035 PMCID: PMC10210160 DOI: 10.3389/fmicb.2023.1179204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023] Open
Abstract
Whilst widespread in the microbial world, the hybrid cluster protein (HCP) has been paradoxically a long-time riddle for microbiologists. During three decades, numerous studies on a few model organisms unravelled its structure and dissected its metal-containing catalyst, but the physiological function of the enzyme remained elusive. Recent studies on bacteria point towards a nitric oxide reductase activity involved in resistance during nitrate and nitrite reduction as well as host infection. In this study, we isolated and characterised a naturally highly produced HCP class I from a marine methanogenic archaeon grown on ammonia. The crystal structures of the enzyme in a reduced and partially oxidised state, obtained at a resolution of 1.45 and 1.36-Å, respectively, offered a precise picture of the archaeal enzyme intimacy. There are striking similarities with the well-studied enzymes from Desulfovibrio species regarding sequence, kinetic parameters, structure, catalyst conformations, and internal channelling systems. The close phylogenetic relationship between the enzymes from Methanococcales and many Bacteria corroborates this similarity. Indeed, Methanococcales HCPs are closer to these bacterial homologues than to any other archaeal enzymes. The relatively high constitutive production of HCP in M. thermolithotrophicus, in the absence of a notable nitric oxide source, questions the physiological function of the enzyme in these ancient anaerobes.
Collapse
|
5
|
Baleeiro FCF, Varchmin L, Kleinsteuber S, Sträuber H, Neumann A. Formate-induced CO tolerance and methanogenesis inhibition in fermentation of syngas and plant biomass for carboxylate production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:26. [PMID: 36805806 PMCID: PMC9936662 DOI: 10.1186/s13068-023-02271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/29/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Production of monocarboxylates using microbial communities is highly dependent on local and degradable biomass feedstocks. Syngas or different mixtures of H2, CO, and CO2 can be sourced from biomass gasification, excess renewable electricity, industrial off-gases, and carbon capture plants and co-fed to a fermenter to alleviate dependence on local biomass. To understand the effects of adding these gases during anaerobic fermentation of plant biomass, a series of batch experiments was carried out with different syngas compositions and corn silage (pH 6.0, 32 °C). RESULTS Co-fermentation of syngas with corn silage increased the overall carboxylate yield per gram of volatile solids (VS) by up to 29% (0.47 ± 0.07 g gVS-1; in comparison to 0.37 ± 0.02 g gVS-1 with a N2/CO2 headspace), despite slowing down biomass degradation. Ethylene and CO exerted a synergistic effect in preventing methanogenesis, leading to net carbon fixation. Less than 12% of the electrons were misrouted to CH4 when either 15 kPa CO or 5 kPa CO + 1.5 kPa ethylene was used. CO increased the selectivity to acetate and propionate, which accounted for 85% (electron equivalents) of all products at 49 kPa CO, by favoring lactic acid bacteria and actinobacteria over n-butyrate and n-caproate producers. Inhibition of n-butyrate and n-caproate production by CO happened even when an inoculum preacclimatized to syngas and lactate was used. Intriguingly, the effect of CO on n-butyrate and n-caproate production was reversed when formate was present in the broth. CONCLUSIONS The concept of co-fermenting syngas and plant biomass shows promise in three aspects: by making anaerobic fermentation a carbon-fixing process, by increasing the yields of short-chain carboxylates (propionate and acetate), and by minimizing electron losses to CH4. Moreover, a model was proposed for how formate can alleviate CO inhibition in certain acidogenic bacteria. Testing the fermentation of syngas and plant biomass in a continuous process could potentially improve selectivity to n-butyrate and n-caproate by enriching chain-elongating bacteria adapted to CO and complex biomass.
Collapse
Affiliation(s)
- Flávio C F Baleeiro
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany
| | - Lukas Varchmin
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Anke Neumann
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany.
| |
Collapse
|
6
|
Guo K, Hakobyan A, Glatter T, Paczia N, Liesack W. Methylocystis sp. Strain SC2 Acclimatizes to Increasing NH 4+ Levels by a Precise Rebalancing of Enzymes and Osmolyte Composition. mSystems 2022; 7:e0040322. [PMID: 36154142 PMCID: PMC9600857 DOI: 10.1128/msystems.00403-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
A high NH4+ load is known to inhibit bacterial methane oxidation. This is due to a competition between CH4 and NH3 for the active site of particulate methane monooxygenase (pMMO), which converts CH4 to CH3OH. Here, we combined global proteomics with amino acid profiling and nitrogen oxides measurements to elucidate the cellular acclimatization response of Methylocystis sp. strain SC2 to high NH4+ levels. Relative to 1 mM NH4+, a high (50 mM and 75 mM) NH4+ load under CH4-replete conditions significantly increased the lag phase duration required for proteome adjustment. The number of differentially regulated proteins was highly significantly correlated with an increasing NH4+ load. The cellular responses to increasing ionic and osmotic stress involved a significant upregulation of stress-responsive proteins, the K+ "salt-in" strategy, the synthesis of compatible solutes (glutamate and proline), and the induction of the glutathione metabolism pathway. A significant increase in the apparent Km value for CH4 oxidation during the growth phase was indicative of increased pMMO-based oxidation of NH3 to toxic hydroxylamine. The detoxifying activity of hydroxlyamine oxidoreductase (HAO) led to a significant accumulation of NO2- and, upon decreasing O2 tension, N2O. Nitric oxide reductase and hybrid cluster proteins (Hcps) were the candidate enzymes for the production of N2O. In summary, strain SC2 has the capacity to precisely rebalance enzymes and osmolyte composition in response to increasing NH4+ exposure, but the need to simultaneously combat both ionic-osmotic stress and the toxic effects of hydroxylamine may be the reason why its acclimatization capacity is limited to 75 mM NH4+. IMPORTANCE In addition to reducing CH4 emissions from wetlands and landfills, the activity of alphaproteobacterial methane oxidizers of the genus Methylocystis contributes to the sink capacity of forest and grassland soils for atmospheric methane. The methane-oxidizing activity of Methylocystis spp. is, however, sensitive to high NH4+ concentrations. This is due to the competition of CH4 and NH3 for the active site of particulate methane monooxygenase, thereby resulting in the production of toxic hydroxylamine with an increasing NH4+ load. An understanding of the physiological and molecular response mechanisms of Methylocystis spp. is therefore of great importance. Here, we combined global proteomics with amino acid profiling and NOx measurements to disentangle the cellular mechanisms underlying the acclimatization of Methylocystis sp. strain SC2 to an increasing NH4+ load.
Collapse
Affiliation(s)
- Kangli Guo
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anna Hakobyan
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Werner Liesack
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
7
|
Crack JC, Balasiny BK, Bennett SP, Rolfe MD, Froes A, MacMillan F, Green J, Cole JA, Le Brun NE. The Di-Iron Protein YtfE Is a Nitric Oxide-Generating Nitrite Reductase Involved in the Management of Nitrosative Stress. J Am Chem Soc 2022; 144:7129-7145. [PMID: 35416044 PMCID: PMC9052748 DOI: 10.1021/jacs.1c12407] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 01/09/2023]
Abstract
Previously characterized nitrite reductases fall into three classes: siroheme-containing enzymes (NirBD), cytochrome c hemoproteins (NrfA and NirS), and copper-containing enzymes (NirK). We show here that the di-iron protein YtfE represents a physiologically relevant new class of nitrite reductases. Several functions have been previously proposed for YtfE, including donating iron for the repair of iron-sulfur clusters that have been damaged by nitrosative stress, releasing nitric oxide (NO) from nitrosylated iron, and reducing NO to nitrous oxide (N2O). Here, in vivo reporter assays confirmed that Escherichia coli YtfE increased cytoplasmic NO production from nitrite. Spectroscopic and mass spectrometric investigations revealed that the di-iron site of YtfE exists in a mixture of forms, including nitrosylated and nitrite-bound, when isolated from nitrite-supplemented, but not nitrate-supplemented, cultures. Addition of nitrite to di-ferrous YtfE resulted in nitrosylated YtfE and the release of NO. Kinetics of nitrite reduction were dependent on the nature of the reductant; the lowest Km, measured for the di-ferrous form, was ∼90 μM, well within the intracellular nitrite concentration range. The vicinal di-cysteine motif, located in the N-terminal domain of YtfE, was shown to function in the delivery of electrons to the di-iron center. Notably, YtfE exhibited very low NO reductase activity and was only able to act as an iron donor for reconstitution of apo-ferredoxin under conditions that damaged its di-iron center. Thus, YtfE is a high-affinity, low-capacity nitrite reductase that we propose functions to relieve nitrosative stress by acting in combination with the co-regulated NO-consuming enzymes Hmp and Hcp.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Basema K. Balasiny
- Institute
of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sophie P. Bennett
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Matthew D. Rolfe
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Afonso Froes
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Fraser MacMillan
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Jeffrey Green
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jeffrey A. Cole
- Institute
of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Nick E. Le Brun
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
8
|
Van Stappen C, Jiménez-Vicente E, Pérez-González A, Yang ZY, Seefeldt LC, DeBeer S, Dean DR, Decamps L. A conformational role for NifW in the maturation of molybdenum nitrogenase P-cluster. Chem Sci 2022; 13:3489-3500. [PMID: 35432878 PMCID: PMC8943848 DOI: 10.1039/d1sc06418e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Reduction of dinitrogen by molybdenum nitrogenase relies on complex metalloclusters: the [8Fe:7S] P-cluster and the [7Fe:9S:Mo:C:homocitrate] FeMo-cofactor. Although both clusters bear topological similarities and require the reductive fusion of [4Fe:4S] sub-clusters to achieve their respective assemblies, P-clusters are assembled directly on the NifD2K2 polypeptide prior to the insertion of FeMo-co, which is fully assembled separately from NifD2K2. P-cluster maturation involves the iron protein NifH2 as well as several accessory proteins, whose role has not been elucidated. In the present work, two NifD2K2 species bearing immature P-clusters were isolated from an Azotobacter vinelandii strain in which the genes encoding NifH and the accessory protein NifZ were deleted, and characterized by X-ray absorption spectroscopy and EPR. These analyses showed that both NifD2K2 complexes harbor clusters that are electronically and structurally similar, with each NifDK unit containing two [4Fe:4S]2+/+ clusters. Binding of the accessory protein NifW parallels a decrease in the distance between these clusters, as well as a subtle change in their coordination. These results support a conformational role for NifW in P-cluster biosynthesis, bringing the two [4Fe:4S] precursors closer prior to their fusion, which may be crucial in challenging cellular contexts.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - Emilio Jiménez-Vicente
- Department of Biochemistry, Virginia Polytechnic Institute and State University Blacksburg VA 24061 USA
| | - Ana Pérez-González
- Department of Biochemistry, Virginia Polytechnic Institute and State University Blacksburg VA 24061 USA
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University Logan UT 84322 USA
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University Logan UT 84322 USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - Dennis R Dean
- Department of Biochemistry, Virginia Polytechnic Institute and State University Blacksburg VA 24061 USA
| | - Laure Decamps
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| |
Collapse
|