1
|
Kouhi M, de Souza Araújo IJ, Asa'ad F, Zeenat L, Bojedla SSR, Pati F, Zolfagharian A, Watts DC, Bottino MC, Bodaghi M. Recent advances in additive manufacturing of patient-specific devices for dental and maxillofacial rehabilitation. Dent Mater 2024; 40:700-715. [PMID: 38401992 DOI: 10.1016/j.dental.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVES Customization and the production of patient-specific devices, tailoring the unique anatomy of each patient's jaw and facial structures, are the new frontiers in dentistry and maxillofacial surgery. As a technological advancement, additive manufacturing has been applied to produce customized objects based on 3D computerized models. Therefore, this paper presents advances in additive manufacturing strategies for patient-specific devices in diverse dental specialties. METHODS This paper overviews current 3D printing techniques to fabricate dental and maxillofacial devices. Then, the most recent literature (2018-2023) available in scientific databases reporting advances in 3D-printed patient-specific devices for dental and maxillofacial applications is critically discussed, focusing on the major outcomes, material-related details, and potential clinical advantages. RESULTS The recent application of 3D-printed customized devices in oral prosthodontics, implantology and maxillofacial surgery, periodontics, orthodontics, and endodontics are presented. Moreover, the potential application of 4D printing as an advanced manufacturing technology and the challenges and future perspectives for additive manufacturing in the dental and maxillofacial area are reported. SIGNIFICANCE Additive manufacturing techniques have been designed to benefit several areas of dentistry, and the technologies, materials, and devices continue to be optimized. Image-based and accurately printed patient-specific devices to replace, repair, and regenerate dental and maxillofacial structures hold significant potential to maximize the standard of care in dentistry.
Collapse
Affiliation(s)
- Monireh Kouhi
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Isaac J de Souza Araújo
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lubna Zeenat
- School of Engineering, Deakin University, Geelong 3216, Australia; Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Sri Sai Ramya Bojedla
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Falguni Pati
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong 3216, Australia
| | - David C Watts
- School of Medical Sciences, University of Manchester, Manchester, UK
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| |
Collapse
|
2
|
Sürer E, Ünal M, Gül Aygün EB, Ucar Y. Evaluating the conversion degree of interim restorative materials produced by different 3-dimensional printer technologies. J Prosthet Dent 2023; 130:654.e1-654.e6. [PMID: 37563026 DOI: 10.1016/j.prosdent.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023]
Abstract
STATEMENT OF PROBLEM Three-dimensional (3D) printers are a relatively new technology, but the degree of conversion (DC) of the resin specimens produced by using this method is currently unknown. However, the DC of resin interim restorative materials is critical for their biocompatibility and physical properties. PURPOSE The purpose of this in vitro study was to evaluate the DC of interim restorative materials produced by using different 3D printer technologies and compare them with conventionally manufactured polymethyl methacrylate. MATERIAL AND METHODS Stereolithography, digital light processing, and liquid crystal display 3D printers were used as experimental groups, and a conventional (C) method was used as the control. Five different 3D printers (DWS Systems, Formlabs [FL], Asiga, Mega, and Vega) were included. The 3D printed specimens were designed in a rectangular prism geometry (10×4×2.5 mm) by using a computer-aided design software program (Materialise 3-matic) and printed with a layer thickness of 50 µm in the horizontal direction (n=15). Fourier transform infrared spectroscopy (FT-IR) spectra were measured in 3 steps: the liquid state of the resins, after washing with 99% isopropanol, and after final polymerization. For the C method, FT-IR spectra were assessed in 2 steps: immediately after mixing the liquid and powder and after polymerization. Statistical analysis of the data was performed with 1-way ANOVA followed by the post hoc Tukey honestly significant difference (HSD) test (α=.05). RESULTS There was no statistically significant difference in DC values between the 3D printed groups (P>.05). There was a statistically significant difference only between FL and the C in terms of DC (P=.042). CONCLUSIONS Three-dimensionally printed interim resin materials found comparable results with those of the C group. The DC was not affected by different 3D printing technologies.
Collapse
Affiliation(s)
- Ebru Sürer
- Research Assistant, Department of Prosthetic Dentistry, Faculty of Dentistry, Çukurova University, Adana, Turkey
| | - Mehmet Ünal
- Research Assistant, Department of Prosthetic Dentistry, Faculty of Dentistry, Çukurova University, Adana, Turkey
| | - Esma Başak Gül Aygün
- Associate Professor, Department of Prosthetic Dentistry, Faculty of Dentistry, Çukurova University, Adana, Turkey.
| | - Yurdanur Ucar
- Professor, Department of Prosthetic Dentistry, Faculty of Dentistry, Çukurova University, Adana, Turkey; and Private practice, Antalya, Turkey
| |
Collapse
|
3
|
Günal-Abduljalil B, Önöral Ö, Ongun S. Micro-shear bond strengths of resin-matrix ceramics subjected to different surface conditioning strategies with or without coupling agent application. J Adv Prosthodont 2021; 13:180-190. [PMID: 34234928 PMCID: PMC8250191 DOI: 10.4047/jap.2021.13.3.180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study aimed to assess the influence of various micromechanical surface conditioning (MSC) strategies with or without coupling agent (silane) application on the micro-shear bond strength (µSBS) of resin- matrix ceramics (RMCs). MATERIALS AND METHODS GC Cerasmart (GC), Lava Ultimate (LU), Vita Enamic (VE), Voco Grandio (VG), and Brilliant Crios (BC) were cut into 1.0-mm-thick slices (n = 32 per RMC) and separated into four groups according to the MSC strategy applied: control-no conditioning (C), air-borne particle abrasion with aluminum oxide particles (APA), 2W- and 3W-Er,Cr:YSGG group coding is missing. The specimens in each group were further separated into silane-applied and silane-free subgroups. Each specimen received two resin cement microtubules (n = 8 per subgroup). A shear force was applied to the adhesive interface through a universal test machine and µSBS values were measured. Data were statistically analyzed by using 3-way ANOVA and Tukey HSD test. Failure patterns were scrutinized under stereomicroscope. RESULTS RMC material type, MSC strategy, and silanization influenced the µSBS values (P<.05). In comparison to the control group, µSBS values increased after all other MSC strategies (P<.05) while the differences among these strategies were insignificant (P>.05). For control and APA, there were insignificant differences between RMCs (P>.05). The silanization decreased µSBS values of RMCs except for VE. Considerable declines were observed in GC and BC (P<.05). CONCLUSION MSC strategies can enhance bond strength values at the RMC - cement interface. However, the choice of MSC strategy is dependent on RMC material type and each RMC can require a dedicated way of conditioning.
Collapse
Affiliation(s)
- Burcu Günal-Abduljalil
- Department of Prosthodontics, Faculty of Dentistry, Near East University, Mersin, Turkey
| | - Özay Önöral
- Department of Prosthodontics, Faculty of Dentistry, Near East University, Mersin, Turkey
| | - Salim Ongun
- Department of Prosthodontics, Faculty of Dentistry, Near East University, Mersin, Turkey
| |
Collapse
|
4
|
Sulaiman TA. Materials in digital dentistry—A review. J ESTHET RESTOR DENT 2020; 32:171-181. [DOI: 10.1111/jerd.12566] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/06/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Taiseer A. Sulaiman
- Division Director of Operative Dentistry and Biomaterials, Department of Restorative SciencesUNC Adams School of Dentistry Chapel Hill North Carolina
| |
Collapse
|
5
|
Methani MM, Revilla-León M, Zandinejad A. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all-ceramic crowns: A review. J ESTHET RESTOR DENT 2019; 32:182-192. [PMID: 31701629 DOI: 10.1111/jerd.12535] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/20/2019] [Accepted: 09/22/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This article aims to provide a review of the additive manufacturing technologies and the processing parameters that have been investigated for the fabrication of all ceramic crowns. OVERVIEW Additive manufacturing has crept its way into the field of dentistry for the fabrication of resin and metal prosthesis. To evaluate the current status of additive manufacturing for the fabrication of all ceramic crowns, literature review was targeted to include publications pertaining to the fabrication of dental ceramics and all ceramic crowns. With respect to the additive manufacturing of dental ceramics, five technologies have been investigated to date: stereolithography, material extrusion, powder based fusion, direct inkjet printing, and binder jetting. The processing parameters and experimental outcomes were collated and described for each of the aforementioned technologies. CONCLUSION Additive manufacturing has demonstrated promising experimental outcomes and corroborated to the fabrication all ceramic crowns. However, the technology is yet to witness a commercial breakthrough within this domain. CLINICAL SIGNIFICANCE Additive manufacturing mitigates raw material wastage and tooling stresses that are associated with milling of ceramics. Continued research and development can lead to its approbation as an alternate technology for manufacturing all ceramic restorations.
Collapse
Affiliation(s)
| | - Marta Revilla-León
- AEGD residency, Texas A&M University, College of Dentistry, Dallas, Texas.,Affiliate Faculty Graduate Prosthodontics, School of Dentistry, University of Washington, Seattle, Washington.,Revilla Research Center, Madrid, Spain
| | - Amirali Zandinejad
- AEGD residency, Texas A&M University, College of Dentistry, Dallas, Texas
| |
Collapse
|
6
|
Galante R, Figueiredo-Pina CG, Serro AP. Additive manufacturing of ceramics for dental applications: A review. Dent Mater 2019; 35:825-846. [PMID: 30948230 DOI: 10.1016/j.dental.2019.02.026] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/15/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The main goal of this review is to provide a detailed and comprehensive description of the published work from the past decade regarding AM of ceramic materials with possible applications in dentistry. The main printable materials and most common technologies are also addressed, underlining their advantages and main drawbacks. METHODS Online databases (Web of knowledge, Science Direct, PubMed) were consulted on this topic. Published work from 2008 to 2018 was collected, analyzed and the relevant papers were selected for inclusion on this review. RESULTS Ceramic materials are broadly used in dentistry to restore/replace damaged or missing teeth, due to their biocompatibility, chemical stability and mechanical and aesthetic properties. However, there are several unmet challenges regarding their processing and performance. Due to their brittleness nature, a very tight control of the manufacturing process is needed to obtain dental pieces with adequate mechanical properties. Additive manufacturing (AM) is an emerging technology that constitutes an interesting and viable manufacturing alternative to the conventional subtractive methods. AM enables the production of customized complex 3D parts in a more sustainable and less expensive way. AM of ceramics can be achieved with an extensive variety of methods. SIGNIFICANCE There is no perfect technology for all materials/applications, capable alone of fulfilling all the specificities and necessities of every patient. Although very promising, AM of ceramic dental materials remains understudied and further work is required to make it a widespread technology in dentistry.
Collapse
|
7
|
Accuracy and reproducibility of virtual edentulous casts created by laboratory impression scan protocols. J Prosthet Dent 2018; 120:389-395. [DOI: 10.1016/j.prosdent.2017.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022]
|
8
|
Mesmar S, Ruse ND. Interfacial Fracture Toughness of Adhesive Resin Cement-Lithium-Disilicate/Resin-Composite Blocks. J Prosthodont 2017; 28:e243-e251. [DOI: 10.1111/jopr.12672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2017] [Indexed: 11/30/2022] Open
Affiliation(s)
- Samer Mesmar
- Specialist prosthodontist in private practice; Montreal QC Canada
| | - N. Dorin Ruse
- Division of Biomaterials, Faculty of Dentistry; The University of British; Columbia Vancouver Canada
| |
Collapse
|
9
|
Kassapidou M, Franke Stenport V, Hjalmarsson L, Johansson CB. Cobalt-chromium alloys in fixed prosthodontics in Sweden. ACTA BIOMATERIALIA ODONTOLOGICA SCANDINAVICA 2017; 3:53-62. [PMID: 29242813 PMCID: PMC5724798 DOI: 10.1080/23337931.2017.1360776] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/25/2017] [Indexed: 11/05/2022]
Abstract
Aim: The aim of this study was to compile the usage of Co-Cr alloys in fixed prosthodontics (FP) among dental laboratories in Sweden. Methods: From March to October 2015, questionnaires were sent to 542 registered dental laboratories in Sweden. The questionnaires were divided in two parts, one for fixed dental-supported prosthodontics (FDP) and one for fixed implant-supported prosthodontics (FIP). Reminders were sent three times. Results: In total of 542 dental laboratories, 55% answered the questionnaires. Most dental laboratories use Co-Cr in FP, 134 (74%) in FDP and 89(66%) in FIP. The laboratories used Co-Cr alloys of various compositions in the prostheses, 35 for FDP and 30 for FIP. The most commonly used Co-Cr alloys for tooth-supported FDPs were (a) Wirobond® 280, (b) Cara SLM and (c) Wirobond® C. For implant-supported frameworks the frequently used alloys were: (a) Cara SLM, (b) Cara Milled and (c) Wirobond® 280. Except for the difference in composition of these alloys, they were also manufactured with various techniques. In tooth-supported prostheses the dominating technique was the cast technique while newer techniques as laser-sintering and milling were more commonly reported for implant-supported constructions. A fourth technique; the ‘pre-state’ milling was reported in FDP. Conclusion: More than 30 different Co-Cr alloys were reported as being used in FP. Thus, there is a need for studies exploring the mechanical and physical behavior and the biological response to the most commonly used Co-Cr alloys.
Collapse
Affiliation(s)
- Maria Kassapidou
- Department of Prosthetic Dentistry, Institute for Postgraduate Dental EducationJönköpingSweden.,Department of Prosthodontics/Dental Materials Science, Institute of Odontology, Sahlgrenska Academy, University of GothenburgGöteborgSweden
| | - Victoria Franke Stenport
- Department of Prosthodontics/Dental Materials Science, Institute of Odontology, Sahlgrenska Academy, University of GothenburgGöteborgSweden
| | - Lars Hjalmarsson
- Department of Prosthodontics/Dental Materials Science, Institute of Odontology, Sahlgrenska Academy, University of GothenburgGöteborgSweden.,Specialist Dental Clinic, Folktandvården Sörmland AB, The Mälar HospitalEskilstunaSweden.,Centre for Clinical Research Sörmland, Uppsala UniversityEskilstunaSweden
| | - Carina B Johansson
- Department of Prosthodontics/Dental Materials Science, Institute of Odontology, Sahlgrenska Academy, University of GothenburgGöteborgSweden
| |
Collapse
|
10
|
|
11
|
Measurement of J-integral in CAD/CAM dental ceramics and composite resin by digital image correlation. J Mech Behav Biomed Mater 2016; 62:240-246. [PMID: 27232827 DOI: 10.1016/j.jmbbm.2016.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 11/23/2022]
Abstract
Ceramic and composite resin blocks for CAD/CAM machining of dental restorations are becoming more common. The sample sizes affordable by these blocks are smaller than ideal for stress intensity factor (SIF) based tests. The J-integral measurement calls for full field strain measurement, making it challenging to conduct. Accordingly, the J-integral values of dental restoration materials used in CAD/CAM restorations have not been reported to date. Digital image correlation (DIC) provides full field strain maps, making it possible to calculate the J-integral value. The aim of this study was to measure the J-integral value for CAD/CAM restorative materials. Four types of materials (sintered IPS E-MAX CAD, non-sintered IPS E-MAX CAD, Vita Mark II and Paradigm MZ100) were used to prepare beam samples for three-point bending tests. J-integrals were calculated for different integral path size and locations with respect to the crack tip. J-integral at path 1 for each material was 1.26±0.31×10(-4)MPam for MZ 100, 0.59±0.28×10(-4)MPam for sintered E-MAX, 0.19±0.07×10(-4)MPam for VM II, and 0.21±0.05×10(-4)MPam for non-sintered E-MAX. There were no significant differences between different integral path size, except for the non-sintered E-MAX group. J-integral paths of non-sintered E-MAX located within 42% of the height of the sample provided consistent values whereas outside this range resulted in lower J-integral values. Moreover, no significant difference was found among different integral path locations. The critical SIF was calculated from J-integral (KJ) along with geometry derived SIF values (KI). KI values were comparable with KJ and geometry based SIF values obtained from literature. Therefore, DIC derived J-integral is a reliable way to assess the fracture toughness of small sized specimens for dental CAD/CAM restorative materials; however, with caution applied to the selection of J-integral path.
Collapse
|
12
|
Alghazzawi TF. Advancements in CAD/CAM technology: Options for practical implementation. J Prosthodont Res 2016; 60:72-84. [DOI: 10.1016/j.jpor.2016.01.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/10/2015] [Accepted: 01/16/2016] [Indexed: 12/13/2022]
|
13
|
Donovan TE, Marzola R, Becker W, Cagna DR, Eichmiller F, McKee JR, Metz JE, Albouy JP. Annual review of selected scientific literature: Report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2015; 114:756-809. [PMID: 26611624 DOI: 10.1016/j.prosdent.2015.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Terence E Donovan
- Chair, Committee on Scientific Investigation, American Academy of Restorative Dentistry (AARD); and Professor and Chair for Biomaterials, Department of Operative Dentistry, University of North Carolina School of Dentistry at Chapel Hill, NC.
| | - Riccardo Marzola
- Adjunct Professor, Fixed Implant Prosthodontics, University of Bologna; and Private practice, Ferrara, Italy
| | - William Becker
- Clinical Professor, Advanced Education in Prosthodontics, Herman Ostrow School of Dentistry, Los Angeles, Calif
| | - David R Cagna
- Associate Dean, Professor and Director, Advanced Prosthodontics, University of Tennessee Health Sciences Center, Memphis, Tenn
| | - Frederick Eichmiller
- Vice President and Dental Director, Delta Dental of Wisconsin, Stevens Point, Wisc
| | | | | | | |
Collapse
|