1
|
Fernández-Romero E, Toledano M, González-Fernández JF, Osorio R, Vallecillo-Rivas M. Remineralizing potential of self-assembling peptides on dentinal lesions: A systematic review of the literature. J Dent 2025; 159:105821. [PMID: 40389150 DOI: 10.1016/j.jdent.2025.105821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025] Open
Abstract
OBJECTIVES The aim of this study was to examine the efficacy of self-assembling peptides in promoting remineralization on demineralized dentin surfaces. DATA, SOURCES AND STUDY SELECTION A comprehensive electronic search was conducted using the MEDLINE via PubMed, EMBASE, Web of Science (WOS), and Scopus databases. The inclusion criteria focused on in vitro investigations using demineralized dentin surfaces from extracted permanent human teeth. These studies applied self-assembling peptides and evaluated tissue remineralization or mechanical properties. A total of 13 manuscripts met the inclusion criteria. The PRISMA guidelines were followed, and the methodological quality and risk of bias were evaluated according to the RoBDEMAT guidelines. Additionally, tables were created for data extraction, comprising outcomes related to dentin remineralization and mechanical properties assessment. CONCLUSIONS Self-assembling peptides, particularly P11-4, have demonstrated the potential to promote remineralization and enhance the mechanical properties of demineralized dentin surfaces. Self-assembling peptides appear to be a promising approach for achieving intrafibrillar remineralization. CLINICAL SIGNIFICANCE Dentin remineralization is one of the characteristics that biomaterials used in adhesive dentistry should aim for, as it can prolong the lifespan of restorations. Self-assembling peptides have shown potential to remineralize dentin surfaces.
Collapse
Affiliation(s)
- Enrique Fernández-Romero
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Manuel Toledano
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain..
| | | | - Raquel Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Marta Vallecillo-Rivas
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
2
|
Alomran WK, Nizami MZI, Xu HHK, Sun J. Evolution of Dental Resin Adhesives-A Comprehensive Review. J Funct Biomater 2025; 16:104. [PMID: 40137383 PMCID: PMC11942969 DOI: 10.3390/jfb16030104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
This comprehensive review of dental resin adhesives explores their historical development, key components, recent innovations, and potential future directions, highlighting a dynamic and continually advancing field. From Buonocore's breakthrough acid-etching technique and Bowen's pioneering dental resin invention, successive generations of clinicians and scientists have pushed forward the technological and materials development for secure bonding, while preserving dental tissues. The review discusses the substantial advances in improving adhesive reliability, enabling more conservative treatment approaches. It also delves into enhancing fundamental adhesive components and their synergistic combinations. Recent innovations, including biostable and functional resins, nanotechnology, and bioactive components, address persistent challenges such as durability, antimicrobial efficacy, and therapeutic functionality. Emerging technologies, such as digital dentistry, artificial intelligence, and bioinspired adhesives, portend an exciting and promising future for dental adhesives. This review underscores the critical role of ongoing research in developing biocompatible, multifunctional, and durable adhesives. It aims to support dental professionals and researchers by providing a comprehensive understanding of the dynamic progression of dental adhesives, inspiring continued innovation and excellence in restorative dentistry.
Collapse
Affiliation(s)
- Waad Khalid Alomran
- ADA Forsyth Institute, Cambridge, MA 02142, USA
- Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, USA
| | | | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jirun Sun
- ADA Forsyth Institute, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Sudheer KH, Golwara A, Jha S, Chauhan R, Shree R, Jha A. Comparison of Nanocomposite and Conventional Orthodontic Adhesives: A Prospective Study on Bracket Debonding and Enamel Discoloration. Cureus 2025; 17:e79537. [PMID: 40144444 PMCID: PMC11942525 DOI: 10.7759/cureus.79537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction The success of orthodontic treatment depends on the adhesive performance of the bonding agents used to bond brackets to enamel. Conventional adhesives, such as Transbond XT (3M Unitek Corp., Monrovia, CA), have been widely utilized owing to their strong mechanical properties and clinical reliability. However, nanocomposites, such as amorphous calcium phosphate (ACP)-modified adhesives, have emerged as promising alternatives, offering potential benefits such as enhanced bond strength, remineralization properties, and better color stability. The present study aimed to compare nanocomposite and conventional adhesives in terms of bracket debonding rates and enamel discoloration over a six-month period. Materials and methods This prospective observational study was conducted in an orthodontic department between February and November 2024. Forty patients were included and divided into two groups: group 1 (n = 20 patients), where brackets (N = 400) were bonded using Transbond XT, and group 2 (n = 20 patients), where brackets (N = 400) were bonded using ACP-modified nanocomposite (Aegis Ortho, Bosworth Co. Ltd., Skokie, IL). All patients underwent the same orthodontic bonding protocol and were followed for six months. The bracket debonding time was recorded, and the change in enamel color (ΔE*) was assessed using a spectrophotometer (Vita Easyshade, Vita Zahnfabrik, Bad Säckingen, Germany). The Adhesive Remnant Index (ARI) was evaluated using a stereomicroscope at 20× magnification, and Kaplan-Meier survival analysis was used to assess bracket longevity. Statistical comparisons were conducted at p < 0.05. Results The mean debond time was 60.88 ± 20.68 days for Transbond XT and 66.58 ± 34.17 days for the nanocomposite group, with no significant difference (p = 0.876). The nanocomposite group showed lower color change (3.70 ± 0.50) compared to Transbond XT (3.95 ± 0.31), indicating better enamel color stability (p = 0.029). The nanocomposite group had more favorable failure modes, with a higher percentage of adhesive retention on enamel, reducing the risk of microleakage and enamel damage. Kaplan-Meier analysis suggested a slightly longer bracket survival in the nanocomposite group. Conclusion Nanocomposite adhesives exhibited bracket retention comparable to that of Transbond XT while demonstrating superior color stability and better ARI scores, indicating improved enamel adhesion and reduced enamel damage upon debonding. Given these advantages, nanocomposites are promising alternatives for orthodontic bonding.
Collapse
Affiliation(s)
- Kadegadde H Sudheer
- Department of Orthodontics and Dentofacial Orthopaedics, Buddha Institute of Dental Sciences and Hospital, Patna, IND
| | - Amesh Golwara
- Department of Orthodontics and Dentofacial Orthopaedics, Buddha Institute of Dental Sciences and Hospital, Patna, IND
| | - Sovendu Jha
- Department of Orthodontics and Dentofacial Orthopaedics, Buddha Institute of Dental Sciences and Hospital, Patna, IND
| | - Rashi Chauhan
- Department of Orthodontics and Dentofacial Orthopaedics, Buddha Institute of Dental Sciences and Hospital, Patna, IND
| | - Richa Shree
- Department of Orthodontics and Dentofacial Orthopaedics, Buddha Institute of Dental Sciences and Hospital, Patna, IND
| | - Anju Jha
- Department of Pedodontics and Preventive Dentistry, Patna Dental College and Hospital, Patna, IND
| |
Collapse
|
4
|
Pokkula P, Asif SM, Alqarni A, Abullais SS, Shamsudeen SM, Yassin SM, Atta AS, Khan WA. An in vitro study on comparative evaluation of shear bond strength of bioactive composite to tooth structure with various dentin conditioning agents. AIP ADVANCES 2025; 15. [DOI: 10.1063/5.0242667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Bioactive materials are an alternative to conventional restorative materials, which have been promising and challenging at the present time. Etchants or bonding agents are not required as this bioactive material chemically binds to teeth. A potent resin hydroxyapatite complex is formed due to ionic interaction, further preventing microleakage. Applying citric acid and maleic acid is an added advantage in removing the formed smear layer during cavity preparation. This study uses various bonding and conditioning agents to evaluate the strength of bioactive composite shear bonds to the tooth structure. Sixty extracted human maxillary premolars were collected for this study. They were randomly divided into four groups. They were treated with their respective conditioning and bonding agents. The Statistical Package for Social Science software version 23 by IBM was used for data processing and analysis. All p-values less than 0.05 were considered statistically significant. The highest mean bond strength was recorded for the self-etch adhesive group (27.54 MPa), followed by the phosphoric acid group (23.77 MPa), maleic acid group (23.11 MPa), and control group (19.21 MPa). A comparison of intergroup mean bond strength was made using one-way ANOVA. 52.36 was the sum of squares between groups, and that within the group was 19.984, with a degree of freedom between groups being 3 and that within the group being 56, which was statistically significant. The post hoc Tukey test was used for individual group interaction, which was statistically significant. The bond strength of the Activa-restorative material was increased by the pre-conditioning tooth surface. G-bond self-etch adhesive showed the highest efficacy in improving the bond strength among other agents.
Collapse
Affiliation(s)
- Priyanka Pokkula
- Department of Conservative Dentistry, SVS Institute of Dental Science 1 , Mahbubnagar, Telangana,
| | - Shaik Mohammed Asif
- Department of Diagnostic Science and Oral Biology, College of Dentistry, King Khalid University 2 , Abha,
| | - Abdullah Alqarni
- Department of Diagnostic Science and Oral Biology, College of Dentistry, King Khalid University 2 , Abha,
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, Division of Periodontics, College of Dentistry, King Khalid University 3 , Abha,
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic Science and Oral Biology, College of Dentistry, King Khalid University 2 , Abha,
| | - Syed M Yassin
- Department of Pediatric Dentistry and Orthodontic Sciences, College of Dentistry, King Khalid University 4 , Abha,
| | - Abosofyan S. Atta
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University 5 , Abha,
| | - Wahaj Ahmad Khan
- School of Civil Engineering and Architecture, Institute of Technology, Dire-Dawa University 6 , Dire Dawa 1362,
| |
Collapse
|
5
|
Zhang J, Yang Y, Chen Y, Chen X, Li A, Wang J, Shen D, Zheng S. A review of new generation of dental restorative resin composites with antibacterial, remineralizing and self-healing capabilities. DISCOVER NANO 2024; 19:189. [PMID: 39570468 PMCID: PMC11582236 DOI: 10.1186/s11671-024-04151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Dental restorative resin composites are widely used to repair tooth decay owing to attractive esthetics, adequate mechanical properties and minimally invasive tooth structure preparations. Nevertheless, dental restorative resin composites still face challenges because of their relatively high failure rate and short lifespan caused by secondary caries and bulk fracture. Thus, attempts have been carried out to explore a new generation of dental restorative resin composites with antibacterial, remineralizing, and self-healing capabilities to inhibit bacteria and lengthen the lifetime of the restorations. Such novel restorative composites can inhibit bacterial activity, reduce acid production, promote mineral regeneration and present a renewable advantage to achieve a higher performance, which are inspiring and provide support for further basic and clinical research. In this review, antibacterial dental restorative resin composites are first introduced, followed by remineralizing, self-healing, and multifunctional dental resin composites with two or more of the functions mentioned above. Meanwhile, we explain the mechanism of the corresponding dental restorative resin composites and describe their characteristics. Finally, we conclude and put forward prospects. This review will attract both researchers and clinicians in this field and help to provide innovative ideas to design new restorative resin composites for biomedical applications.
Collapse
Affiliation(s)
- Jinshuang Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yujin Yang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yaqing Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Xu Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Ang Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Juan Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Daojun Shen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Shunli Zheng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
6
|
Palanisamy S. Exploring the Horizons of Four-Dimensional Printing Technology in Dentistry. Cureus 2024; 16:e58572. [PMID: 38770499 PMCID: PMC11102886 DOI: 10.7759/cureus.58572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
In dentistry, the integration of additive manufacturing, particularly 3D printing, has marked significant progress. However, the emergence of 4D printing, which allows materials to change shape dynamically in response to stimuli, opens up new avenues for innovation. This review sheds light on recent advancements and potential applications of 4D printing in dentistry, delving into the fundamental principles and materials involved. It emphasizes the versatility of shape-changing polymers and composites, highlighting their ability to adapt dynamically. Furthermore, the review explores the challenges and opportunities in integrating 4D printing into dental practice, including the customization of dental prosthetics, orthodontic devices, and drug delivery systems and also probing into the potential benefits of utilizing stimuli-responsive materials to improve patient comfort, treatment outcomes, and overall efficiency and the review discusses current limitations and future directions, emphasizing the importance of standardized fabrication techniques, biocompatible materials, and regulatory considerations. Owing to its diverse applications and advantages, 4D printing technology is poised to transform multiple facets of dental practice, thereby fostering the development of healthcare solutions that are more tailored, effective, and centered around patient needs.
Collapse
Affiliation(s)
- Sucharitha Palanisamy
- Periodontics and Oral Implantology, Sri Ramaswamy Memorial (SRM) Dental College and Hospital, Chennai, IND
| |
Collapse
|
7
|
Ravandi R, Zeinali Heris S, Hemmati S, Aghazadeh M, Davaran S, Abdyazdani N. Effects of chitosan and TiO 2 nanoparticles on the antibacterial property and ability to self-healing of cracks and retrieve mechanical characteristics of dental composites. Heliyon 2024; 10:e27734. [PMID: 38524556 PMCID: PMC10957383 DOI: 10.1016/j.heliyon.2024.e27734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
The aim of this study was to improve the self-healing properties of dental nanocomposite using nanoparticles of TiO2 and chitosan. We evaluated flexural and compressive strength, crack-healing, and self-healing lifespan after 3 months of water aging. The effect of the developed composite on cell viability and toxicity was assessed by an MTT assay on human alveolar basal epithelial cells (A549 cell line). The nanocomposite included 7.5 wt% polyurea-formaldehyde (PUF) and 0, 0.5, and 1 wt% n-TiO2 and chitosan. After the fracture, the samples were put in a mold for 1-90 days to enable healing. Then, the fracture toughness of the healed nanocomposites and the healing yield were measured. The flexural strength of the nanocomposite improved by adding 0.5 wt% n-TiO2, while the compressive strength increased after adding 0.5 wt% chitosan (p > 0.1). When these two materials were used simultaneously, the flexural strength was improved by around 2%; however, the compressive strength was unaffected. Compared to the other sample, the nanocomposite with 0.5 wt% n-TiO2 and chitosan had higher KIC-healing and self-healing efficiency. Self-healing efficacy had no significant effect of water aging over 90 days compared to one day (p > 0.1), demonstrating that the PUF nanocapsules were not damaged.
Collapse
Affiliation(s)
- Reza Ravandi
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Saeed Zeinali Heris
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, 65811, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Centre and Department of Oral Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran
| | - Nima Abdyazdani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Ibrahim H, Aziz AA, Yahya NA, Yap AU. Surface Degradation of Ion-releasing Restorative Materials With Cariogenic Challenge. Oper Dent 2024; 49:178-188. [PMID: 38196082 DOI: 10.2341/23-038-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 01/11/2024]
Abstract
This study examined the influence of cariogenic environments on the surface roughness of ion-releasing restorative materials (IRMs). Custom-made stainless steel molds with holes of 5 mm × 2mm were used to fabricate 60 disc-shaped specimens of each of the following materials: Activa Bioactive (AV), Beautifil Bulk Restorative (BB), Cention N (Bulk-fill) (CN), and Filtek Z350XT (FZ) (Control). Baseline surface roughness (Ra) measurements were obtained using an optical 3D measurement machine (Alicona Imaging GmbH, Graz, Austria). The specimens were then randomly divided into five subgroups (n=12) and exposed to 10 ml of the following mediums at 37°C: distilled water (DW), demineralization solution (DM), remineralization solution (RM), pH cycling (PC) and air (AR) (control). Ra measurements were again recorded after one week and one month, followed by statistical evaluations with two-way analysis of variance (ANOVA) to determine interactions between materials and mediums. One-way ANOVA and post hoc Games Howell tests were performed for intergroup comparisons at a significance level of 0.05. Mean Ra values ranged from 0.085 ± 0.004 (µm) to 0.198 ± 0.001 µm for the various material-medium combinations. All IRMs showed significant differences in Ra values after exposure to the aqueous mediums. The smoothest surfaces were observed in the AR for all materials. When comparing materials, AV presented the roughest surfaces for all mediums. All IRM materials showed increased surface roughness over time in all cariogenic environments but were below the threshold value for bacterial adhesion, except for AV 1-month post immersion with pH cycling. Therefore, besides AV, the surface roughness of IRMs did not deteriorate to an extent that it is clinically relevant.
Collapse
Affiliation(s)
- H Ibrahim
- Hafizah Ibrahim, DDS, MClinDent, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - A Abdul Aziz
- *Azwatee Abdul Aziz, BDS, MClinDent, PhD, Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - N A Yahya
- Noor Azlin Yahya, DipTrans, BDS, MDentSci, Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - A U Yap
- Adrian U-Jin Yap, BDS, MSc, PhD, Grad Dip Psychotherapy, Department of Dentistry, Ng Teng Fong General Hospital and Faculty of Dentistry, National University Health System, Singapore; National Dental Research Institute Singapore, National Dental Centre and Duke-NUS Medical School, Singapore Health Services, Singapore
| |
Collapse
|
9
|
Jiang W, Wang Z, Zhou Y, Shen Y, Yen E, Zou B. Bioceramic micro-fillers reinforce antibiofilm and remineralization properties of clear aligner attachment materials. Front Bioeng Biotechnol 2024; 11:1346959. [PMID: 38318418 PMCID: PMC10840140 DOI: 10.3389/fbioe.2023.1346959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction: Clear aligners, while offering a more hygienic alternative to fixed appliances, are still associated with challenges including plaque accumulation and enamel demineralization. The aim of the present study was to investigate the antibiofilm and remineralization effectiveness of innovative flowable composite attachments containing bioceramic micro-fillers. Methods: Four experimental attachments were formulated and bonded to human enamel specimens: 3M Filtek Supreme flowable composite (Filtek SF) + 10% bioactive glass 45S5 (BAG), Filtek SF + 30% BAG, Filtek SF + 10% Bredigite (BRT), Filtek SF + 30% BRT. Plaque biofilms were grown on the bonded enamel using a standardized protocol and the biofilm-killing effect was assessed by confocal laser scanning microscopy and scanning electron microscopy. Vickers microhardness was measured to evaluate the remineralization effect of the attachments containing bioceramic fillers after acid challenge. Shear bond test was performed to assess the bonding strength. Results: Attachments with bioceramic fillers significantly inhibited plaque biofilm growth in 3 weeks on enamel, contributing over 20% bacterial cell killing in 10% filler groups and over 30% killing in 30% filler groups. All four experimental groups demonstrated significantly higher microhardness values than the control group without fillers on the attachment side. The shear bonding strength was not compromised in the attachments with micro-fillers. Discussion: Proper incorporation of bioceramic micro-fillers in attachments provides an innovative approach for clear aligner therapy with reinforced antibiofilm and remineralization effects without weakening shear bonding strength.
Collapse
Affiliation(s)
- Wenhui Jiang
- Division of Orthodontics, Department of Oral Health Science, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Edwin Yen
- Division of Orthodontics, Department of Oral Health Science, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Bingshuang Zou
- Division of Orthodontics, Department of Oral Health Science, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Wiertelak-Makała K, Szymczak-Pajor I, Bociong K, Śliwińska A. Considerations about Cytotoxicity of Resin-Based Composite Dental Materials: A Systematic Review. Int J Mol Sci 2023; 25:152. [PMID: 38203323 PMCID: PMC10778595 DOI: 10.3390/ijms25010152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The dental material industry is rapidly developing resin-based composites (RBCs), which find widespread use in a variety of clinical settings. As such, their biocompatibility has gained increasing interest. This literature review presents a summary of research into the cytotoxicity of methacrylate-based composites published from 2017 to 2023. Subject to analysis were 14 in vitro studies on human and murine cell lines. Cytotoxicity in the included studies was measured via MTT assay, LDH assay, and WST-1 assay. The QUIN Risk of Bias Tool was performed to validate the included studies. Included studies (based entirely on the results of in vitro studies) provide evidence of dose- and time-dependent cytotoxicity of dental resin-based composites. Oxidative stress and the depletion of cellular glutathione (GSH) were suggested as reasons for cytotoxicity. Induction of apoptosis by RBCs was indicated. While composites remain the golden standard of dental restorative materials, their potential cytotoxicity cannot be ignored due to direct long-term exposure. Further in vitro investigations and clinical trials are required to understand the molecular mechanism of cytotoxicity and produce novel materials with improved safety profiles.
Collapse
Affiliation(s)
- Kacper Wiertelak-Makała
- Student Scientific Society of Civilization Diseases, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Kinga Bociong
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| |
Collapse
|
11
|
Masarykova N, Tkadlec E, Chlup Z, Vrbsky J, Brysova A, Cernochova P, Izakovicova Holla L. Comparison of microleakage under orthodontic brackets bonded with five different adhesive systems: in vitro study. BMC Oral Health 2023; 23:637. [PMID: 37670283 PMCID: PMC10478400 DOI: 10.1186/s12903-023-03368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Orthodontic treatment is associated with numerous adverse side effects, such as enamel discoloration, demineralization or even caries. The presence of microleakage between the enamel and the adhesive and between the adhesive and the base of the orthodontic bracket allows penetration of the bacteria, molecules, and liquids into the enamel and can lead to unpleasant "white spot lesions" or secondary caries beneath and around the brackets. The aim of this in vitro study was to evaluate microleakage in five adhesive systems commonly used in orthodontic practice for bonding brackets. METHODS One hundred extracted premolars were divided into five groups of twenty teeth. Stainless steel Legend medium metal brackets were bonded to teeth using five adhesive systems: resin-reinforced glass ionomer cement GC Fuji Ortho LC (GCF) and composite materials Light Bond (LB), Transbond XT (TB), Trulock™ Light Activated Adhesive (TL), and GC Ortho Connect (GCO). The specimens were subjected to thermal cycling, stained with 2% methylene blue, sectioned with low-speed diamond saw Isomet and evaluated under a digital microscope. Microleakage was detected at the enamel-adhesive and adhesive-bracket interfaces from occlusal and gingival margins. Statistical analysis was performed using generalized linear mixed models with beta error distribution. RESULTS Microleakage was observed in all materials, with GCF showing the highest amount of microleakage. Composite materials GCO, TB, and LB exhibited the lowest amount of microleakage with no statistical difference between them, while TL showed a statistically significantly higher amount of microleakage (p < 0.001). The enamel-adhesive interface had more microleakage in all composite materials (GCO, LB, TB, and TL) than the adhesive bracket-interface (p < 0.001). The highest amount of microleakage occurred in the gingival region in all materials. CONCLUSION Composite materials showed better adhesive properties than a resin-reinforced glass ionomer cement. The presence of microleakage at the enamel-adhesive interface facilitates the penetration of various substances into enamel surfaces, causing enamel demineralization and the development of dental caries.
Collapse
Affiliation(s)
- Nela Masarykova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Pekařská 53, Brno, 656 91, Czech Republic
| | - Emil Tkadlec
- Faculty of Science, Palacky University Olomouc, 17. listopadu 1192/12, Olomouc, 779 00, Czech Republic
| | - Zdenek Chlup
- Institute of Physics of Materials of the Czech Academy of Sciences, Žižkova 513/22, Brno, 616 00, Czech Republic
| | - Jan Vrbsky
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| | - Alena Brysova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Pekařská 53, Brno, 656 91, Czech Republic
| | - Pavlina Cernochova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Pekařská 53, Brno, 656 91, Czech Republic.
| | - Lydie Izakovicova Holla
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Pekařská 53, Brno, 656 91, Czech Republic
| |
Collapse
|
12
|
Tebyaniyan H, Hussain A, Vivian M. Current antibacterial agents in dental bonding systems: a comprehensive overview. Future Microbiol 2023; 18:825-844. [PMID: 37668450 DOI: 10.2217/fmb-2022-0203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Dental caries is mainly caused by oral biofilm acid, and the most common dental restoration treatment is composite dental restorations. The main cause of failure is secondary caries adjacent to the restoration. Long-term survival of dental materials is improved by the presence of antibacterial agents, which selectively inhibit bacterial growth or survival. Chemical, natural and biomaterials have been studied for their antimicrobial activities and antibacterial bonding agents have been improved. Their usage has been increased to inhibit the growth of invading and residual bacteria in the oral cavity, as biofilm accumulation increases the risk of treatment failure. In this article, the success and applications of antibacterial agents are discussed in dental bonding systems.
Collapse
Affiliation(s)
- Hamid Tebyaniyan
- Department of Science & Research, Islimic Azade University, Tehran, Iran
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, AB, T6G 1C9, Canada
| | - Mark Vivian
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, S7N 5E4, Canada
| |
Collapse
|
13
|
Martínez-Sabio L, Peñate L, Arregui M, Veloso Duran A, Blanco JR, Guinot F. Comparison of Shear Bond Strength and Microleakage between Activa™ Bioactive Restorative™ and Bulk-Fill Composites-An In Vitro Study. Polymers (Basel) 2023; 15:2840. [PMID: 37447487 DOI: 10.3390/polym15132840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Bioactive materials have emerged as a promising alternative to conventional restorative materials as part of more conservative dentistry. The aim of this study was to evaluate and compare the shear bond strength (SBS) and microleakage of a new bioactive restorative material, two bulk-fill restorative composites, and a conventional composite at 24 h, 4 weeks, and 8 weeks. Three hundred and sixty molars and premolars were divided into four groups: ACTIVA™ BioACTIVE Restorative™, Filtek™ Bulk-Fill Restorative Composite, Tetric® N-Ceram Bulk-Fill Composite, and G-aenial® Composite. The normality of the data was determined with the Kolmogorov-Smirnov test, then the two-way ANOVA and Fisher's test were used for analyzing SBS data, and the Kruskal-Wallis and DSCF tests were conducted to analyze the microleakage. In the SBS test, there were no statistically significant differences between materials (p = 0.587), and the relation between material and time (p = 0.467), time points showed statistically significant differences (p = 0.016). As for the microleakage, statistically significant differences were found for all three time periods (p < 0.05), showing the conventional composite to have the lowest microleakage, followed by the bioactive material, and lastly the two bulk-fill composites. In conclusion, the new bioactive material has similar evaluated properties to bulk-fill composites (bond strength) and conventional composites (bond strength and microleakage) and can be used as an alternative restorative material.
Collapse
Affiliation(s)
- Laura Martínez-Sabio
- Pediatric Dentistry Department, Faculty of Dentistry, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Lissethe Peñate
- Restorative Dentistry Department, Faculty of Dentistry, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - María Arregui
- Restorative Dentistry Department, Faculty of Dentistry, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Ana Veloso Duran
- Pediatric Dentistry Department, Faculty of Dentistry, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - José Raúl Blanco
- Restorative Department, Faculty of Dentistry, Interamerican University of Panama, Panama City 081604737, Panama
| | - Francisco Guinot
- Pediatric Dentistry Department, Faculty of Dentistry, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| |
Collapse
|
14
|
Pinto NS, Jorge GR, Vasconcelos J, Probst LF, De-Carli AD, Freire A. Clinical efficacy of bioactive restorative materials in controlling secondary caries: a systematic review and network meta-analysis. BMC Oral Health 2023; 23:394. [PMID: 37322456 PMCID: PMC10268411 DOI: 10.1186/s12903-023-03110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND This systematic review and network meta-analysis aimed to compare the clinical efficacy of bioactive and conventional restorative materials in controlling secondary caries (SC) and to provide a classification of these materials according to their effectiveness. METHODS A search was performed in Pubmed, Web of Science, Embase, BBO, Lilacs, Cochrane Library, Scopus, IBECS and gray literature. Clinical trials were included, with no language or publication date limitations. Paired and network meta-analyses were performed with random-effects models, comparing treatments of interest and classifying them according to effectiveness in the permanent and deciduous dentition and at 1-year or 2/more years of follow-up. The risk of bias and certainty of evidence were evaluated. RESULTS Sixty-two studies were included in the qualitative syntheses and 39 in the quantitative ones. In permanent teeth, resin composite (RC) (RR = 2.00; 95%CI = 1.10, 3.64) and amalgam (AAG) (RR = 1.79; 95%CI = 1.04, 3.09) showed a higher risk of SC than Glass Ionomer Cement (GIC). In the deciduous teeth, however, a higher risk of SC was observed with RC than with AAG (RR = 2.46; 95%CI = 1.42, 4.27) and in GIC when compared to Resin-Modified Glass Ionomer Cement (RMGIC = 1.79; 95%CI = 1.04, 3.09). Most randomized clinical trials studies showed low or moderate risk of bias. CONCLUSION There is a difference between bioactive restorative materials for SC control, with GIC being more effective in the permanent teeth and the RMGIC in the deciduous teeth. Bioactive restorative materials can be adjuvants in the control of SC in patients at high risk for caries.
Collapse
Affiliation(s)
- Noeleni Souza Pinto
- School of Dentistry, Universidade Federal de Mato Grosso Do Sul, Av. Costa E Silva, S/N, Universitário, Campo Grande, MS 79070-900 Brazil
| | - Gabriela Rebouças Jorge
- School of Dentistry, Universidade Federal de Mato Grosso Do Sul, Av. Costa E Silva, S/N, Universitário, Campo Grande, MS 79070-900 Brazil
| | | | - Livia Fernandes Probst
- Unidade de Avaliação de Tecnologias Em Saúde, Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | - Alessandro Diogo De-Carli
- School of Dentistry, Universidade Federal de Mato Grosso Do Sul, Av. Costa E Silva, S/N, Universitário, Campo Grande, MS 79070-900 Brazil
| | - Andrea Freire
- School of Dentistry, Universidade Federal de Mato Grosso Do Sul, Av. Costa E Silva, S/N, Universitário, Campo Grande, MS 79070-900 Brazil
| |
Collapse
|
15
|
Conti G, Veneri F, Amadori F, Garzoni A, Majorana A, Bardellini E. Evaluation of Antibacterial Activity of a Bioactive Restorative Material Versus a Glass-Ionomer Cement on Streptococcus Mutans: In-Vitro Study. Dent J (Basel) 2023; 11:149. [PMID: 37366672 DOI: 10.3390/dj11060149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Dental caries management consists of both preventive and restorative approaches. Pediatric dentists can rely on many techniques and materials to restore decayed teeth, but a high failure rate is still observed, mainly due to secondary caries. New restorative bioactive materials combine the mechanical and aesthetic characteristics of resinous materials with the capability to remineralize and the antimicrobial properties of glass ionomers, thus counteracting the occurrence of secondary caries. The aim of this study was to assess the antimicrobial activity against Streptococcus mutans of a bioactive restorative material (ACTIVA™ BioActive-Restorative™-Pulpdent©) and a glass ionomer cement with silver particles added (Ketac™ Silver-3M©), using agar diffusion assay. METHODS Each material was formed into disks of 4 mm in diameter, and four discs of each material were placed on nine agar plates. The analysis was repeated seven times. RESULTS Both materials showed statistically significant growth inhibition properties against S. mutans (p < 0.05). The difference in the effectiveness of the two materials was not statistically significant. CONCLUSION Both ACTIVA™ and Ketac™ Silver can be recommended since both are similarly effective against S. mutans. However ACTIVA™, given its bioactivity and better aesthetics and mechanical properties compared to GICs, may provide better clinical performance.
Collapse
Affiliation(s)
- Giulio Conti
- Department of Medicine and Surgery, School of Dentistry, University of Insubria, Via Ravasi 2, 21100 Varese, Italy
| | - Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Unit of Dentistry & Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Via del Pozzo, 41124 Modena, Italy
| | - Francesca Amadori
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| | - Alba Garzoni
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| | - Alessandra Majorana
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| | - Elena Bardellini
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| |
Collapse
|
16
|
Zhou W, Chen H, Weir MD, Oates TW, Zhou X, Wang S, Cheng L, Xu HH. Novel bioactive dental restorations to inhibit secondary caries in enamel and dentin under oral biofilms. J Dent 2023; 133:104497. [PMID: 37011782 DOI: 10.1016/j.jdent.2023.104497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE To provide the first review on cutting-edge research on the development of new bioactive restorations to inhibit secondary caries in enamel and dentin under biofilms. State-of-the-art bioactive and therapeutic materials design, structure-property relationships, performance and efficacies in oral biofilm models. DATA, SOURCES AND STUDY SELECTION Researches on development and assessment new secondary caries inhibition restorations via in vitro and in vivo biofilm-based secondary caries models were included. The search of articles was carried out in Web of Science, PubMed, Medline and Scopus. CONCLUSIONS Based on the found articles, novel bioactive materials are divided into different categories according to their remineralization and antibacterial biofunctions. In vitro and in vivo biofilm-based secondary caries models are effective way of evaluating the materials efficacies. However, new intelligent and pH-responsive materials were still urgent need. And the materials evaluation should be performed via more clinical relevant biofilm-based secondary caries models. CLINICAL SIGNIFICANCE Secondary caries is a primary reason for dental restoration failures. Biofilms produce acids, causing demineralization and secondary caries. To inhibit dental caries and improve the health and quality of life for millions of people, it is necessary to summarize the present state of technologies and new advances in dental biomaterials for preventing secondary caries and protecting tooth structures against oral biofilm attacks. In addition, suggestions for future studies are provided.
Collapse
|
17
|
Cloyd AK, Boone K, Ye Q, Snead ML, Spencer P, Tamerler C. Engineered Peptides Enable Biomimetic Route for Collagen Intrafibrillar Mineralization. Int J Mol Sci 2023; 24:ijms24076355. [PMID: 37047325 PMCID: PMC10093982 DOI: 10.3390/ijms24076355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Overcoming the short lifespan of current dental adhesives remains a significant clinical need. Adhesives rely on formation of the hybrid layer to adhere to dentin and penetrate within collagen fibrils. However, the ability of adhesives to achieve complete enclosure of demineralized collagen fibrils is recognized as currently unattainable. We developed a peptide-based approach enabling collagen intrafibrillar mineralization and tested our hypothesis on a type-I collagen-based platform. Peptide design incorporated collagen-binding and remineralization-mediating properties using the domain structure conservation approach. The structural changes from representative members of different peptide clusters were generated for each functional domain. Common signatures associated with secondary structure features and the related changes in the functional domain were investigated by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopy, respectively. Assembly and remineralization properties of the peptides on the collagen platforms were studied using atomic force microscopy (AFM). Mechanical properties of the collagen fibrils remineralized by the peptide assemblies was studied using PeakForce-Quantitative Nanomechanics (PF-QNM)-AFM. The engineered peptide was demonstrated to offer a promising route for collagen intrafibrillar remineralization. This approach offers a collagen platform to develop multifunctional strategies that combine different bioactive peptides, polymerizable peptide monomers, and adhesive formulations as steps towards improving the long-term prospects of composite resins.
Collapse
Affiliation(s)
- Aya K. Cloyd
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA 90007, USA
| | - Paulette Spencer
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Candan Tamerler
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
- Correspondence:
| |
Collapse
|
18
|
Ionescu AC, Hahnel S, Chiari MDS, König A, Delvecchio P, Braga RR, Zambelli V, Brambilla E. TEGDMA-Functionalized Dicalcium Phosphate Dihydrate Resin-Based Composites Prevent Secondary Caries in an In Vitro Biofilm Model. J Funct Biomater 2022; 13:jfb13040232. [PMID: 36412873 PMCID: PMC9680503 DOI: 10.3390/jfb13040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
This study evaluated the efficacy of experimental TEGDMA-functionalized dicalcium phosphate dihydrate (T-DCPD) filler-based resin-based composites (RBC) in preventing caries lesions around the restoration margins (secondary caries, SC). Standardized Class-II cavities were made in sound molars with the cervical margin in dentin. Cavities were filled with a commercial resin-modified glass-ionomer cement (RMGIC) or experimental RBCs containing a bisGMA-TEGDMA resin blend and one of the following inorganic fractions: 60 wt.% Ba glass (RBC-0); 40 wt.% Ba glass and 20 wt.% T-DCPD (RBC-20); or 20 wt.% Ba glass and 40 wt.% T-DCPD (RBC-40). An open-system bioreactor produced Streptococcus mutans biofilm-driven SC. Specimens were scanned using micro-CT to evaluate demineralization depths. Scanning electron microscopy and energy-dispersive X-ray spectroscopy characterized the specimen surfaces, and antimicrobial activity, buffering effect, and ion uptake by the biofilms were also evaluated. ANOVA and Tukey’s tests were applied at p < 0.05. RBC-0 and RBC-20 showed SC development in dentin, while RBC-40 and RMGIC significantly reduced the lesion depth at the restoration margin (p < 0.0001). Initial enamel demineralization could be observed only around the RBC-0 and RBC-20 restorations. Direct antibiofilm activity can explain SC reduction by RMGIC, whereas a buffering effect on the acidogenicity of biofilm can explain the behavior of RBC-40. Experimental RBC with CaP-releasing functionalized T-DCPD filler could prevent SC with the same efficacy as F-releasing materials.
Collapse
Affiliation(s)
- Andrei Cristian Ionescu
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal, 36, 20133 Milan, Italy
- Correspondence:
| | - Sebastian Hahnel
- Clinic of Prosthodontics and Dental Materials Science, University of Leipzig, Liebigstraße 12, Haus 1, 04103 Leipzig, Germany
- Department of Prosthetic Dentistry, Regensburg University Medical Center, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93042 Regensburg, Germany
| | - Marina D. S. Chiari
- Department of Biomaterials and Oral Biology, University of Sao Paulo, Av. Prof. Lineu Prestes, 2227, Cidade Universitária, São Paulo 05508-900, SP, Brazil
| | - Andreas König
- Clinic of Prosthodontics and Dental Materials Science, University of Leipzig, Liebigstraße 12, Haus 1, 04103 Leipzig, Germany
| | - Paolo Delvecchio
- School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore, 48, 20900 Monza, Italy
| | - Roberto Ruggiero Braga
- Department of Biomaterials and Oral Biology, University of Sao Paulo, Av. Prof. Lineu Prestes, 2227, Cidade Universitária, São Paulo 05508-900, SP, Brazil
| | - Vanessa Zambelli
- School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore, 48, 20900 Monza, Italy
| | - Eugenio Brambilla
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal, 36, 20133 Milan, Italy
| |
Collapse
|
19
|
Elgezawi M, Haridy R, Abdalla MA, Heck K, Draenert M, Kaisarly D. Current Strategies to Control Recurrent and Residual Caries with Resin Composite Restorations: Operator- and Material-Related Factors. J Clin Med 2022; 11:jcm11216591. [PMID: 36362817 PMCID: PMC9657252 DOI: 10.3390/jcm11216591] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
This review addresses the rationale of recurrent and/or residual caries associated with resin composite restorations alongside current strategies and evidence-based recommendations to arrest residual caries and restrain recurrent caries. The PubMed and MEDLINE databases were searched for composite-associated recurrent/residual caries focusing on predisposing factors related to materials and operator’s skills; patient-related factors were out of scope. Recurrent caries and fractures are the main reasons for the failure of resin composites. Recurrent and residual caries are evaluated differently with no exact distinguishment, especially for wall lesions. Recurrent caries correlates to patient factors, the operator’s skills of cavity preparation, and material selection and insertion. Material-related factors are significant. Strong evidence validates the minimally invasive management of deep caries, with concerns regarding residual infected dentin. Promising technologies promote resin composites with antibacterial and remineralizing potentials. Insertion techniques influence adaptation, marginal seal, and proximal contact tightness. A reliable diagnostic method for recurrent or residual caries is urgently required. Ongoing endeavors cannot eliminate recurrent caries or precisely validate residual caries. The operator’s responsibility to precisely diagnose original caries and remaining tooth structure, consider oral environmental conditions, accurately prepare cavities, and select and apply restorative materials are integral aspects. Recurrent caries around composites requires a triad of attention where the operator’s skills are cornerstones.
Collapse
Affiliation(s)
- Moataz Elgezawi
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: (M.E.); (D.K.); Tel.: +49-89-4400-59452 (D.K.); Fax: +49-89-4400-59302 (D.K.)
| | - Rasha Haridy
- Department of Clinical Dental Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo 4240310, Egypt
| | - Moamen A. Abdalla
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Katrin Heck
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethe Str. 70, 80336 Munich, Germany
| | - Miriam Draenert
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethe Str. 70, 80336 Munich, Germany
| | - Dalia Kaisarly
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethe Str. 70, 80336 Munich, Germany
- Correspondence: (M.E.); (D.K.); Tel.: +49-89-4400-59452 (D.K.); Fax: +49-89-4400-59302 (D.K.)
| |
Collapse
|
20
|
Qin L, Yao S, Meng W, Zhang J, Shi R, Zhou C, Wu J. Novel antibacterial dental resin containing silanized hydroxyapatite nanofibers with remineralization capability. Dent Mater 2022; 38:1989-2002. [DOI: 10.1016/j.dental.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
|
21
|
On the Mechanical Properties of Hybrid Dental Materials for CAD/CAM Restorations. Polymers (Basel) 2022; 14:polym14163252. [PMID: 36015509 PMCID: PMC9413303 DOI: 10.3390/polym14163252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Two hybrid dental materials available for computer-aided design and manufacturing (CAD/CAM) dental restorations have been selected to explore their potential. On the one hand, the scarcely investigated polymer-based material Vita Enamic® (VE) and, on the other hand, the leucite-based material IPS Empress® CAD (EC). Their micro-structure and mechanical performance were analyzed in two environments: directly as received by the manufacturer (AR), and after immersion and storage in artificial saliva (AS) for 30 days to determine the influence of the saliva effect. To avoid an inappropriate selection of materials for clinical use, a full understanding of their mechanical behavior is essential. Therefore, this investigation aims to determine the micro-structural and chemical composition by field emission scanning electron microscopy (FE-SEM) and X-ray fluorescence analysis, establishing the density, micro- and nano-hardness, the nano-elastic modulus, and the flexural strength and fracture toughness (by introducing a femto-laser notch to replicate a real crack). In addition, fracture surfaces of the broken samples were analyzed to correlate the failure micro-mechanisms with their mechanical properties. Results indicate that while the crystalline phase of the materials is very similar (composed of SiO2 and Al2O3), the micro-structure and mechanical behavior is not. The material EC, with finer micro-structure, exhibits a higher mechanical performance but with greater variability of results. Furthermore, the material VE, with a 25 vol.% polymer phase, shows a mechanical performance similar to enamel and dentin and therefore more similar to human behavior.
Collapse
|
22
|
Angadala P, Mandava J, Ravi R, Hanumanthu KR, Penmatsa P, Pulidindi H. An in vitro micro-CT assessment of bioactive restorative materials interfacial adaptation to dentin. Dent Res J (Isfahan) 2022; 19:56. [PMID: 36159057 PMCID: PMC9490256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/11/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The background of this study was to improve the longevity of a restoration and optimal adaptation of restorative material to the prepared cavity walls is crucial. The study aimed to evaluate the interfacial adaptation of Activa, Micron, and Predicta bulk bioactive restorative materials to coronal dentin using micro-computed tomography (CT) analysis. MATERIALS AND METHODS In this in vitro micro-CT assessment study, Class II mesio- and disto-occlusal cavities were prepared on 60 extracted human mandibular molar teeth. After etching and bonding procedures, all the mesial cavities (n = 60) were restored with Tetric N-Ceram and the disto-occlusal cavities with Activa or Micron or Predicta bioactive (n = 20 each) restoratives. Interfacial gap percentages were evaluated under micro-CT before (baseline) and after thermo-mechanical load cycling (TMC). Acquired data were analyzed statistically using one-way analysis of variance, Paired t-test, and Tukey's multiple post hoc procedures, at P < 0.05 level of significance. RESULTS The interfacial gap percentages were lowest for Predicta bioactive and highest for the Micron group (P < 0.05). The number of gaps increased significantly after TMC in all the groups (P < 0.05). The adaptation of tested materials was inferior to axial wall and pulpal floor, whereas considerably better adaptation was observed on buccal and lingual walls. CONCLUSION Predicta bioactive followed by Activa bioactive has shown superior interfacial adaptation, whereas Micron bioactive demonstrated maximum microgaps compared to nanohybrid composite. Artificial aging with TMC has a negative influence on the internal adaptation of all tested materials.
Collapse
Affiliation(s)
- Priyanka Angadala
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhrapradesh, India
| | - Jyothi Mandava
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhrapradesh, India,Address for correspondence: Dr. Jyothi Mandava, Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Rushikonda, Visakhapatnam - 530 045, Andhra Pradesh, India. E-mail:
| | - Ravichandra Ravi
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhrapradesh, India
| | - Koteswar Rao Hanumanthu
- Department of Prosthodontics, Sibar Dental College and Hospital, Takkellapadu, Guntur, Andhrapradesh, India
| | - Prasanthi Penmatsa
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhrapradesh, India
| | - Hema Pulidindi
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhrapradesh, India
| |
Collapse
|
23
|
Kikuchi LNT, Freitas SRM, Amorim AF, Delechiave G, Catalani LH, Braga RR, Moreira MS, Boaro LCC, Gonçalves F. Effects of the crosslinking of chitosan/DCPA particles in the antimicrobial and mechanical properties of dental restorative composites. Dent Mater 2022; 38:1482-1491. [PMID: 35835609 DOI: 10.1016/j.dental.2022.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
The development of restorative materials containing antibacterial agents is an alternative to reduce the progression of caries lesions. OBJECTIVE to compare the influence of the degree of crosslinking of chitosan particles loaded with dibasic calcium phosphate (DCPA) on the mechanical properties, degree of conversion (DC), and antimicrobial properties of experimental composites. METHODS Chitosan/DCPA particles were synthesized by the electrospraying, crosslinked by 0, 8, or 16 h in glutaraldehyde, and characterized by zeta potential and minimum inhibitory concentration (MIC) against S. mutans. Experimental resin composites of Bis-GMA and TEGDMA and 59.5% of barium glass were synthesized, chitosan/DCPA particles were added at 0 or 0.5 wt% with the different crosslinking time. The materials were subject to DC analysis, three-point bending test at 24 h and 7 days, and antimicrobial assays. Data were submitted to one-way ANOVA and Tukey test (α = 0.05). RESULTS The particles with longer crosslinking time presented higher zeta potential and MIC, and the composite containing these particles showed significantly higher biofilm inhibition than the control group. The other two groups were similar to each other and the control. The composite containing particles with 88 h crosslinking time showed the lowest flexural strength at 7 days in water, and materials with non-crosslinked particles and longer crosslinking time presented flexural strength similar to control. The flexural modulus and DC showed no statistical difference among groups. SIGNIFICANCE composite resin containing 0.5% chitosan/DCPA particles crosslinked by 16 h showed a reduction of biofilm formation without affecting the mechanical properties in relation to the control.
Collapse
Affiliation(s)
- Lucia Nobuco Takamori Kikuchi
- Universidade Ibirapuera, Departamento de Odontologia, Av. Interlagos 1329 - 4º andar, 04661-100 São Paulo, SP, Brazil.
| | - Selma Regina Muniz Freitas
- Universidade Santo Amaro, Faculdade de Odontologia, Rua Prof. Eneas de Siqueira Neto, 340, 04829-300 São Paulo, SP, Brazil.
| | - Aldo Ferreira Amorim
- Universidade Ibirapuera, Departamento de Odontologia, Av. Interlagos 1329 - 4º andar, 04661-100 São Paulo, SP, Brazil.
| | - Giovanne Delechiave
- Instituto de Química da Universidade de São Paulo, Departamento de Química Fundamental, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil.
| | - Luiz Henrique Catalani
- Instituto de Química da Universidade de São Paulo, Departamento de Química Fundamental, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil.
| | - Roberto Ruggiero Braga
- Faculdade de Odontologia da Universidade de São Paulo, Departamento de Biomateriais e Biologia Oral, Av. Prof. Lineu Prestes, 2222, 05508-000 São Paulo, SP, Brazil.
| | - Maria Stella Moreira
- Universidade Ibirapuera, Departamento de Odontologia, Av. Interlagos 1329 - 4º andar, 04661-100 São Paulo, SP, Brazil.
| | | | - Flávia Gonçalves
- Universidade Ibirapuera, Departamento de Odontologia, Av. Interlagos 1329 - 4º andar, 04661-100 São Paulo, SP, Brazil; Universidade Santo Amaro, Faculdade de Odontologia, Rua Prof. Eneas de Siqueira Neto, 340, 04829-300 São Paulo, SP, Brazil.
| |
Collapse
|
24
|
Mai S, Zhang Q, Liao M, Ma X, Zhong Y. Recent Advances in Direct Adhesive Restoration Resin-Based Dental Materials With Remineralizing Agents. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.868651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Resin-based dental materials are popular restorative materials especially in direct adhesive restoration because of the excellent mechanical and esthetic properties. Toward the realization of minimally invasive dental procedures, direct composite resin adhesive restoration has become the main treatment for dental defects. In addition, for caries-affected dentin close to the pulp, conservation remineralization has been advocated to save the living pulp. However, the resin–dentin interface can be destabilized by various factors, especially the enzymatic degradation of collagen fibrils within the hybrid layer and polymer hydrolysis. Furthermore, for resin-based restorative materials, the marginal gap remains a major problem that can lead to the occurrence of secondary caries. To address these issues, research efforts have focused on the remineralization of mineral-depleted dental hard tissues using remineralizing bioactive substances. In this review, we first described various bioactive agents with remineralizing properties. Furthermore, we discussed recent advances in resin-based dental materials for enamel or dentin remineralization. Finally, we examined the current challenges and prospects of these emerging materials. This work aims to provide a theoretical foundation for the future development of resin-based dental materials in direct adhesive restoration with remineralizing agents.
Collapse
|
25
|
Torres-Betancourt JA, Hernandez-Delgadillo R, Flores-Treviño JJ, Solís-Soto JM, Pineda-Aguilar N, Nakagoshi-Cepeda MAA, Isela Sánchez-Nájera R, Chellam S, Cabral-Romero C. Antimicrobial potential of AH Plus supplemented with bismuth lipophilic nanoparticles on E. faecalis isolated from clinical isolates. J Appl Biomater Funct Mater 2022; 20:22808000211069221. [PMID: 35114826 DOI: 10.1177/22808000211069221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The objective of this study was to determine the antimicrobial potential of AH plus supplemented with bismuth lipophilic nanoparticles (BisBAL NPs) on the growth of Enterococcus faecalis isolated from patients with endodontic infections. BisBAL NPs, synthesized with the colloidal method, were characterized, in its pure form or AH Plus-absorbed, by energy-dispersive X-ray spectroscopy and scanning electron microscopy (EDS-SEM). Antimicrobial activity was evaluated with disc diffusion assays, and antibiofilm activity with fluorescence microscopy. BisBAL NP-supplemented AH Plus had a 4.9 times higher antimicrobial activity than AH Plus alone (p = 0.0001). In contrast to AH Plus alone, AH Plus supplemented with BisBAL NP inhibited E. faecalis biofilm formation. The sealing properties of AH plus were not modified by the incorporation of BisBAL NPs, which was demonstrated by a 12-day split-chamber leakage assay with daily inoculation, which was used to evaluate the possible filtration of E. faecalis. Finally, BisBAL NP-supplemented AH plus-BisBAL NPs was not cytotoxic for cultured human gingival fibroblasts. Their viability was 83.7% to 89.9% after a 24-h exposure to AH Plus containing 50 and 10 µM BisBAL NP, respectively. In conclusion, BisBAL NP-supplemented AH Plus constitutes an innovative nanomaterial to prevent re-infection in endodontic patients without cytotoxic effects.
Collapse
Affiliation(s)
| | - Rene Hernandez-Delgadillo
- Universidad Autónoma de Nuevo león, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Monterrey, Nuevo León, México
| | - Jorge Jaime Flores-Treviño
- Universidad Autónoma de Nuevo león, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Monterrey, Nuevo León, México
| | - Juan Manuel Solís-Soto
- Universidad Autónoma de Nuevo león, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Monterrey, Nuevo León, México
| | - Nayely Pineda-Aguilar
- Centro de Investigaciones en Materiales Avanzados, CIMAV Unidad Monterrey, Nuevo León, México
| | | | - Rosa Isela Sánchez-Nájera
- Universidad Autónoma de Nuevo león, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Monterrey, Nuevo León, México
| | | | - Claudio Cabral-Romero
- Universidad Autónoma de Nuevo león, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Monterrey, Nuevo León, México
| |
Collapse
|
26
|
Mandava J, Angadala P, Ravi R, Hanumanthu K, Penmatsa P, Pulidindi H. An in vitro micro-CT assessment of bioactive restorative materials interfacial adaptation to dentin. Dent Res J (Isfahan) 2022. [DOI: 10.4103/1735-3327.351345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Yap AU, Choo HS, Choo HY, Yahya NA. Flexural Properties of Bioactive Restoratives in Cariogenic Environments. Oper Dent 2021; 46:448-456. [PMID: 34425586 DOI: 10.2341/20-045-l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 11/23/2022]
Abstract
This study determined the mechanical performance of bioactive restoratives in cariogenic environments and compared the flexural properties of various bioactive materials. The materials evaluated included a conventional resin-based composite (Filtek Z350 [FZ]) and 3 bioactive restoratives, namely an alkasite (Cention N [CN]), a giomer (Beautifil-bulk Restorative [BB]), and an enhanced resin-modified glass ionomer (Activa Bioactive Restorative [AV]). Beam-shaped specimens (12 x 2 x 2 mm) were produced, randomly allocated to 4 groups (n=10), and conditioned in deionized solution, remineralizing solution, demineralizing solution (DE), or pH cycled for 14 days at 37°C. After conditioning/pH cycling, the specimens were subjected to 3-point flexural testing. Flexural data were subjected to statistical analysis using analysis of variance or Tukey's test (α=0.05). Mean flexural modulus and strength ranged from 3.54 ± 0.33 to 7.44 ± 0.28 GPa, and 87.07 ± 8.99 to 123.54 ± 12.37 MPa, respectively. While the flexural modulus of the bioactive restoratives was not affected by cariogenic/acidic conditions, flexural strength usually decreased, with the exception of CN. The strength of BB was significantly reduced by DE and pH cycling, while that of AV was lowered by DE. For all conditioning mediums, AV had a significantly lower modulus than the other materials. Apart from conditioning in DE, where differences in flexural strength was insignificant, FZ and AV were generally significantly stronger than BB and CN. The effect of cariogenic environments on flexural strength was found to be material dependent, and aside from the alkasite material (CN), cariogenic conditions were observed to significantly decrease the strength of bioactive restoratives.
Collapse
|
28
|
Zhou Y, Hiraishi N, Shimada Y, Wang G, Tagami J, Feng X. Evaluation of tooth demineralization and interfacial bacterial penetration around resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler. Dent Mater 2021; 37:849-862. [DOI: 10.1016/j.dental.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/30/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
|
29
|
Clarin A, Ho D, Soong J, Looi C, Ipe DS, Tadakamadla SK. The Antibacterial and Remineralizing Effects of Biomaterials Combined with DMAHDM Nanocomposite: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1688. [PMID: 33808198 PMCID: PMC8037094 DOI: 10.3390/ma14071688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Researchers have developed novel nanocomposites that incorporate additional biomaterials with dimethylaminohexadecyl methacrylate (DMAHDM) in order to reduce secondary caries. The aim of this review was to summarize the current literature and assess the synergistic antibacterial and remineralizing effects that may contribute to the prevention of secondary caries. An electronic search was undertaken in MEDLINE using PubMed, Embase, Scopus, Web of Science and Cochrane databases. The initial search identified 954 papers. After the removal of duplicates and screening the titles and abstracts, 15 articles were eligible for this review. The amalgamation of 2-methacryloyloxyethyl phosphorylcholine (MPC) and silver nanoparticles (AgNPs) with DMAHDM resulted in increased antibacterial potency. The addition of nanoparticles of amorphous calcium phosphate (NACP) and polyamidoamine dendrimers (PAMAM) resulted in improved remineralization potential. Further clinical studies need to be planned to explore the antibacterial and remineralizing properties of these novel composites for clinical success.
Collapse
Affiliation(s)
- Alison Clarin
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
| | - Daphne Ho
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
| | - Jana Soong
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
| | - Cheryl Looi
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
| | - Deepak Samuel Ipe
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
- Menzies Health Institute Queensland, Gold Coast 4217, Australia
| | - Santosh Kumar Tadakamadla
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
- Menzies Health Institute Queensland, Gold Coast 4217, Australia
| |
Collapse
|
30
|
Does an Alteration in Nociceptive Response to Mineral Components of Dental Composites Involve Changes in Oxidative Status? a Brief Report. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2020-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Since that use of bioactive mineral components of dental composites have been accompanied with various toxicities, including neurotoxicity, the aim of the study was to examine the effect of chronic application of hydroxyapatite, tricalcium phosphate and amorphous calcium phosphate in nanoparticles (nHA, nTCP, nACP) to parameters of sensitivity to thermal pain stimuli. Although the systemic toxicity of those compounds is frequently attributed to an oxidative damage, we also decided to examine the potential effects of Filipendula ulmaria extract on nociception alterations induced by the nano-sized mineral components of dental composites. Forty-two Wistar albino rats were divided into control and six experimental (equal) groups that orally received either nHA, nTCP, nACP alone, or simultaneously with FU extract for 30 days. Nociceptive alterations were quantified in the hot plate and tail flick test. The chronic administration of nHA and nACP resulted in significant increase in reactivity to thermal stimulus, with no significant change observed in nTCP group when compared to the control in the hot plate test, while simultaneous application of FU extract prevented any significant alteration of time to respond. The reaction time in the tail flick test for all three groups that received only nano calcium phosphates was reduced, with no changes in the groups treated with FU extract. The results of this study confirmed that calcium phosphates of mineral components of dental composites produced hyperalgesic effects, and this side effect were significantly attenuated by antioxidant supplementation.
Collapse
|
31
|
Baras BH, Melo MAS, Thumbigere-Math V, Tay FR, Fouad AF, Oates TW, Weir MD, Cheng L, Xu HHK. Novel Bioactive and Therapeutic Root Canal Sealers with Antibacterial and Remineralization Properties. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1096. [PMID: 32121595 PMCID: PMC7084849 DOI: 10.3390/ma13051096] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
According to the American Dental Association Survey of Dental Services Rendered (published in 2007), 15 million root canal treatment procedures are performed annually. Endodontic therapy relies mainly on biomechanical preparation, chemical irrigation and intracanal medicaments which play an important role in eliminating bacteria in the root canal. Furthermore, adequate obturation is essential to confine any residual bacteria within the root canal and deprive them of nutrients. However, numerous studies have shown that complete elimination of bacteria is not achieved due to the complex anatomy of the root canal system. There are several conventional antibiotic materials available in the market for endodontic use. However, the majority of these antibiotics and antiseptics provide short-term antibacterial effects, and they impose a risk of developing antibacterial resistance. The root canal is a dynamic environment, and antibacterial and antibiofilm materials with long-term effects and nonspecific mechanisms of action are highly desirable in such environments. In addition, the application of acidic solutions to the root canal wall can alter the dentin structure, resulting in a weaker and more brittle dentin. Root canal sealers with bioactive properties come in direct contact with the dentin wall and can play a positive role in bacterial elimination and strengthening of the root structure. The new generation of nanostructured, bioactive, antibacterial and remineralizing additives into polymeric resin-based root canal sealers are discussed in this review. The effects of these novel bioactive additives on the physical and sealing properties, as well as their biocompatibility, are all important factors that are presented in this article.
Collapse
Affiliation(s)
- Bashayer H. Baras
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mary Anne S. Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA;
| | - Vivek Thumbigere-Math
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
| | - Franklin R. Tay
- Department of Endodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Ashraf F. Fouad
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7450, USA;
| | - Thomas W. Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
| | - Lei Cheng
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610000, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
32
|
Wu Z, Xu H, Xie W, Wang M, Wang C, Gao C, Gu F, Liu J, Fu J. Study on a novel antibacterial light-cured resin composite containing nano-MgO. Colloids Surf B Biointerfaces 2020; 188:110774. [PMID: 31945630 DOI: 10.1016/j.colsurfb.2020.110774] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 01/06/2023]
Abstract
A new type of photocurable resin composite containing nano-MgO was synthesized in order to reduce the occurrence of secondary caries. Different mass ratios (0 %, 1 %, 2 %, 4 %, 8 %) of nano-MgO were added into resin composites. The antibacterial properties of nano-MgO powder and modified resin composites against Streptococcus mutans (S. mutans) were detected by antibacterial ring test and film contact test, respectively. Compressive strength (CS) and wear resistance were determined by a universal testing machine and an abrasion test machine. The results indicated that antibacterial activity and wear resistance of resin composites containing nano-MgO were superior to the control group (p < 0.05). The antibacterial rate reached as high as 99.4 % when the mass ratio of nano-MgO was 8 %. However, the CS values tended to decline as the content of nano-MgO increase. Hence, the addition of nano-MgO showed excellent antibacterial property to resin composites and enhanced wear resistance, but was detrimental to their mechanical properties.
Collapse
Affiliation(s)
- Zhongyuan Wu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, College of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Haiping Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, College of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Wei Xie
- Department of Stomatology, Huikang Hospital, Qingdao University Medical Group, Qingdao, 266000, China
| | - Meimei Wang
- Department of Stomatology, Weifang Weien Hospital, Weifang, 261000, China
| | - Cunjin Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, College of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Cheng Gao
- Department of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
| | - Fang Gu
- Qingdao University Medical College, Qingdao, Shandong 266021, China.
| | - Jie Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, College of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Jing Fu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, College of Stomatology, Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
33
|
Matsuo K, Yoshihara K, Nagaoka N, Makita Y, Obika H, Okihara T, Matsukawa A, Yoshida Y, Van Meerbeek B. Rechargeable anti-microbial adhesive formulation containing cetylpyridinium chloride montmorillonite. Acta Biomater 2019; 100:388-397. [PMID: 31568874 DOI: 10.1016/j.actbio.2019.09.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Long-term anti-bacterial effect is a desired ability of any dental material in combating tooth caries as one of the most common and widespread persistent diseases today. Among several cationic quaternary ammonium compounds with antiseptic properties, cetylpyridinium chloride (CPC) is often used in mouthrinses and toothpastes. In this study, we incorporated CPC in a soft phyllosilicate mineral (clay), referred to as montmorillonite (Mont), to enable gradual CPC release with rechargeability. Besides measuring CPC release and recharge, we examined the anti-bacterial effect, cytotoxicity and bonding effectiveness of five experimental adhesive formulations, prepared by adding 1 and 3 wt% CPC_Mont, 3 wt% Mont (without CPC), and 1 and 3 wt% CPC (without Mont) to the commercial adhesive Clearfil S3 Bond ND Quick ('C-S3B'; Kuraray Noritake). Strong inhibition of Streptococcus mutans biofilm formation by CPC_Mont adhesives was confirmed by optical density and SEM. CPC release from CPC_Mont adhesives was higher and lasted longer than from CPC adhesives, while CPC_Mont adhesives could also be recharged with CPC upon immersion in 2 wt% CPC. In conclusion, CPC_Mont technology rendered adhesives anti-bacterial properties with recharge ability, this without reducing its bonding potential, neither increasing its cytotoxicity. STATEMENT OF SIGNIFICANCE: Dental caries is one of the most prevalent chronic diseases in the population worldwide and is the major cause of tooth loss. In this study, we developed cetylpyridinium chloride (CPC) loaded montmorillonite (CPC-Mont) with a long-term antibacterial efficacy to prevent caries. CPC is an antibacterial agent approved by FDA, used as an OTC drug and contained in oral hygiene aids. CPC-Mont was incorporated in a dental adhesive to gradually release CPC. CPC_Mont technology rendered adhesives anti-bacterial properties with rechargeability, this without reducing its bonding potential, neither increasing its cytotoxicity.
Collapse
|
34
|
Pratap B, Gupta RK, Bhardwaj B, Nag M. Resin based restorative dental materials: characteristics and future perspectives. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:126-138. [PMID: 31687052 PMCID: PMC6819877 DOI: 10.1016/j.jdsr.2019.09.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 01/27/2023] Open
Abstract
This review article compiles the characteristics of resin based dental composites and an effort is made to point out their future perspectives. Recent research studies along with few earlier articles were studied to compile the synthesis schemes of commonly used monomers, their characteristics in terms of their physical, mechanical and polymerization process with selectivity towards the input parameters of polymerization process. This review covers surface modification processes of various filler particles using silanes, wear behaviour, antimicrobial behaviour along with its testing procedures to develop the fundamental knowledge of various characteristics of resin based composites. In the end of this review, possible areas of further interests are pointed out on the basis of literature review on resin based dental materials.
Collapse
Key Words
- 4-EDMAB, Ethyl-4-dimethyl amino benzoate
- Antimicrobial properties
- BPA, Bisphenol-A
- BPO, Benzoyl peroxide
- Bis-EMA, Ethoxylatedbisphenol-A-dimethacrylate
- Bis-GMA, Bisphenol A-glycidyl methacrylate
- CQ, Camphorquinone
- DC, Degree of conversion
- DHEPT, Dihydroxy ethyl-para-toluidine
- DMAEMA, Dimethyl amino ethyl methacrylate
- DMAP, Dimethyl amino pyridine
- Dental composites
- EGDMA, Ethylene glycol dimethacrylate
- HEMA, 2-Hydroxyethyl methacrylate
- LED, Light emitting diode
- PPD, 1-phenyl-1,2 propanedione
- PS, Polymerization Shrinkage
- RBCs, Resin based composites
- Self-healing
- Surface modification of filler particles
- TEG, Triethylene glycol
- TEGDMA, Triethylene glycol dimethacrylate
- TPO, Diphenyl phosphine oxide
- UDMA, Urethane dimethacrylate
- Wear
- γ-MPS, 3-(Trimethoxysilyl) Propyl Methacrylate
Collapse
Affiliation(s)
- Bhanu Pratap
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, India
| | - Ravi Kant Gupta
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, India
| | | | - Meetu Nag
- Department of Mechatronics Engineering, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
35
|
Zhou X, Huang X, Li M, Peng X, Wang S, Zhou X, Cheng L. Development and status of resin composite as dental restorative materials. J Appl Polym Sci 2019. [DOI: 10.1002/app.48180] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xinxuan Zhou
- State Key Laboratory of Oral DiseasesSichuan University Chengdu 610041 Sichuan China
- National Clinical Research Center for Oral DiseasesSichuan University Chengdu 610041 Sichuan China
| | - Xiaoyu Huang
- State Key Laboratory of Oral DiseasesSichuan University Chengdu 610041 Sichuan China
- Department of Operative Dentistry and Endodontics, West China Hospital of StomatologySichuan University Chengdu 610041 Sichuan China
- National Clinical Research Center for Oral DiseasesSichuan University Chengdu 610041 Sichuan China
| | - Mingyun Li
- State Key Laboratory of Oral DiseasesSichuan University Chengdu 610041 Sichuan China
- National Clinical Research Center for Oral DiseasesSichuan University Chengdu 610041 Sichuan China
| | - Xian Peng
- State Key Laboratory of Oral DiseasesSichuan University Chengdu 610041 Sichuan China
- National Clinical Research Center for Oral DiseasesSichuan University Chengdu 610041 Sichuan China
| | - Suping Wang
- Department of Operative Dentistry and Endodontics & Stomatology CenterThe First Affiliated Hospital of Zhengzhou University Zhengzhou 540052 Henan China
| | - Xuedong Zhou
- State Key Laboratory of Oral DiseasesSichuan University Chengdu 610041 Sichuan China
- Department of Operative Dentistry and Endodontics, West China Hospital of StomatologySichuan University Chengdu 610041 Sichuan China
- National Clinical Research Center for Oral DiseasesSichuan University Chengdu 610041 Sichuan China
| | - Lei Cheng
- State Key Laboratory of Oral DiseasesSichuan University Chengdu 610041 Sichuan China
- Department of Operative Dentistry and Endodontics, West China Hospital of StomatologySichuan University Chengdu 610041 Sichuan China
- National Clinical Research Center for Oral DiseasesSichuan University Chengdu 610041 Sichuan China
| |
Collapse
|
36
|
Yadav S, Gangwar S. The effectiveness of functionalized nano-hydroxyapatite filler on the physical and mechanical properties of novel dental restorative composite. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1631822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sukriti Yadav
- Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Swati Gangwar
- Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| |
Collapse
|
37
|
Abstract
Currently, much has been published related to conventional resin-based composites and adhesives; however, little information is available about bioceramics-based restorative materials. The aim was to structure this topic into its component parts and to highlight the translational research that has been conducted up to the present time. A literature search was done from indexed journals up to September 2017. The main search terms used were based on dental resin-based composites, dental adhesives along with bioactive glass and the calcium phosphate family. The results showed that in 123 articles, amorphous calcium phosphate (39.83%), hydroxyapatite (23.5%), bioactive glass (16.2%), dicalcium phosphate (5.69%), monocalcium phosphate monohydrate (3.25%), and tricalcium phosphate (2.43%) have been used in restorative materials. Moreover, seven studies were found related to a newly developed commercial bioactive composite. The utilization of bioactive materials for tooth restorations can promote remineralization and a durable seal of the tooth-material interface.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University
| | - Mariam Raza Syed
- Department of Dental Materials, University of Health Sciences.,Department of Dental Materials, Lahore Medical and Dental College
| |
Collapse
|