1
|
Michalec S, Nieckarz W, Klimek W, Lange A, Matuszewski A, Piotrowska K, Hotowy A, Kunowska-Slósarz M, Sosnowska M. Green Synthesis of Silver Nanoparticles from Chlorella vulgaris Aqueous Extract and Their Effect on Salmonella enterica and Chicken Embryo Growth. Molecules 2025; 30:1521. [PMID: 40286137 PMCID: PMC11990373 DOI: 10.3390/molecules30071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Silver nanoparticles (AgNPs), synthesised using Chlorella vulgaris algal extract and silver nitrate, are studied in medicine for their antibacterial properties in poultry. This study assessed the effect of AgNPs on bacterial inhibition and early development and blood parameters in Ross 308 chicken embryos. AgNPs were characterised using transmission electron microscopy, scanning electron microscopy with a focused ion beam, UV-Vis spectroscopy, and a zetasizer. The antibacterial properties of the AgNP colloid against S. enterica were assessed using minimal inhibitory concentration, minimal bacterial concentration, and PrestoBlue assays. AgNP colloid (2 mg/L) was injected into egg albumen on day 0. Chicken embryos were incubated for 3 and 16 d. The effect of AgNPs on 3 d old embryos was evaluated based on mortality and somite count using the Hamburger-Hamilton classification. For older embryos, mortality, dimensions, anatomical changes, organ mass, plasma liver enzymes and antioxidants, and red blood cell morphology were determined. Blood samples from the control group embryos were assessed for the impact of AgNPs on hemolysis. AgNPs inhibited S. enterica growth at concentrations >6.75 mg/L. A 3 d exposure to AgNPs caused an insignificant decrease in the number of somites without affecting embryo mortality. However, a 16 d exposure to AgNPs reduced live embryos and plasma antioxidants, changed the levels of ALT, AST, and GGT, altered red blood cell morphology, and caused hemolysis. Toxicity of AgNPs was model-dependent, whereby the chicken embryo was more sensitive to AgNPs than the bacterium.
Collapse
Affiliation(s)
- Sebastian Michalec
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Wiktoria Nieckarz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Wiktoria Klimek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Arkadiusz Matuszewski
- Department of Animal Environment Biology, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Klara Piotrowska
- Department of Animal Breeding and Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (K.P.); (M.K.-S.)
| | - Anna Hotowy
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Małgorzata Kunowska-Slósarz
- Department of Animal Breeding and Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (K.P.); (M.K.-S.)
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| |
Collapse
|
2
|
Eisenberg LM, Eisenberg CA. Stem Cells Associated with Adult Skeletal Muscle Can Form Beating Cardiac Tissue In Vitro in Response to Media Containing Heparin, Dexamethasone, Growth Factors and Hydrogen Peroxide. Int J Mol Sci 2025; 26:2683. [PMID: 40141327 PMCID: PMC11942180 DOI: 10.3390/ijms26062683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Both cardiac and skeletal muscles originate from the mesoderm, although the two tissues develop from distinct primordia within the early embryo. The shared, albeit distinctive muscle phenotype of these two cell types have led many researchers to investigate whether stem cells from adult skeletal muscle have the capacity to generate cells with a contractile, cardiac phenotype. To date, most of those studies have relied on multistep protocols requiring tissue engineering, co-cultures or transplantation experimentation. In this report, we describe a simple, cell culture method for obtaining contractile, cardiogenic aggregates from skeletal muscle-derived stem cells (MDSCs). Combining in vitro conditions used for promoting the differentiation of cardiac progenitor cells and the long-term maintenance of heart tissue fragments, we have been able to convert MDSCs to myocardial cells that aggregate into beating myospheres. These selective and optimized culture conditions continued to support a contractile cardiogenic phenotype for over four months in vitro. This culture protocol provides a model for future insights into the pathways responsible for the divergence of skeletal and cardiac phenotypes, as well as a source of easily obtained myocardial tissue for subsequent scientific investigations into cardiac function and biology.
Collapse
Affiliation(s)
| | - Carol A. Eisenberg
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
3
|
McDaniel C, Simsek MF, Chandel AS, Özbudak EM. Spatiotemporal control of pattern formation during somitogenesis. SCIENCE ADVANCES 2024; 10:eadk8937. [PMID: 38277458 PMCID: PMC10816718 DOI: 10.1126/sciadv.adk8937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Spatiotemporal patterns widely occur in biological, chemical, and physical systems. Particularly, embryonic development displays a diverse gamut of repetitive patterns established in many tissues and organs. Branching treelike structures in lungs, kidneys, livers, pancreases, and mammary glands as well as digits and bones in appendages, teeth, and palates are just a few examples. A fascinating instance of repetitive patterning is the sequential segmentation of the primary body axis, which is conserved in all vertebrates and many arthropods and annelids. In these species, the body axis elongates at the posterior end of the embryo containing an unsegmented tissue. Meanwhile, segments sequentially bud off from the anterior end of the unsegmented tissue, laying down an exquisite repetitive pattern and creating a segmented body plan. In vertebrates, the paraxial mesoderm is sequentially divided into somites. In this review, we will discuss the most prominent models, the most puzzling experimental data, and outstanding questions in vertebrate somite segmentation.
Collapse
Affiliation(s)
- Cassandra McDaniel
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - M. Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Angad Singh Chandel
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ertuğrul M. Özbudak
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Stepien BK, Pawolski V, Wagner MC, Kurth T, Schmidt MHH, Epperlein HH. The Role of Posterior Neural Plate-Derived Presomitic Mesoderm (PSM) in Trunk and Tail Muscle Formation and Axis Elongation. Cells 2023; 12:cells12091313. [PMID: 37174713 PMCID: PMC10177618 DOI: 10.3390/cells12091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Elongation of the posterior body axis is distinct from that of the anterior trunk and head. Early drivers of posterior elongation are the neural plate/tube and notochord, later followed by the presomitic mesoderm (PSM), together with the neural tube and notochord. In axolotl, posterior neural plate-derived PSM is pushed posteriorly by convergence and extension of the neural plate. The PSM does not go through the blastopore but turns anteriorly to join the gastrulated paraxial mesoderm. To gain a deeper understanding of the process of axial elongation, a detailed characterization of PSM morphogenesis, which precedes somite formation, and of other tissues (such as the epidermis, lateral plate mesoderm and endoderm) is needed. We investigated these issues with specific tissue labelling techniques (DiI injections and GFP+ tissue grafting) in combination with optical tissue clearing and 3D reconstructions. We defined a spatiotemporal order of PSM morphogenesis that is characterized by changes in collective cell behaviour. The PSM forms a cohesive tissue strand and largely retains this cohesiveness even after epidermis removal. We show that during embryogenesis, the PSM, as well as the lateral plate and endoderm move anteriorly, while the net movement of the axis is posterior.
Collapse
Affiliation(s)
- Barbara K Stepien
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| | - Verena Pawolski
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| | - Marc-Christoph Wagner
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Electron Microscopy and Histology Facility, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| | - Hans-Henning Epperlein
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01062 Dresden, Germany
| |
Collapse
|
5
|
Piatkowska AM, Adhikari K, Moverley AA, Turmaine M, Glazier JA, Plachta N, Evans SE, Stern CD. Sequential changes in cellular properties accompanying amniote somite formation. J Anat 2022; 242:417-435. [PMID: 36423208 PMCID: PMC9919497 DOI: 10.1111/joa.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/30/2022] [Accepted: 10/28/2022] [Indexed: 11/26/2022] Open
Abstract
Somites are transient structures derived from the pre-somitic mesoderm (PSM), involving mesenchyme-to-epithelial transition (MET) where the cells change their shape and polarize. Using Scanning electron microscopy (SEM), immunocytochemistry and confocal microscopy, we study the progression of these events along the tail-to-head axis of the embryo, which mirrors the progression of somitogenesis (younger cells located more caudally). SEM revealed that PSM epithelialization is a gradual process, which begins much earlier than previously thought, starting with the dorsalmost cells, then the medial ones, and then, simultaneously, the ventral and lateral cells, before a somite fully separates from the PSM. The core (internal) cells of the PSM and somites never epithelialize, which suggests that the core cells could be 'trapped' within the somitocoele after cells at the surfaces of the PSM undergo MET. Three-dimensional imaging of the distribution of the cell polarity markers PKCζ, PAR3, ZO1, the Golgi marker GM130 and the apical marker N-cadherin reveal that the pattern of polarization is distinctive for each marker and for each surface of the PSM, but the order of these events is not the same as the progression of cell elongation. These observations challenge some assumptions underlying existing models of somite formation.
Collapse
Affiliation(s)
- Agnieszka M. Piatkowska
- Department of Cell & Developmental BiologyUniversity College London, Gower Street (Anatomy Building)LondonUK
| | - Kaustubh Adhikari
- Department of Cell & Developmental BiologyUniversity College London, Gower Street (Anatomy Building)LondonUK,Present address:
The Open UniversityMilton KeynesUK
| | - Adam A. Moverley
- Department of Cell & Developmental BiologyUniversity College London, Gower Street (Anatomy Building)LondonUK
| | - Mark Turmaine
- Department of Cell & Developmental BiologyUniversity College London, Gower Street (Anatomy Building)LondonUK
| | - James A. Glazier
- Department of Intelligent Systems EngineeringBiocomplexity InstituteBloomingtonIndianaUSA
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, 9‐123 Smilow Center for Translational Research, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Susan E. Evans
- Department of Cell & Developmental BiologyUniversity College London, Gower Street (Anatomy Building)LondonUK
| | - Claudio D. Stern
- Department of Cell & Developmental BiologyUniversity College London, Gower Street (Anatomy Building)LondonUK
| |
Collapse
|